1
|
Li H, Zheng H. Theoretical study on the concerted catalysis of Ir/Ni for amino radical transfer for C(sp 2)-C(sp 3) bond formation. Dalton Trans 2024. [PMID: 39445399 DOI: 10.1039/d4dt02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Thomas C. Maier's group has reported a synergistic Ir/Ni catalysis method for the synthesis of C(sp2)-C(sp3) bonds through an amino radical transfer (ART) strategy to generate alkyl radicals. This work employed density functional theory (DFT) to investigate the reaction mechanism, including the redox mechanism of Ir complexes in the generation process of amino radicals, analyzed the role and rationale behind alkyl boronic esters becoming dominant reaction pathways in the ART process, and discussed the competitive reaction mechanisms between oxidative addition and radical capture during C(sp2)-C(sp3) cross-coupling with Ni complexes. Through this theoretical calculation study, we aim to provide a theoretical foundation for constructing key carbon radical intermediates using ART and Ni-complex catalyzed free-radical-involved C(sp2)-C(sp3) cross-coupling reactions.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, China
| | - He Zheng
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, China
| |
Collapse
|
2
|
Roy M, Sardar B, Mallick I, Srimani D. Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C-O bonds in organic transformations. Beilstein J Org Chem 2024; 20:1348-1375. [PMID: 38887583 PMCID: PMC11181251 DOI: 10.3762/bjoc.20.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Alkyl and acyl radicals play a critical role in the advancement of chemical synthesis. The generation of acyl and alkyl radicals by activation of C-O bonds using visible-light photoredox catalysis offers a mild and environmentally benign approach to useful chemical transformations. Alcohols, carboxylic acids, anhydrides, xanthates, oxalates, N-phthalimides, and thiocarbonates are some examples of alkyl and acyl precursors that can produce reactive radicals by homolysis of the C-O bond. These radicals can then go through a variety of transformations that are beneficial for the construction of synthetic materials that are otherwise difficult to access. This study summarizes current developments in the use of organic photocatalysts, transition-metal photoredox catalysts, and metallaphotocatalysts to produce acyl and alkyl radicals driven by visible light.
Collapse
Affiliation(s)
- Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Bitan Sardar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Itu Mallick
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
3
|
Carson WP, Tsymbal AV, Pipal RW, Edwards GA, Martinelli JR, Cabré A, MacMillan DWC. Free-Radical Deoxygenative Amination of Alcohols via Copper Metallaphotoredox Catalysis. J Am Chem Soc 2024; 146:15681-15687. [PMID: 38813987 DOI: 10.1021/jacs.4c04477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Alcohols are among the most abundant chemical feedstocks, yet they remain vastly underutilized as coupling partners in transition metal catalysis. Herein, we describe a copper metallaphotoredox manifold for the open shell deoxygenative coupling of alcohols with N-nucleophiles to forge C(sp3)-N bonds, a linkage of high value in pharmaceutical agents that is challenging to access via conventional cross-coupling techniques. N-heterocyclic carbene (NHC)-mediated conversion of alcohols into the corresponding alkyl radicals followed by copper-catalyzed C-N coupling renders this platform successful for a broad range of structurally unbiased alcohols and 18 classes of N-nucleophiles.
Collapse
Affiliation(s)
- William P Carson
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Artem V Tsymbal
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Robert W Pipal
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Joseph R Martinelli
- Lilly Genetic Medicine, Eli Lilly and Company, Cambridge, Massachusetts 02142, United States
| | - Albert Cabré
- Centro de Investigación Lilly S.A., Madrid 28108, Spain
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Cai Q, McWhinnie IM, Dow NW, Chan AY, MacMillan DWC. Engaging Alkenes in Metallaphotoredox: A Triple Catalytic, Radical Sorting Approach to Olefin-Alcohol Cross-Coupling. J Am Chem Soc 2024; 146:12300-12309. [PMID: 38657210 PMCID: PMC11493080 DOI: 10.1021/jacs.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metallaphotoredox cross-coupling is a well-established strategy for generating clinically privileged aliphatic scaffolds via single-electron reactivity. Correspondingly, expanding metallaphotoredox to encompass new C(sp3)-coupling partners could provide entry to a novel, medicinally relevant chemical space. In particular, alkenes are abundant, bench-stable, and capable of versatile C(sp3)-radical reactivity via metal-hydride hydrogen atom transfer (MHAT), although metallaphotoredox methodologies invoking this strategy remain underdeveloped. Importantly, merging MHAT activation with metallaphotoredox could enable the cross-coupling of olefins with feedstock partners such as alcohols, which undergo facile open-shell activation via photocatalysis. Herein, we report the first C(sp3)-C(sp3) coupling of MHAT-activated alkenes with alcohols by performing deoxygenative hydroalkylation via triple cocatalysis. Through synergistic Ir photoredox, Mn MHAT, and Ni radical sorting pathways, this branch-selective protocol pairs diverse olefins and methanol or primary alcohols with remarkable functional group tolerance to enable the rapid construction of complex aliphatic frameworks.
Collapse
Affiliation(s)
- Qinyan Cai
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Iona M. McWhinnie
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Nathan W. Dow
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - Amy Y. Chan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
5
|
Xu W, Fan C, Hu X, Xu T. Deoxygenative Transformation of Alcohols via Phosphoranyl Radical from Exogenous Radical Addition. Angew Chem Int Ed Engl 2024; 63:e202401575. [PMID: 38357753 DOI: 10.1002/anie.202401575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/16/2024]
Abstract
A general approach to the direct deoxygenative transformation of primary, secondary, and tertiary alcohols has been developed. It undergoes through phosphoranyl radical intermediates generated by the addition of exogenous iodine radical to trivalent alkoxylphosphanes. Since these alkoxylphosphanes are readily in situ obtained from alcohols and commercially available, inexpensive chlorodiphenylphosphine, a diverse range of alcohols with various functional groups can be utilized to proceed deoxygenative cross-couplings with alkenes or aryl iodides. The selective transformation of polyhydroxy substrates and the rapid synthesis of complex organic molecules are also demonstrated with this method.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| | - Chao Fan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustain-ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, P. R. China
| |
Collapse
|
6
|
Bai T, Li H. Revealing the Mechanism of Alcohol Dehydroxylation and C-C Bond Formation through Concerted Catalysis by Ir/Cu Bimetallic Complexes. J Org Chem 2024; 89:5363-5370. [PMID: 38593184 DOI: 10.1021/acs.joc.3c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The density functional theory (DFT) was employed to theoretically investigate the reaction mechanism of alcohol deoxygenation/trifluoromethylation. The substrate alcohol (R1) forms a complex (INT3) by binding with benzoxazole salts (NHCs). Under the influence of the photocatalyst ([IrIII]*) and quinuclidine, the C-H bond in INT3 is activated through either electron transfer-proton transfer (ETPT) or hydrogen atom transfer (HAT) mechanisms, resulting in the cleavage of C-O bonds and generation of deoxyalkyl radicals. The distribution of high-valent and low-valent states in the catalytic cycle of [Ir]-complexes is governed by the redox potential mechanism. Investigation was conducted on the source of hydrogen atom transfer reagents in the HAT reaction process under both optimal and nonoptimal conditions. The results demonstrate distinct reactivity among various radicals involved in the Cu-mediated radical capture process. Further investigations into INT3 activation modes, cycling facilitated by [Ir]-complexes, and understanding the role played by [Cu]-complexes in this reaction system provide a valuable theoretical foundation for comprehending and enhancing Ir/Cu bimetallic cooperative catalysis in alcohol deoxygenation/trifluoromethylation reactions. This provides anticipated theoretical support for future designs of more efficient and rational alcohol deoxygenation reactions.
Collapse
Affiliation(s)
- Taiming Bai
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, 750021 Yinchuan, China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, 750021 Yinchuan, China
| | - Hui Li
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, 750021 Yinchuan, China
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, 750021 Yinchuan, China
| |
Collapse
|
7
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
8
|
Majhi J, Matsuo B, Oh H, Kim S, Sharique M, Molander GA. Photochemical Deoxygenative Hydroalkylation of Unactivated Alkenes Promoted by a Nucleophilic Organocatalyst. Angew Chem Int Ed Engl 2024; 63:e202317190. [PMID: 38109703 DOI: 10.1002/anie.202317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
The direct utilization of simple and abundant feedstocks in carbon-carbon bond-forming reactions to embellish sp3 -enriched chemical space is highly desirable. Herein, we report a novel photochemical deoxygenative hydroalkylation of unactivated alkenes with readily available carboxylic acid derivatives. The reaction displays broad functional group tolerance, accommodating carboxylic acid-, alcohol-, ester-, ketone-, amide-, silane-, and boronic ester groups, as well as nitrile-containing substrates. The reaction is operationally simple, mild, and water-tolerant, and can be carried out on multigram-scale, which highlights the utility of the method to prepare value-added compounds in a practical and scalable manner. The synthetic application of the developed method is further exemplified through the synthesis of suberanilic acid, a precursor of vorinostat, a drug used for the treatment of cutaneous T-cell lymphoma. A novel mechanistic approach was identified using thiol as a nucleophilic catalyst, which forms a key intermediate for this transformation. Furthermore, electrochemical studies, quantum yield, and mechanistic experiments were conducted to support a proposed catalytic cycle for the transformation.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| |
Collapse
|
9
|
Monteith JJ, Rousseaux SAL. Redox-Active Thiocarbonyl Auxiliaries in Ni-Catalyzed Cross-Couplings of Aliphatic Alcohols. Acc Chem Res 2023; 56:3581-3594. [PMID: 38047525 DOI: 10.1021/acs.accounts.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
ConspectusThe Barton-McCombie deoxygenation reaction first established the use of O-alkyl thiocarbonyl derivatives as powerful redox-active agents for C(sp3)-O reduction. In recent years, first-row transition metals capable of engaging with alkyl radical intermediates generated from O-alkyl thiocarbonyl derivatives using alternative stoichiometric radical precursors have been developed. Given the ability of select Ni catalysts to both participate in single-electron oxidative addition pathways and intercept alkyl radical intermediates, our group has investigated the use of O-alkyl thiocarbonyl derivatives as electrophiles in novel cross-coupling reactions. After describing related work in this area, this Account will first summarize our entry point into this field. Here, we used the cyclopropane ring as a reporter of leaving group reactivity to aid in the design and optimization of a novel redox-active O-thiocarbamate leaving group for C(sp3)-O arylation. Motivation for this pursuit was driven by the propensity of the cyclopropane ring to undergo ring opening under polar (2e) oxidative addition pathways or to be maintained under single-electron (1e) conditions. Using these guiding principles, we developed a method for the deoxygenative arylation of cyclopropanol derivatives using a Ni catalyst without the need for a stoichiometric external reductant or photocatalyst. We next summarize our evaluation of an alternative redox-active O-thiocarbonyl imidazole auxiliary in a related deoxygenative cross-coupling. This work demonstrated an extension of our initial approach to the deoxygenative arylation of primary and secondary aliphatic alcohol derivatives. A brief mechanistic investigation revealed that this reaction likely proceeds via a distinct mechanism involving direct homolytic C(sp3)-O bond cleavage. We conclude this Account with a summary of work aimed toward a unique approach for thiocarboxylic acid derivative synthesis. This project was inspired by the efficiency of thionoester generation under most of the reaction conditions evaluated in our prior investigations. Using alcohol, amine, or thiol starting materials, which were activated with convenient thiocarbonyl sources in a single step, we optimized for a Ni-catalyzed cross-coupling capable of providing access to a range of thionoester, thioamide, or dithioester products. In summary, our work has revealed the potential of redox-active thiocarbonyl auxiliaries in Ni-catalyzed cross-couplings with C(sp3)-O electrophiles. We anticipate that the continued investigation of aliphatic thiocarbonyl derivatives as radical precursors with alternative single-electron inputs will be an area of continued growth in the years to come.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Xiong Y, Wu X. Deoxygenative coupling of alcohols with aromatic nitriles enabled by direct visible light excitation. Org Biomol Chem 2023; 21:9316-9320. [PMID: 37982141 DOI: 10.1039/d3ob01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A general and practical protocol is presented for visible-light-driven deoxygenative coupling of alcohols with aromatic nitriles in the absence of external photocatalysts. Utilizing a hydroxyl activation strategy with carbon disulfide, this C(sp3)-C(sp2) constructing platform accommodates a broad scope of alcohols and aryl nitriles to deliver various alkyl-substituted arenes. Mechanism studies show that a single electron transfer event between a photoexcited aryl nitrile and a xanthate anion is key to the transformation.
Collapse
Affiliation(s)
- Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
11
|
Gould CA, Pace AL, MacMillan DWC. Rapid and Modular Access to Quaternary Carbons from Tertiary Alcohols via Bimolecular Homolytic Substitution. J Am Chem Soc 2023; 145:16330-16336. [PMID: 37471294 PMCID: PMC10680126 DOI: 10.1021/jacs.3c05405] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Quaternary carbons are ubiquitous in bioactive molecules; however, synthetic methods for the construction of this motif remain underdeveloped. Here, we report the synthesis of quaternary carbons from tertiary alcohols, a class of structurally diverse, bench-stable feedstocks, via the merger of photoredox catalysis and iron-mediated SH2 bond formation. This alcohol-bromide cross-coupling is enabled by a novel halogen-atom transfer (XAT) reagent, which is the first reductively activated XAT reagent to be reported. A wide variety of sterically congested quaternary products can be accessed through this mild and practical protocol including products derived from both alkylation and benzylation of tertiary fragments. We further demonstrate the synthetic utility of this method through the expedited synthesis of a liver receptor agonist and through a two-step conversion of ketones and esters to quaternary products, which enables the modular control of up to three of the four substituents on a quaternary center.
Collapse
Affiliation(s)
- Colin A Gould
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Andria L Pace
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Iron/B2pin2 catalytic system enables the generation of alkyl radicals from inert alkyl C-O bonds for amine synthesis. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Su J, Li C, Hu X, Guo Y, Song Q. Deaminative Arylation and Alkenyaltion of Aliphatic Tertiary Amines with Aryl and Alkenylboronic Acids via Nitrogen Ylides. Angew Chem Int Ed Engl 2022; 61:e202212740. [PMID: 36314477 DOI: 10.1002/anie.202212740] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Transition-metal-catalyzed Suzuki-Miyaura coupling has significantly advanced C-C bond formation and has been well recognized in organic synthesis, pharmaceuticals, materials science and other fields. In this rapid development, cross coupling without transition metal catalyst is a big challenge in this field, and using widely existing tertiary amines as electrophiles to directly couple with boronic acids has great hurdles yet significant application prospects. Herein, we report an efficient and general deaminative arylation and alkenylation of tertiary amines (propargyl amines, allyl amines and 1H-indol-3-yl methane amines) with ary and alkenylboronic acids enabled by difluorocarbene under transition-metal-free conditions. Preliminary mechanism experiments suggest that in situ formed difluoromethyl quaternary amine salt, nitrogen ylide and tetracoordinate boron species are the key intermediates, the subsequent 1,2-metallate shift and protodeboronation complete the new coupling reaction.
Collapse
Affiliation(s)
- Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Xinyuan Hu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian, 361021, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
14
|
Visible Light-Induced Deoxygenation and Allylation/Vinylation of Pyridyl Ethers. Org Lett 2022; 24:7309-7314. [PMID: 36190797 DOI: 10.1021/acs.orglett.2c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of alkyl radicals by deoxygenation of unactivated ethers under visible light catalysis is a hitherto unmet challenge. Herein, we report a visible light-induced deoxygenation of pyridyl ethers via formation of their pyridinium salts. The generated benzylic radicals further react with allyl/alkenyl sulfones to provide a series of coupling products in good to moderate yields. This process is proposed to undergo a reductive quenching cycle, which was elucidated by chemical, optical, and electrical experiments.
Collapse
|
15
|
Kolusu SRN, Nappi M. Metal-free deoxygenative coupling of alcohol-derived benzoates and pyridines for small molecules and DNA-encoded libraries synthesis. Chem Sci 2022; 13:6982-6989. [PMID: 35774170 PMCID: PMC9200129 DOI: 10.1039/d2sc01621d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohols are among the most widely occurring functional groups found in naturally abundant, biologically relevant organic compounds, which in many cases are considered feedstock chemicals. Herein, we report a metal-free method for the deoxygenative coupling of alcohol-derived benzoates and pyridines promoted by visible light. Given the practical, mild and water-compatible conditions, small molecules and DNA headpieces can be successfully functionalized with a range of primary, secondary and tertiary alcohols. This protocol is distinguished by its wide substrate scope and broad applicability, even in the context of late-stage functionalization and DNA-drug coupling reactions.
Collapse
Affiliation(s)
- Sai Rohini Narayanan Kolusu
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela A Coruña Spain https://nappichem.com
| | - Manuel Nappi
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa de Jenaro de la Fuente, s/n, 15705 Santiago de Compostela A Coruña Spain https://nappichem.com
| |
Collapse
|
16
|
Li X, Si W, Liu Z, Qian H, Wang T, Leng S, Sun J, Jiao Y, Zhang X. Visible-Light-Promoted Desulfurative Alkylation of Alkyl Thianthrenium Salts with Activated Olefins. Org Lett 2022; 24:4070-4074. [PMID: 35648653 DOI: 10.1021/acs.orglett.2c01525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reactions involving an alkyl radical generated from a primary alcohol by photochemistry are rare and challenging. Herein, we present a photocatalyst- and metal-free approach that enables the generation of an alkyl radical from the corresponding alcohol and the subsequent C(sp3)-C(sp3) bond formation with activated olefin, via an alkyl thianthrenium salt/Hantzsch ester electron donor-acceptor complex. This protocol for the conversion of a C-OH bond to a C-C bond is highly functionality tolerant and can successfully be used in late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Xin Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Weili Si
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Zhanhui Liu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Haitao Qian
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Tingxue Wang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Shengnan Leng
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Jinwei Sun
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yan Jiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| |
Collapse
|
17
|
Sun W, Zou J, Xu X, Wang J, Liu M, Liu X. Photo‐Catalyzed Redox‐Neutral 1,2‐Dialkylation of Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Hui Sun
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jian‐Yu Zou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiao‐Jing Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jin‐Lin Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Mei‐Ling Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
18
|
Anwar K, Merkens K, Aguilar Troyano FJ, Gómez-Suárez A. Radical Deoxyfunctionalisation Strategies. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Khadijah Anwar
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemistry GERMANY
| | - Kay Merkens
- Bergische Universität Wuppertal: Bergische Universitat Wuppertal Organic Chemstry GERMANY
| | | | - Adrián Gómez-Suárez
- Bergische Universitat Wuppertal Organische Chemie Gaußstr. 20 42119 Wuppertal GERMANY
| |
Collapse
|
19
|
Guo HM, He BQ, Wu X. Direct Photoexcitation of Xanthate Anions for Deoxygenative Alkenylation of Alcohols. Org Lett 2022; 24:3199-3204. [PMID: 35467887 DOI: 10.1021/acs.orglett.2c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this report, we identify xanthate salts as a unique class of visible-light-excitable alkyl radical precursors that act simultaneously as strong photoreductants and alkyl radical sources. Upon direct photoexcitation of xanthate anions, efficient deoxygenative alkenylation and alkylation of a wide range of primary, secondary, and tertiary alcohols have been achieved via a one-pot protocol, avoiding any photocatalysts. This method exhibits a broad substrate scope and good functional group tolerance, enabling late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin-Qing He
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
20
|
Li WD, Wu Y, Li SJ, Jiang YQ, Li YL, Lan Y, Xia JB. Boryl Radical Activation of Benzylic C-OH Bond: Cross-Electrophile Coupling of Free Alcohols and CO 2 via Photoredox Catalysis. J Am Chem Soc 2022; 144:8551-8559. [PMID: 35378034 DOI: 10.1021/jacs.1c12463] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new strategy for the direct cleavage of the C(sp3)-OH bond has been developed via activation of free alcohols with neutral diphenyl boryl radical generated from sodium tetraphenylborate under mild visible light photoredox conditions. This strategy has been verified by cross-electrophile coupling of free alcohols and carbon dioxide for the synthesis of carboxylic acids. Direct transformation of a range of primary, secondary, and tertiary benzyl alcohols to acids has been achieved. Control experiments and computational studies indicate that activation of alcohols with neutral boryl radical undergoes homolysis of the C(sp3)-OH bond, generating alkyl radicals. After reducing the alkyl radical into carbon anion under photoredox conditions, the following carboxylation with CO2 affords the coupling product.
Collapse
Affiliation(s)
- Wen-Duo Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shi-Jun Li
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Qian Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yan-Lin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yu Lan
- College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics (LICP), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
21
|
Sakai HA, MacMillan DWC. Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C( sp3)-C( sp3) Cross-Coupling via Radical Sorting. J Am Chem Soc 2022; 144:6185-6192. [PMID: 35353531 DOI: 10.1021/jacs.2c02062] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Alcohols and carboxylic acids are among the most commercially abundant, synthetically versatile, and operationally convenient functional groups in organic chemistry. Under visible light photoredox catalysis, these native synthetic handles readily undergo radical activation, and the resulting open-shell intermediates can subsequently participate in transition metal catalysis. In this report, we describe the C(sp3)-C(sp3) cross-coupling of alcohols and carboxylic acids through the dual combination of N-heterocyclic carbene (NHC)-mediated deoxygenation and hypervalent iodine-mediated decarboxylation. This mild and practical Ni-catalyzed radical-coupling protocol was employed to prepare a wide array of alkyl-alkyl cross-coupled products, including highly congested quaternary carbon centers from the corresponding tertiary alcohols or tertiary carboxylic acids. We demonstrate the synthetic applications of this methodology to alcohol C1-alkylation and formal homologation, as well as to the late-stage functionalization of drugs, natural products, and biomolecules.
Collapse
Affiliation(s)
- Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Xie H, Wang S, Wang Y, Guo P, Shu XZ. Ti-Catalyzed Reductive Dehydroxylative Vinylation of Tertiary Alcohols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Sheng Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
23
|
Abstract
A Negishi cross-coupling of α-hydroxy ester derivatives and arylzinc reagents has been developed. This reaction tolerates both primary and secondary C(sp3)-O alcohol precursors and achieves efficient cross-coupling under Ni catalysis without the need for added external metal reductant, photocatalyst, or additives. The arylation of readily accessible C(sp3)-O electrophiles in this operationally simple, rapid, and mild reaction provides a complementary way of accessing desirable α-aryl ester products.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
24
|
Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chem Rev 2021; 122:1485-1542. [PMID: 34793128 DOI: 10.1021/acs.chemrev.1c00383] [Citation(s) in RCA: 514] [Impact Index Per Article: 171.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.
Collapse
Affiliation(s)
- Amy Y Chan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Grant A Edwards
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Lucas I Frye
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Marissa N Lavagnino
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Beryl X Li
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Edna Mao
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Agustin Millet
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Nicholas L Reed
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Holt A Sakai
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
25
|
Wang H, Yang M, Wang Y, Man X, Lu X, Mou Z, Luo Y, Liang H. Nickel-Catalyzed Reductive Csp 2-Csp 3 Cross Coupling Using Phosphonium Salts. Org Lett 2021; 23:8183-8188. [PMID: 34664959 DOI: 10.1021/acs.orglett.1c02893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A nickel-catalyzed reductive cross coupling with phosphonium salts and allylic C(sp3)-O bond electrophiles, which granted direct construction of the C(sp2)-C(sp3) bond, is successfully developed. The protocol features broad substrate scope, high-functional-group tolerance, and heterocycle compatibility. Notably, the much more challenging reductive cross coupling with heterocyclic thiazolylphosphonium salts has also been accomplished for the first time.
Collapse
Affiliation(s)
- Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.,State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mengwan Yang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yuting Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xi Man
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Xinyao Lu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Zehuai Mou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yunjie Luo
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
26
|
Garbacz M, Stecko S. Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Org Biomol Chem 2021; 19:8578-8585. [PMID: 34553201 DOI: 10.1039/d1ob01624e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Allylamines are versatile building blocks in the synthesis of various naturally occurring products and pharmaceuticals. In contrast to terminal allylamines, the methods of synthesis of their branched congeners with internal, stereodefined double bonds are less explored. This work describes a new approach for the preparation of allylamines via cross-coupling of alkyl bromides with simple 3-bromoallylamines by merging the photoredox approach and Ni catalysis. The reaction proceeds under mild conditions, under blue light irradiation, and in the presence of an organic dye, 4CzIPN, as a photocatalyst. The scope of suitable reaction partners is broad, including alkyl bromides bearing reactive functionalities (e.g., esters, nitriles, aldehydes, ketones, epoxides) and N-protected allylamines, as well as N-allylated secondary and tertiary amines and heterocycles. The employment of non-racemic starting materials allows for rapid and easy construction of complex multifunctional allylamine derivatives without the loss of enantiomeric purity.
Collapse
Affiliation(s)
- Mateusz Garbacz
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
27
|
Selective deoxygenative alkylation of alcohols via photocatalytic domino radical fragmentations. Nat Commun 2021; 12:5365. [PMID: 34508098 PMCID: PMC8433232 DOI: 10.1038/s41467-021-25702-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The delivery of alkyl radicals through photocatalytic deoxygenation of primary alcohols under mild conditions is a so far unmet challenge. In this report, we present a one-pot strategy for deoxygenative Giese reaction of alcohols with electron-deficient alkenes, by using xanthate salts as alcohol-activating groups for radical generation under visible-light photoredox conditions in the presence of triphenylphosphine. The convenient generation of xanthate salts and high reactivity of sequential C–S/C–O bond homolytic cleavage enable efficient deoxygenation of primary, secondary and tertiary alcohols with diverse functionality and structure to generate the corresponding alkyl radicals, including methyl radical. Moreover, chemoselective radical monodeoxygenation of diols is achieved via selective formation of xanthate salts. The generation of alkyl radicals through deoxygenation of abundant alcohols via photoredox catalysis is of interest. In this study, the authors report a one-pot strategy for visible-light-promoted photoredox coupling of alcohols with electron-deficient alkenes, assisted by carbon disulfide and triphenylphosphine.
Collapse
|
28
|
Dong Z, MacMillan DWC. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 2021; 598:451-456. [PMID: 34464959 DOI: 10.1038/s41586-021-03920-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 11/09/2022]
Abstract
Metal-catalysed cross-couplings are a mainstay of organic synthesis and are widely used for the formation of C-C bonds, particularly in the production of unsaturated scaffolds1. However, alkyl cross-couplings using native sp3-hybridized functional groups such as alcohols remain relatively underdeveloped2. In particular, a robust and general method for the direct deoxygenative coupling of alcohols would have major implications for the field of organic synthesis. A general method for the direct deoxygenative cross-coupling of free alcohols must overcome several challenges, most notably the in situ cleavage of strong C-O bonds3, but would allow access to the vast collection of commercially available, structurally diverse alcohols as coupling partners4. We report herein a metallaphotoredox-based cross-coupling platform in which free alcohols are activated in situ by N-heterocyclic carbene salts for carbon-carbon bond formation with aryl halide coupling partners. This method is mild, robust, selective and most importantly, capable of accommodating a wide range of primary, secondary and tertiary alcohols as well as pharmaceutically relevant aryl and heteroaryl bromides and chlorides. The power of the transformation has been demonstrated in a number of complex settings, including the late-stage functionalization of Taxol and a modular synthesis of Januvia, an antidiabetic medication. This technology represents a general strategy for the merger of in situ alcohol activation with transition metal catalysis.
Collapse
Affiliation(s)
- Zhe Dong
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
29
|
Cai A, Yan W, Liu W. Aryl Radical Activation of C-O Bonds: Copper-Catalyzed Deoxygenative Difluoromethylation of Alcohols. J Am Chem Soc 2021; 143:9952-9960. [PMID: 34180233 DOI: 10.1021/jacs.1c04254] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Given their ubiquity in natural products and pharmaceuticals, alcohols represent one of the most attractive starting materials for the construction of C-C bonds. We report herein the first catalytic strategy to harness the reactivity of aryl radicals for the activation of C-O bonds in alcohol-derived xanthate esters, allowing for the discovery of the first catalytic deoxygenative difluoromethylation reaction. Under copper-catalyzed conditions, a wide variety of alkyl xanthate esters, readily synthesized from alcohol feedstocks, were activated by catalytically generated aryl radicals and were converted to the alkyl-difluoromethane products via alkyl radical intermediates. This scalable protocol exhibits a broad substrate scope and functional group tolerance, enabling late-stage modification of complex pharmaceutical agents. A one-pot protocol has been developed that allows for the direct use of free alcohols without purification of the xanthate esters. Mechanistic studies are consistent with the hypothesis of aryl radicals being formed and initiating the cleavage of the C-O bonds of xanthate esters, to generate alkyl radicals as the key intermediates. This aryl radical activation approach represents a new strategy for the activation of alcohols as cross-coupling partners.
Collapse
Affiliation(s)
- Aijie Cai
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wenhao Yan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
30
|
Varabyeva N, Barysevich M, Aniskevich Y, Hurski A. Ti(O iPr) 4-Enabled Dual Photoredox and Nickel-Catalyzed Arylation and Alkenylation of Cyclopropanols. Org Lett 2021; 23:5452-5456. [PMID: 34170135 DOI: 10.1021/acs.orglett.1c01795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Readily available from esters or ketones, cyclopropanols are inclined to undergo diverse ring-opening transformations. Their one-electron oxidation is a conventional way to β-carbonyl radicals. However, despite this fact, their application as a coupling partner in dual photoredox and nickel-catalyzed reactions with organic halides remains underdeveloped. Here, we report that the Ti(OiPr)4 additive enables this elusive cross-coupling with aryl and alkenyl bromides leading to β-substituted ketones.
Collapse
Affiliation(s)
- Nastassia Varabyeva
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kupreviča Str. 5/2, Minsk 220141, Belarus
| | - Maryia Barysevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kupreviča Str. 5/2, Minsk 220141, Belarus
| | - Yauhen Aniskevich
- Belarusian State University, Niezaliežnasci Av. 4, Minsk 220030, Belarus
| | - Alaksiej Hurski
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kupreviča Str. 5/2, Minsk 220141, Belarus
| |
Collapse
|
31
|
Wei Y, Ben-Zvi B, Diao T. Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis. Angew Chem Int Ed Engl 2021; 60:9433-9438. [PMID: 33438338 PMCID: PMC8044010 DOI: 10.1002/anie.202014991] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Indexed: 12/20/2022]
Abstract
C-aryl glycosyl compounds offer better in vivo stability relative to O- and N-glycoside analogues. C-aryl glycosides are extensively investigated as drug candidates and applied to chemical biology studies. Previously, C-aryl glycosides were derived from lactones, glycals, glycosyl stannanes, and halides, via methods displaying various limitations with respect to the scope, functional-group compatibility, and practicality. Challenges remain in the synthesis of C-aryl nucleosides and 2-deoxysugars from easily accessible carbohydrate precursors. Herein, we report a cross-coupling method to prepare C-aryl and heteroaryl glycosides, including nucleosides and 2-deoxysugars, from glycosyl esters and bromoarenes. Activation of the carbohydrate substrates leverages dihydropyridine (DHP) as an activating group followed by decarboxylation to generate a glycosyl radical via C-O bond homolysis. This strategy represents a new means to activate alcohols as a cross-coupling partner. The convenient preparation of glycosyl esters and their stability exemplifies the potential of this method in medicinal chemistry.
Collapse
Affiliation(s)
- Yongliang Wei
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Benjamin Ben-Zvi
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| | - Tianning Diao
- Chemistry Department, New York University, 100 Washington Square East, New York, NY, 10003, USA
| |
Collapse
|
32
|
Wei Y, Ben‐zvi B, Diao T. Diastereoselective Synthesis of Aryl
C
‐Glycosides from Glycosyl Esters via C−O Bond Homolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yongliang Wei
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Benjamin Ben‐zvi
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| | - Tianning Diao
- Chemistry Department New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
33
|
Ren S, Fu J, Cheng D, Li X, Xu X. A facile access for multisubstituted trifluoromethyl olefins by visible light catalysis. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Li Z, Sun W, Wang X, Li L, Zhang Y, Li C. Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. J Am Chem Soc 2021; 143:3536-3543. [PMID: 33621464 DOI: 10.1021/jacs.0c13093] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As alcohols are ubiquitous throughout chemical science, this functional group represents a highly attractive starting material for forging new C-C bonds. Here, we demonstrate that the combination of anodic preparation of the alkoxy triphenylphosphonium ion and nickel-catalyzed cathodic reductive cross-coupling provides an efficient method to construct C(sp2)-C(sp3) bonds, in which free alcohols and aryl bromides-both readily available chemicals-can be directly used as coupling partners. This nickel-catalyzed paired electrolysis reaction features a broad substrate scope bearing a wide gamut of functionalities, which was illustrated by the late-stage arylation of several structurally complex natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zijian Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Wenxuan Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xianxu Wang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Luyang Li
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Yong Zhang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.,National Institute of Biological Sciences (NIBS), Beijing 102206, China
| |
Collapse
|
35
|
Liu ZY, Cook SP. Interrupting the Barton–McCombie Reaction: Aqueous Deoxygenative Trifluoromethylation of O-Alkyl Thiocarbonates. Org Lett 2021; 23:808-813. [DOI: 10.1021/acs.orglett.0c04039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhi-Yun Liu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P. Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
36
|
Margarita C, Villo P, Tuñon H, Dalla-Santa O, Camaj D, Carlsson R, Lill M, Ramström A, Lundberg H. Zirconium-catalysed direct substitution of alcohols: enhancing the selectivity by kinetic analysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01219c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetic analysis was used as a tool for rational optimization of catalytic direct substitution of alcohols to enable selective formation of ethers, thioethers, and Friedel–Crafts alkylation products using a moisture-tolerant and commercially available Zr complex.
Collapse
Affiliation(s)
- Cristiana Margarita
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Piret Villo
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Hernando Tuñon
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Oscar Dalla-Santa
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - David Camaj
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Robin Carlsson
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Malin Lill
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Anja Ramström
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| |
Collapse
|
37
|
He J, Bai ZQ, Yuan PF, Wu LZ, Liu Q. Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c05005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhi-Qin Bai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Zhu Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
38
|
Crespi S, Fagnoni M. Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chem Rev 2020; 120:9790-9833. [PMID: 32786419 PMCID: PMC8009483 DOI: 10.1021/acs.chemrev.0c00278] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 01/09/2023]
Abstract
Alkyl radicals are key intermediates in organic synthesis. Their classic generation from alkyl halides has a severe drawback due to the employment of toxic tin hydrides to the point that "flight from the tyranny of tin" in radical processes was considered for a long time an unavoidable issue. This review summarizes the main alternative approaches for the generation of unstabilized alkyl radicals, using photons as traceless promoters. The recent development in photochemical and photocatalyzed processes enabled the discovery of a plethora of new alkyl radical precursors, opening the world of radical chemistry to a broader community, thus allowing a new era of photon democracy.
Collapse
Affiliation(s)
- Stefano Crespi
- Stratingh
Institute for Chemistry, Center for Systems
Chemistry University of Groningen, Nijenborgh 4, 9747
AG Groningen, The Netherlands
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, V. Le Taramelli 10, 27100 Pavia, Italy
| |
Collapse
|
39
|
Xie H, Guo J, Wang YQ, Wang K, Guo P, Su PF, Wang X, Shu XZ. Radical Dehydroxylative Alkylation of Tertiary Alcohols by Ti Catalysis. J Am Chem Soc 2020; 142:16787-16794. [DOI: 10.1021/jacs.0c07492] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
| | - Yu-Quan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Postdoctoral Innovation Practice Base, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, China
- Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, Colorado 80217-3364, United States
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
40
|
Ogura A, Ichii N, Shibata K, Takao KI. Red-Light-Mediated Barton–McCombie Reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akihiro Ogura
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Naoki Ichii
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ken-ichi Takao
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
41
|
Mills LR, Monteith JJ, Dos Passos Gomes G, Aspuru-Guzik A, Rousseaux SAL. The Cyclopropane Ring as a Reporter of Radical Leaving-Group Reactivity for Ni-Catalyzed C(sp 3)-O Arylation. J Am Chem Soc 2020; 142:13246-13254. [PMID: 32609494 DOI: 10.1021/jacs.0c06904] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to understand and predict reactivity is essential for the development of new reactions. In the context of Ni-catalyzed C(sp3)-O functionalization, we have developed a unique strategy employing activated cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)-O arylation. In this chemistry, the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar (2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John J Monteith
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gabriel Dos Passos Gomes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Computer Science, University of Toronto, 214 College St., Toronto, Ontario M5T 3A1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Computer Science, University of Toronto, 214 College St., Toronto, Ontario M5T 3A1, Canada.,Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada.,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Ave, Toronto, Ontario M5G 1M1, Canada
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
42
|
Garbacz M, Stecko S. The Synthesis of Chiral Allyl Carbamates via Merger of Photoredox and Nickel Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mateusz Garbacz
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw Poland
| | - Sebastian Stecko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52, 01-224 Warsaw Poland
| |
Collapse
|
43
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020; 59:11600-11606. [DOI: 10.1002/anie.202003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
44
|
Abrams R, Clayden J. Photocatalytic Difunctionalization of Vinyl Ureas by Radical Addition Polar Truce–Smiles Rearrangement Cascades. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roman Abrams
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jonathan Clayden
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
45
|
Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. Nickel/Photoredox-Catalyzed Methylation of (Hetero)aryl Chlorides Using Trimethyl Orthoformate as a Methyl Radical Source. J Am Chem Soc 2020; 142:7683-7689. [PMID: 32275411 DOI: 10.1021/jacs.0c02805] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Methylation of organohalides represents a valuable transformation, but typically requires harsh reaction conditions or reagents. We report a radical approach for the methylation of (hetero)aryl chlorides using nickel/photoredox catalysis wherein trimethyl orthoformate, a common laboratory solvent, serves as a methyl source. This method permits methylation of (hetero)aryl chlorides and acyl chlorides at an early and late stage with broad functional group compatibility. Mechanistic investigations indicate that trimethyl orthoformate serves as a source of methyl radical via β-scission from a tertiary radical generated upon chlorine-mediated hydrogen atom transfer.
Collapse
Affiliation(s)
- Stavros K Kariofillis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Makeda A Tekle-Smith
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael J Zacuto
- Drug Substance Development, Celgene Corporation, Summit, New Jersey 07901, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Khamrai J, Ghosh I, Savateev A, Antonietti M, König B. Photo-Ni-Dual-Catalytic C(sp2)–C(sp3) Cross-Coupling Reactions with Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Semiconductor Photocatalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05598] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jagadish Khamrai
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Indrajit Ghosh
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
47
|
Brill ZG, Ritts CB, Mansoor UF, Sciammetta N. Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides. Org Lett 2019; 22:410-416. [DOI: 10.1021/acs.orglett.9b04117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zachary G. Brill
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Casey B. Ritts
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Umar Faruk Mansoor
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Nunzio Sciammetta
- Department of Discovery Chemistry, MRL, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
48
|
De Abreu M, Belmont P, Brachet E. Synergistic Photoredox/Transition-Metal Catalysis for Carbon-Carbon Bond Formation Reactions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901146] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maxime De Abreu
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| | - Philippe Belmont
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| | - Etienne Brachet
- Faculté de Pharmacie de Paris; Université de Paris; Team P.N.A.S, UMR-CNRS 8038 CiTCoM; 4 avenue de l'Observatoire 75006 Paris France
| |
Collapse
|
49
|
He RD, Li CL, Pan QQ, Guo P, Liu XY, Shu XZ. Reductive Coupling between C–N and C–O Electrophiles. J Am Chem Soc 2019; 141:12481-12486. [DOI: 10.1021/jacs.9b05224] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rong-De He
- State Key Laboratory of Applied Organic Chemistry
(SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Chun-Ling Li
- State Key Laboratory of Applied Organic Chemistry
(SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry
(SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry
(SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry
(SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry
(SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
50
|
García‐Domínguez A, Mondal R, Nevado C. Dual Photoredox/Nickel‐Catalyzed Three‐Component Carbofunctionalization of Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906692] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Rahul Mondal
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Cristina Nevado
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|