1
|
Zhang W, Wang X, Zhao XY, Zhu YS, Wang X. Construction of Cobalt-Containing Polyoxovanadate-Based Inorganic-Organic Hybrids as Heterogeneous Catalysts for the Selective Oxidation of Sulfides. Inorg Chem 2024; 63:17141-17148. [PMID: 39213594 DOI: 10.1021/acs.inorgchem.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In order to develop efficient catalysts for the selective oxidation of sulfides, in this work, two polyoxovanadate-based inorganic-organic hybrids, [Co(H2O)3(3-bpfb)0.5(V2O6)]·(3-bpfb)0.5 (1) and [Co(H2O)2(4-bpfb)0.5(V2O6)] (2) [3-bpfb = N, N'-bis(3-pyridylformamide)-1, 4-benzenediamine, 4-bpfb = N, N'-bis(4-pyridylformamide)-1, 4-benzenediamine], were isolated under hydrothermal conditions. The structures of 1 and 2 embodied two kinds of different cobalt-containing polyoxovanadate-based inorganic chains. Compound 1 contained a one-dimensional inorganic zigzag chain created by the aggregation of {V2O6} clusters with each other, on which Co (II) ions were fixed. But it was an inorganic dimeric chain constructed from two linear {V2O6} cluster-based chains gathered by Co (II) ions in 2. The 3-bpfb and 4-bpfb ligands, as the bidentate linkers, coordinated with two Co (II) ions from adjacent chains to organize them into two-dimensional layers. The hydrogen bonds made important contributions to the formation of supramolecular structures of the two compounds. The two compounds served as heterogeneous catalysts and exhibited efficient activity for the selective oxidation of sulfide to sulfoxide and could be reused at least six times without loss of catalytic activity and stability.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, PR China
| | - Xiang Wang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, PR China
| | - Xin-Yu Zhao
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, PR China
| | - Ya-Shuang Zhu
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, PR China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121000, PR China
| |
Collapse
|
2
|
Hulushe ST, Watkins GM, Khanye SD. A cobalt(II) coordination polymer-derived catalyst engineered via temperature-induced semi-reversible single-crystal-to-single-crystal (SCSC) dehydration for efficient liquid-phase epoxidation of olefins. Dalton Trans 2024; 53:11326-11343. [PMID: 38899354 DOI: 10.1039/d4dt00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Single-crystal-to-single-crystal (SCSC) transformations provide more avenues for phase transitions, which have piqued great interest in crystal engineering. In this work, a 3D Co(II)-based coordination polymer (CP), {Co2(OH2)8(btec)}·4H2O (1), (where (btec)4- = 1,2,4,5-benzenetetracarboxylate) undergoes SCSC transition upon heating at 180 °C to afford an anhydrous phase [Co2(btec)] (1'). Room-temperature water-vapour induced semi-reversible SCSC transformation of 1' involves condensation of two water molecules coordinating to the metal cluster, yielding a new framework [Co2(OH2)2(btec)] (2). These SCSC transitions were accomplished through a sequential bond breaking and new bond formation process which was accompanied by colour changes from orange (1) → violet (1') → pink (2). All materials were structurally elucidated by single-crystal X-ray diffraction (SCXRD) and further established by various analytical techniques. According to SCXRD data, all the frameworks possess octahedral geometries around the cobalt(II) sphere. SCXRD studies further revealed that 1 is a polymeric architecture with a binodal 4-c sql topology while 1' and 2 possess (3,6)-c kgd and (4,6)-c scu 3D nets, respectively. By virtue of multitopicity exhibited by the tetracarboxylate, the coordination number of the linker around the Co(II) sphere increased from four (in 1) to eight (in 1') and then decreased to six (in 2). Most interestingly, permanent porosity could be observed for the dihydrate 2, originated from potential void space as substantiated by dinitrogen (N2) sorption isotherm. These porous frameworks were active catalysts for the aerobic epoxidation of the model substrate cyclohexene using molecular oxygen (O2) as the final oxidant in the presence of the sacrificial i-butyraldehyde (IBA) reductant. For using the dihydrous phase 2, cyclohexene and various other olefins were catalytically oxidised to their corresponding epoxides with up to 38.5% conversion and 99.0% selectivity. The catalyst 2 can be expediently recycled in four runs without significant loss of activity. This research demonstrates that a little innovation in the active-site-engineered organic-inorganic hybrid materials can significantly enhance the catalytic performance and selectivity of coordination polymer-derived heterogeneous catalysts.
Collapse
Affiliation(s)
- Siya T Hulushe
- Department of Chemistry, Rhodes University, Makhanda 6139, South Africa.
| | - Gareth M Watkins
- Department of Chemistry, Rhodes University, Makhanda 6139, South Africa.
| | - Setshaba D Khanye
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
3
|
Das N, Paul R, Tomar S, Biswas C, Chakraborty S, Mondal J. Catching an Oxo Vanadate Porous Acetylacetonate Covalent Adaptive Catalytic Network that Renders Mustard-Gas Simulant Harmless. Inorg Chem 2024; 63:6092-6102. [PMID: 38507817 DOI: 10.1021/acs.inorgchem.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In this work, we illustrated the design and development of a metal-coordinated porous organic polymer (POP) namely VO@TPA-POP via a post-synthetic metalation strategy to incorporate oxo-vanadium sites in a pristine polymer (TPA-POP) having acetylacetonate (acac) as anchoring moiety. The as-synthesized VO@TPA-POP exhibited highly robust and porous framework, which has been utilized for thioanisole (TA) oxidation to its corresponding sulfoxide. The catalyst demonstrated notable stability and recyclability by maintaining its catalytic activity over multiple reaction cycles without any significant loss in activity. The X-ray absorption spectroscopy (XAS) and density functional theory (DFT) analysis establish the existence of V(+4) oxidation state along with the VO(O)4 active sites into the porous network and the most energetically feasible mechanistic pathway involved in the TA oxidation, respectively, indicating the role of electron density associated with vanadium center during the catalytic transformation. Thus, this work aims at the demonstration of versatility and potential of VO@TPA-POP as a porous heterogeneous catalyst for the TA oxidation followed by decontamination of sulfur mustards (HD's) to their corresponding less toxic sulfoxides in a more efficient and greener way.
Collapse
Affiliation(s)
- Nitumani Das
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalini Tomar
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad), U.P. 211019, India
| | - Chandan Biswas
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad), U.P. 211019, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Wang K, Tang X, Anjali BA, Dong J, Jiang J, Liu Y, Cui Y. Chiral Covalent Organic Cages: Structural Isomerism and Enantioselective Catalysis. J Am Chem Soc 2024; 146:6638-6651. [PMID: 38415351 DOI: 10.1021/jacs.3c12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Covalent organic cages are a prominent class of discrete porous architectures; however, their structural isomerism remains relatively unexplored. Here, we demonstrate the structural isomerism of chiral covalent organic cages that renders distinct enantioselective catalytic properties. Imine condensations of tetra-topic 5,10-di(3,5-diformylphenyl)-5,10-dihydrophenazine and ditopic 1,2-cyclohexanediamine produce two chiral [4 + 8] organic cage isomers with totally different topologies and geometries that depend on the orientations of four tetraaldehyde units with respect to each other. One isomer (PN-1) has an unprecedented Johnson-type J26 structure, whereas another (PN-2) adopts a tetragonal prismatic structure. After the reduction of the imine linkages, the cages are transformed into two amine bond-linked isomers PN-1R and PN-2R. After binding to Ni(II) ions, both can serve as efficient catalysts for asymmetric Michael additions, whereas PN-2R affords obviously higher enantioselectivity and reactivity than PN-1R presumably because of its large cavity and open windows that can concentrate reactants for the reactions. Density-functional theory (DFT) calculations further confirm that the enantioselective catalytic performance varies depending on the isomer.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bai Amutha Anjali
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
6
|
Xu X, Wang H, Tan CH, Ye X. Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2022; 3:74-91. [PMID: 37035284 PMCID: PMC10080730 DOI: 10.1021/acsorginorgau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Collapse
Affiliation(s)
- Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Li Y, Pelzer K, Sechet D, Creste G, Matt D, Braunstein P, Armspach D. A cavity-shaped cis-chelating P,N ligand for highly selective nickel-catalysed ethylene dimerisation. Dalton Trans 2022; 51:11226-11230. [PMID: 35861279 DOI: 10.1039/d2dt01553f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The presence of a permethylated α-cyclodextrin (α-CD) cavity in a chelating P,N ligand promotes exclusive formation of 1 : 1 ligand/metal complexes. In MX2 complexes, one of the two halido ligands is forced to reside inside the CD hollow while the second one is pointing outside. Unlike its cavity-free analogue, a Ni(II) complex of the CD ligand is a highly selective precatalyst for ethylene dimerisation (96% C4 selectivity with up to 95% of 1-butene within the C4 fraction).
Collapse
Affiliation(s)
- Yang Li
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Katrin Pelzer
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Damien Sechet
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | - Geordie Creste
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | - Pierre Braunstein
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| | - Dominique Armspach
- Equipe Confinement Moléculaire et Catalyse, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, 4, rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France.
| |
Collapse
|
8
|
Cui WJ, Zhang SM, Ma YY, Wang Y, Miao RX, Han ZG. Polyoxometalate-Incorporated Metal-Organic Network as a Heterogeneous Catalyst for Selective Oxidation of Aryl Alkenes. Inorg Chem 2022; 61:9421-9432. [PMID: 35700095 DOI: 10.1021/acs.inorgchem.2c00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selective oxidation of aryl alkenes is important for chemical synthesis reactions, in which the key lies in the rational design of efficient catalysts. Herein, four polyoxometalate (POM)-incorporated metal-organic networks, with the formulas of [Co(ttb)(H2O)3]2[SiMo12O40]·2H2O (1), [Co(ttb)(H2O)2]2[SiW12O40]·8H2O (2), [Zn(Httb)(H2ttb)][BW12O40]·9H2O (3) and {[Zn(H2O)3(ttb)]4[Zn3(H2O)6]}[H3SiW10.5Zn1.5O40]2·24H2O (4) (ttb = 1,3,5-tri(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene), were hydrothermally synthesized and structurally characterized. Structural analysis showed that compound 1 consists of a POM-encapsulated three-dimensional (3-D) supramolecular framework; compound 2 is composed of a POM-supported 3-D coordination network; and compounds 3-4 show POM-incorporated 3-D supramolecular networks. Using selective catalytic oxidation of styrene as the model reaction, compounds 1-4 as heterogeneous catalysts display excellent performance with the double advantages of high styrene conversion and benzaldehyde selectivity owing to the synergistic effect among POM anions and transition metal (TM) centers. Among them, compound 1 exhibits the highest performance with ca. 96% styrene conversion and ca. 99% benzaldehyde selectivity in 3 h. In addition, compound 1 also displays excellent substrate compatibility, good reusability, and structural stability. Thus, a plausible reaction pathway for the selective oxidation of styrene is proposed. This study on the structure-function relationship paves a way for the rational design of POM-based heterogeneous catalysts for important catalysis applications.
Collapse
Affiliation(s)
- Wen-Jing Cui
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Si-Meng Zhang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yue Wang
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Ruo-Xuan Miao
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules; National Demonstration Center for Experimental Chemistry Education; College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
9
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Nayak P, Nayak M, Meena K, Kar S. Oxo(corrolato)vanadium( iv) catalyzed epoxidation: oxo(peroxo)(corrolato)vanadium( v) is the true catalytic species. NEW J CHEM 2022. [DOI: 10.1039/d1nj06015e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxo(corrolato)vanadium(iv) complexes are highly efficient oxidizers in the presence of H2O2 and KHCO3, and oxo(peroxo)(corrolato)vanadium(v) complexes are the catalytic intermediate.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
11
|
Kaya Z, Bentouhami E, Pelzer K, Armspach D. Cavity-shaped ligands for asymmetric metal catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Tian HR, Zhang Z, Dang TY, Liu SM, Lu Y, Liu SX. Hollow Lindqvist-like-Shaped {V6} Cluster-Based Metal–Organic Framework for the Highly Efficient Detoxification of Mustard Gas Simulant. Inorg Chem 2021; 60:840-845. [DOI: 10.1021/acs.inorgchem.0c02890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hong-Rui Tian
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Zhong Zhang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Tian-Yi Dang
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Mei Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
13
|
Dang TY, Li RH, Tian HR, Wang Q, Lu Y, Liu SX. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal–organic framework for efficient catalytic oxidation of sulfides. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00799h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vanadium cluster chain in V-Ni-MOF can efficiently catalyze the oxidation of sulfides with hydrogen peroxide as the oxidant, achieving the complete conversion from sulfides to sulfones within 1 hour at 40 °C.
Collapse
Affiliation(s)
- Tian-Yi Dang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Run-Han Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Hong-Rui Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Qian Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shu-Xia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
14
|
Zhu X, Xu G, Chamoreau L, Zhang Y, Mouriès‐Mansuy V, Fensterbank L, Bistri‐Aslanoff O, Roland S, Sollogoub M. Permethylated NHC‐Capped α‐ and β‐Cyclodextrins (ICyD
Me
) Regioselective and Enantioselective Gold‐Catalysis in Pure Water. Chemistry 2020; 26:15901-15909. [DOI: 10.1002/chem.202001990] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/29/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Xiaolei Zhu
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Guangcan Xu
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Lise‐Marie Chamoreau
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Yongmin Zhang
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Virginie Mouriès‐Mansuy
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Louis Fensterbank
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Olivia Bistri‐Aslanoff
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Sylvain Roland
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université CNRS Institut Parisien de Chimie Moléculaire (IPCM) UMR 8232 4, place Jussieu 75005 Paris France
| |
Collapse
|
15
|
|
16
|
Xu G, Leloux S, Zhang P, Meijide Suárez J, Zhang Y, Derat E, Ménand M, Bistri‐Aslanoff O, Roland S, Leyssens T, Riant O, Sollogoub M. Capturing the Monomeric (L)CuH in NHC‐Capped Cyclodextrin: Cavity‐Controlled Chemoselective Hydrosilylation of α,β‐Unsaturated Ketones. Angew Chem Int Ed Engl 2020; 59:7591-7597. [DOI: 10.1002/anie.202001733] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Guangcan Xu
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Sébastien Leloux
- Institute of Condensed Matter and Nanosciences (IMCN), Molecules, Solids and Reactivity (MOST)Université Catholique de Louvain (UCL) Place Louis Pasteur 1 1348 Louvain-La-Neuve Belgium
| | - Pinglu Zhang
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Jorge Meijide Suárez
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Yongmin Zhang
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Etienne Derat
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Mickaël Ménand
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Olivia Bistri‐Aslanoff
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Sylvain Roland
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| | - Tom Leyssens
- Institute of Condensed Matter and Nanosciences (IMCN), Molecules, Solids and Reactivity (MOST)Université Catholique de Louvain (UCL) Place Louis Pasteur 1 1348 Louvain-La-Neuve Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences (IMCN), Molecules, Solids and Reactivity (MOST)Université Catholique de Louvain (UCL) Place Louis Pasteur 1 1348 Louvain-La-Neuve Belgium
| | - Matthieu Sollogoub
- Sorbonne UniversitéCNRSInstitut Parisien de Chimie Moléculaire (IPCM)UMR 8232 4, place Jussieu 75005 Paris France
| |
Collapse
|
17
|
Capturing the Monomeric (L)CuH in NHC‐Capped Cyclodextrin: Cavity‐Controlled Chemoselective Hydrosilylation of α,β‐Unsaturated Ketones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Shi Z, Ying Z, Yang L, Meng X, Wu L, Yu L, Huang S, Xiong L. Sulfoxidation inside a hypercrosslinked microporous network nanotube catalyst. NEW J CHEM 2020. [DOI: 10.1039/c9nj04324a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, a kind of efficient heterogeneous catalyst was synthesized from amine-functionalized hypercrosslinked bottlebrush copolymers of microporous network nanotubes (amine-MNNs) and Na2WO4.
Collapse
Affiliation(s)
- Zhaocheng Shi
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Zhong Ying
- Shangrao Polyvstar Science and Technology Ltd
- P. R. China
| | - Liusai Yang
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Xiaoyan Meng
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Lidan Wu
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Leshu Yu
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Sen Huang
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| | - Linfeng Xiong
- Shangrao Eco-friendly Polymer Additive Manufacturing Engineering Research Center
- School of Chemistry and Environmental Science
- Shangrao Normal University
- Shangrao
- P. R. China
| |
Collapse
|
19
|
Mubarak MQE, de Visser SP. Second-Coordination Sphere Effect on the Reactivity of Vanadium–Peroxo Complexes: A Computational Study. Inorg Chem 2019; 58:15741-15750. [DOI: 10.1021/acs.inorgchem.9b01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
20
|
Ikbal SA, Colomban C, Zhang D, Delecluse M, Brotin T, Dufaud V, Dutasta JP, Sorokin AB, Martinez A. Bioinspired Oxidation of Methane in the Confined Spaces of Molecular Cages. Inorg Chem 2019; 58:7220-7228. [PMID: 31081621 DOI: 10.1021/acs.inorgchem.9b00199] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-heme iron, vanadium, and copper complexes bearing hemicryptophane cavities were evaluated in the oxidation of methane in water by hydrogen peroxide. According to 1H nuclear magnetic resonance studies, a hydrophobic hemicryptophane cage accommodates a methane molecule in the proximity of the oxidizing site, leading to an improvement in the efficiency and selectivity for CH3OH and CH3OOH compared to those of the analogous complexes devoid of a hemicryptophane cage. While copper complexes showed low catalytic efficiency, their vanadium and iron counterparts exhibited higher turnover numbers, ≤13.2 and ≤9.2, respectively, providing target primary oxidation products (CH3OH and CH3OOH) as well as over-oxidation products (HCHO and HCOOH). In the case of caged vanadium complexes, the confinement effect was found to improve either the selectivity for CH3OH and CH3OOH (≤15%) or the catalytic efficiency. The confined space of the hydrophobic pocket of iron-based supramolecular complexes plays a significant role in the improvement of both the selectivity (≤27% for CH3OH and CH3OOH) and the turnover number of methane oxidation. These results indicate that the supramolecular approach is a promising strategy for the development of efficient and selective bioinspired catalysts for the mild oxidation of methane to methanol.
Collapse
Affiliation(s)
- Sk Asif Ikbal
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR 5256 , CNRS-Université Lyon , 69626 Villeurbanne Cedex, France
| | - Cédric Colomban
- Aix Marseille Univ. , Centrale Marseille, CNRS, iSm2 UMR 7313 , 13397 Marseille , France
| | - Dawei Zhang
- Laboratoire de Chimie , École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Magalie Delecluse
- Aix Marseille Univ. , Centrale Marseille, CNRS, iSm2 UMR 7313 , 13397 Marseille , France
| | - Thierry Brotin
- Laboratoire de Chimie , École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Véronique Dufaud
- Laboratoire de Chimie, Catalyse, Polymères, Procédés (C2P2), UMR5265, CNRS , Université Claude Bernard Lyon 1, CPE Lyon , 43 Bd du 11 novembre 1918 , F-69616 Villeurbanne Cedex, France
| | - Jean-Pierre Dutasta
- Laboratoire de Chimie , École Normale Supérieure de Lyon, CNRS, UCBL , 46 allée d'Italie , F-69364 Lyon , France
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON), UMR 5256 , CNRS-Université Lyon , 69626 Villeurbanne Cedex, France
| | - Alexandre Martinez
- Aix Marseille Univ. , Centrale Marseille, CNRS, iSm2 UMR 7313 , 13397 Marseille , France
| |
Collapse
|
21
|
Hossain MK, Haukka M, Lisensky GC, Lehtonen A, Nordlander E. Oxovanadium(V) complexes with tripodal bisphenolate and monophenolate ligands: Syntheses, structures and catalytic activities. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M. Catalytic Applications of Vanadium: A Mechanistic Perspective. Chem Rev 2018; 119:2128-2191. [PMID: 30296048 DOI: 10.1021/acs.chemrev.8b00245] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chemistry of vanadium has seen remarkable activity in the past 50 years. In the present review, reactions catalyzed by homogeneous and supported vanadium complexes from 2008 to 2018 are summarized and discussed. Particular attention is given to mechanistic and kinetics studies of vanadium-catalyzed reactions including oxidations of alkanes, alkenes, arenes, alcohols, aldehydes, ketones, and sulfur species, as well as oxidative C-C and C-O bond cleavage, carbon-carbon bond formation, deoxydehydration, haloperoxidase, cyanation, hydrogenation, dehydrogenation, ring-opening metathesis polymerization, and oxo/imido heterometathesis. Additionally, insights into heterogeneous vanadium catalysis are provided when parallels can be drawn from the homogeneous literature.
Collapse
Affiliation(s)
- Ryan R Langeslay
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - David M Kaphan
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Christopher L Marshall
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Peter C Stair
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Alfred P Sattelberger
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Massimiliano Delferro
- Chemical Sciences & Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
23
|
Patel P, Parmar B, Kureshy RI, Khan NUH, Suresh E. Amine-functionalized Zn(ii) MOF as an efficient multifunctional catalyst for CO 2 utilization and sulfoxidation reaction. Dalton Trans 2018; 47:8041-8051. [PMID: 29872804 DOI: 10.1039/c8dt01297k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, a zinc(ii)-based 3D mixed ligand metal organic framework (MOF) was synthesized via versatile routes including green mechanochemical synthesis. The MOF {[Zn(ATA)(L)·H2O]}n (ZnMOF-1-NH2) has been characterized by various physico-chemical techniques, including SCXRD, and composed of the bipyridyl-based Schiff base (E)-N'-(pyridin-4-ylmethylene)isonicotinohydrazide (L) and 2-aminoterephthalic acid (H2ATA) ligands as linkers. The MOF material has been explored as a multifunctional heterogeneous catalyst for the cycloaddition of alkyl and aryl epoxides with CO2 and sulfoxidation reactions of aryl sulfides. The influence of various reaction parameters is examined to optimize the performance of the catalytic reactions. It is found that solvent-free catalytic reaction conditions offer good catalytic conversion in the case of cyclic carbonates, and for sulfoxide, good conversion and selectivity are achieved in the presence of DCM as a solvent medium under ambient reaction conditions. The chemical and thermal stability of the catalyst are excellent and it is active for up to four catalytic cycles without significant loss in activity. Furthermore, based on the catalytic activity and structural evidence, a plausible mechanism for both catalytic reactions is proposed.
Collapse
Affiliation(s)
- Parth Patel
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364 002, Gujarat, India.
| | | | | | | | | |
Collapse
|