1
|
Yang M, Bai B, Bai H, Wei Z, Cao H, Zuo Z, Gao Z, Vinokurov VA, Zuo J, Wang Q, Huang W. On the nature of Cu-carbon interaction through N-modification for enhanced ethanol synthesis from syngas and methanol. Phys Chem Chem Phys 2024. [PMID: 39027937 DOI: 10.1039/d4cp01599a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.
Collapse
Affiliation(s)
- Mingxue Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Bing Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Hui Bai
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhongzeng Wei
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Haojie Cao
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhijun Zuo
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Zhihua Gao
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Vladimir A Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas (National Research University), Leninskiy prospect 65/1, Moscow, 119991, Russia
| | - Jianping Zuo
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Qiang Wang
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Wei Huang
- State Key Laboratory of Clean and Efficient Coal Utilization, college of chemical engineering and technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
2
|
Xiao Y, Guo Z, Cao J, Song P, Yang B, Xu W. Revealing operando surface defect-dependent electrocatalytic performance of Pt at the subparticle level. Proc Natl Acad Sci U S A 2024; 121:e2317205121. [PMID: 38776369 PMCID: PMC11145244 DOI: 10.1073/pnas.2317205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding the operando defect-tuning performance of catalysts is critical to establish an accurate structure-activity relationship of a catalyst. Here, with the tool of single-molecule super-resolution fluorescence microscopy, by imaging intermediate CO formation/oxidation during the methanol oxidation reaction process on individual defective Pt nanotubes, we reveal that the fresh Pt ends with more defects are more active and anti-CO poisoning than fresh center areas with less defects, while such difference could be reversed after catalysis-induced step-by-step creation of more defects on the Pt surface. Further experimental results reveal an operando volcano relationship between the catalytic performance (activity and anti-CO ability) and the fine-tuned defect density. Systematic DFT calculations indicate that such an operando volcano relationship could be attributed to the defect-dependent transition state free energy and the accelerated surface reconstructing of defects or Pt-atom moving driven by the adsorption of the CO intermediate. These insights deepen our understanding to the operando defect-driven catalysis at single-molecule and subparticle level, which is able to help the design of highly efficient defect-based catalysts.
Collapse
Affiliation(s)
- Yi Xiao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Zhichao Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, People’s Republic of China
| | - Jing Cao
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| | - Ping Song
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai201210, People’s Republic of China
| | - Weilin Xu
- State Key Laboratory of Electroanalytical Chemistry and Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, People’s Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui230026, People’s Republic of China
| |
Collapse
|
3
|
Wang Y, Yu M, Zhang X, Gao Y, Liu J, Zhang X, Gong C, Cao X, Ju Z, Peng Y. Density Functional Theory Study of CO 2 Hydrogenation on Transition-Metal-Doped Cu(211) Surfaces. Molecules 2023; 28:molecules28062852. [PMID: 36985824 PMCID: PMC10055092 DOI: 10.3390/molecules28062852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The massive emission of CO2 has caused a series of environmental problems, including global warming, which exacerbates natural disasters and human health. Cu-based catalysts have shown great activity in the reduction of CO2, but the mechanism of CO2 activation remains ambiguous. In this work, we performed density functional theory (DFT) calculations to investigate the hydrogenation of CO2 on Cu(211)-Rh, Cu(211)-Ni, Cu(211)-Co, and Cu(211)-Ru surfaces. The doping of Rh, Ni, Co, and Ru was found to enhance CO2 hydrogenation to produce COOH. For CO2 hydrogenation to produce HCOO, Ru plays a positive role in promoting CO dissociation, while Rh, Ni, and Co increase the barriers. These results indicate that Ru is the most effective additive for CO2 reduction in Cu-based catalysts. In addition, the doping of Rh, Ni, Co, and Ru alters the electronic properties of Cu, and the activity of Cu-based catalysts was subsequently affected according to differential charge analysis. The analysis of Bader charge shows good predictions for CO2 reduction over Cu-based catalysts. This study provides some fundamental aids for the rational design of efficient and stable CO2-reducing agents to mitigate CO2 emission.
Collapse
Affiliation(s)
- Yushan Wang
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Mengting Yu
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Xinyi Zhang
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yujie Gao
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jia Liu
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chunxiao Gong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyong Cao
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhaoyang Ju
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Guo Z, Chen S, Yang B. Promoted coke resistance of Ni by surface carbon for the dry reforming of methane. iScience 2023; 26:106237. [PMID: 36936792 PMCID: PMC10018553 DOI: 10.1016/j.isci.2023.106237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Dry reforming of methane (DRM) is an efficient process to transform methane and carbon dioxide to syngas. Nickel could show good catalytic activity for DRM, whereas the deactivation of nickel surfaces by the formation of inert carbon structures is inevitable. In this study, we carry out a detailed investigation of the evolution and catalytic performance of the carbon-covered surface structure on Ni(100) with a combined density functional theory and microkinetic modeling approach. The results suggest that the pristine Ni(100) surface is prone to carbon deposition and accumulation under reaction conditions. Further studies show that over this carbon-covered reconstructed Ni(100) surface, a carbon-based Mars-van-Krevelen mechanism would be favored, and the activity and coke resistance is promoted. This surface state and reaction mechanism were rarely reported before and would provide more insights into the DRM process under real reaction conditions and would help design more stable Ni catalysts.
Collapse
Affiliation(s)
- Zhichao Guo
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shuyue Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Corresponding author
| |
Collapse
|
5
|
Jung S, Cao T, Mishra R, Biswas P. CO 2 coverage on Pd catalysts accelerates oxygen removal in oxy-combustion systems. Phys Chem Chem Phys 2023; 25:6527-6536. [PMID: 36786417 DOI: 10.1039/d2cp04788h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Oxy-combustion systems result in enriched CO2 in exhaust gases; however, the utilization of the concentrated CO2 stream from oxy-combustion is limited by remnant O2. CH4 oxidation using Pd catalysts has been found to have high O2-removal efficiency. Here, the effect of excess CO2 in the feed stream on O2 removal with CH4 oxidation is investigated by combining experimental and theoretical approaches. Experimental results reveal complete CH4 oxidation without any side-products, and a monotonic increase in the rate of CO2 generation with an increase in CO2 concentration in the feed stream. Density-functional theory calculations show that high surface coverage of CO2 on Pd leads to a reduction in the activation energy for the initial dissociation of CH4 into CH3 and H, and also the subsequent oxidation reactions. A CO2-rich environment in oxy-combustion systems is therefore beneficial for the reduction of oxygen in exhaust gases.
Collapse
Affiliation(s)
- Sungyoon Jung
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tengfei Cao
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohan Mishra
- Department of Mechanical Engineering and Materials Science, and Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Pratim Biswas
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.,Department of Chemical, Environmental and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
6
|
Xu W, Yang B. Microkinetic modeling with machine learning predicted binding energies of reaction intermediates of ethanol steam reforming: The limitations. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Kordus D, Jelic J, Lopez Luna M, Divins NJ, Timoshenko J, Chee SW, Rettenmaier C, Kröhnert J, Kühl S, Trunschke A, Schlögl R, Studt F, Roldan Cuenya B. Shape-Dependent CO 2 Hydrogenation to Methanol over Cu 2O Nanocubes Supported on ZnO. J Am Chem Soc 2023; 145:3016-3030. [PMID: 36716273 PMCID: PMC9912329 DOI: 10.1021/jacs.2c11540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The hydrogenation of CO2 to methanol over Cu/ZnO-based catalysts is highly sensitive to the surface composition and catalyst structure. Thus, its optimization requires a deep understanding of the influence of the pre-catalyst structure on its evolution under realistic reaction conditions, including the formation and stabilization of the most active sites. Here, the role of the pre-catalyst shape (cubic vs spherical) in the activity and selectivity of ZnO-supported Cu nanoparticles was investigated during methanol synthesis. A combination of ex situ, in situ, and operando microscopy, spectroscopy, and diffraction methods revealed drastic changes in the morphology and composition of the shaped pre-catalysts under reaction conditions. In particular, the rounding of the cubes and partial loss of the (100) facets were observed, although such motifs remained in smaller domains. Nonetheless, the initial pre-catalyst structure was found to strongly affect its subsequent transformation in the course of the CO2 hydrogenation reaction and activity/selectivity trends. In particular, the cubic Cu particles displayed an increased activity for methanol production, although at the cost of a slightly reduced selectivity when compared to similarly sized spherical particles. These findings were rationalized with the help of density functional theory calculations.
Collapse
Affiliation(s)
- David Kordus
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Jelena Jelic
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany
| | - Mauricio Lopez Luna
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Núria J. Divins
- Department
of Physics, Ruhr University Bochum, 44780Bochum, Germany
| | - Janis Timoshenko
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Clara Rettenmaier
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Jutta Kröhnert
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Stefanie Kühl
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Annette Trunschke
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Robert Schlögl
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany
| | - Felix Studt
- Institute
of Catalysis Research and Technology, Karlsruher
Institute of Technology, 76344Eggenstein-Leopoldshafen, Germany,Institute
for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany,
| | - Beatriz Roldan Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max Planck Society, 14195Berlin, Germany,
| |
Collapse
|
8
|
Cr-Zn/Ni-Containing Nanocomposites as Effective Magnetically Recoverable Catalysts for CO2 Hydrogenation to Methanol: The Role of Metal Doping and Polymer Co-Support. Catalysts 2022. [DOI: 10.3390/catal13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CO2 hydrogenation to methanol is an important process that could solve the problem of emitted CO2 that contributes to environmental concern. Here we developed Cr-, Cr-Zn-, and Cr-Ni-containing nanocomposites based on a solid support (SiO2 or Al2O3) with embedded magnetic nanoparticles (NPs) and covered by a cross-linked pyridylphenylene polymer layer. The decomposition of Cr, Zn, and Ni precursors in the presence of supports containing magnetic oxide led to formation of amorphous metal oxides evenly distributed over the support-polymer space, together with the partial diffusion of metal species into magnetic NPs. We demonstrated the catalytic activity of Cr2O3 in the hydrogenation reaction of CO2 to methanol, which was further increased by 50% and 204% by incorporation of Ni and Zn species, respectively. The fine intermixing of metal species ensures an enhanced methanol productivity. Careful adjustment of constituent elements, e.g., catalytic metal, type of support, presence of magnetic NPs, and deposition of hydrophobic polymer layer contributes to the synergetic promotional effect required for activation of CO2 molecules as well. The results of catalytic recycle experiments revealed excellent stability of the catalysts due to protective role of hydrophobic polymer.
Collapse
|
9
|
Chen S, Yang B. Activity and stability of alloyed NiCo catalyst for the dry reforming of methane: A combined DFT and microkinetic modeling study. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Lu Y, Wang B, Chen S, Yang B. Quantifying the error propagation in microkinetic modeling of catalytic reactions with model-predicted binding energies. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Wang H, Nie X, Liu Y, Janik MJ, Han X, Deng Y, Hu W, Song C, Guo X. Mechanistic Insight into Hydrocarbon Synthesis via CO 2 Hydrogenation on χ-Fe 5C 2 Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37637-37651. [PMID: 35969512 DOI: 10.1021/acsami.2c07029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals and fuels is one of the promising approaches to alleviate CO2 emissions, reduce the dependence on nonrenewable energy resources, and minimize the negative environmental effect of fossil fuels. This work used density functional theory (DFT) calculations combined with microkinetic modeling to provide fundamental insight into the mechanisms of CO2 hydrogenation to hydrocarbons over the iron carbide catalyst, with a focus on understanding the energetically favorable pathways and kinetic controlling factors for selective hydrocarbon production. The crystal orbital Hamiltonian population analysis demonstrated that the transition states associated with O-H bond formation steps within the path are less stable than those of C-H bond formation, accounting for the observed higher barriers in O-H bond formation from DFT. Energetically favorable pathways for CO2 hydrogenation to CH4 and C2H4 products were identified which go through an HCOO intermediate, while the CH* species was found to be the key C1 intermediate over χ-Fe5C2(510). The microkinetic modeling results showed that the relative selectivity to CH4 is higher than C2H4 in CO2 hydrogenation, but the trend is opposite under CO hydrogenation conditions. The major impact on C2 hydrocarbon production is attributed to the high surface coverage of O* from CO2 conversion, which occupies crucial active sites and impedes C-C couplings to C2 species over χ-Fe5C2(510). The coexistence of iron oxide and carbide phases was proposed and the interfacial sites created between the two phases impact CO2 surface chemistry. Adding potassium into the Fe5C2 catalyst accelerates O* removal from the carbide surface, enhances the stability of the iron carbide catalyst, thus, promotes C-C couplings to hydrocarbons.
Collapse
Affiliation(s)
- Haozhi Wang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Michael J Janik
- EMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Wenbin Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Shi YF, Kang PL, Shang C, Liu ZP. Methanol Synthesis from CO 2/CO Mixture on Cu-Zn Catalysts from Microkinetics-Guided Machine Learning Pathway Search. J Am Chem Soc 2022; 144:13401-13414. [PMID: 35848119 DOI: 10.1021/jacs.2c06044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methanol synthesis on industrial Cu/ZnO/Al2O3 catalysts via the hydrogenation of CO and CO2 mixture, despite several decades of research, is still puzzling due to the nature of the active site and the role of CO2 in the feed gas. Herein, with the large-scale machine learning atomic simulation, we develop a microkinetics-guided machine learning pathway search to explore thousands of reaction pathways for CO2 and CO hydrogenations on thermodynamically favorable Cu-Zn surface structures, including Cu(111), Cu(211), and Zn-alloyed Cu(211) surfaces, from which the lowest energy pathways are identified. We find that Zn decorates at the step-edge at Cu(211) up to 0.22 ML under reaction conditions with the Zn-Zn dimeric sites being avoided. CO2 and CO hydrogenations occur exclusively at the step-edge of the (211) surface with up to 0.11 ML Zn coverage, where the low coverage of Zn (0.11 ML) does not much affect the reaction kinetics, but the higher coverages of Zn (0.22 ML) poison the catalyst. It is CO2 hydrogenation instead of CO hydrogenation that dominates methanol synthesis, agreeing with previous isotope experiments. While metallic steps are identified as the major active site, we show that the [-Zn-OH-Zn-] chains (cationic Zn) can grow on Cu(111) surfaces under reaction conditions, which suggests the critical role of CO in the mixed gas for reducing the cationic Zn and exposing metal sites for methanol synthesis. Our results provide a comprehensive picture on the dynamic coupling of the feed gas composition, the catalyst active site, and the reaction activity in this complex heterogeneous catalytic system.
Collapse
Affiliation(s)
- Yun-Fei Shi
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Pei-Lin Kang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institution, Shanghai 200030, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institution, Shanghai 200030, China.,Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Unveiling the catalyst deactivation mechanism in the non-oxidative dehydrogenation of light alkanes on Rh(111): Density functional theory and kinetic Monte Carlo study. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Abstract
High-efficiency utilization of CO2 facilitates the reduction of CO2 concentration in the global atmosphere and hence the alleviation of the greenhouse effect. The catalytic hydrogenation of CO2 to produce value-added chemicals exhibits attractive prospects by potentially building energy recycling loops. Particularly, methanol is one of the practically important objective products, and the catalytic hydrogenation of CO2 to synthesize methanol has been extensively studied. In this review, we focus on some basic concepts on CO2 activation, the recent research advances in the catalytic hydrogenation of CO2 to methanol, the development of high-performance catalysts, and microscopic insight into the reaction mechanisms. Finally, some thinking on the present research and possible future trend is presented.
Collapse
|
15
|
Wang J, Fu Y, Kong W, Li S, Yuan C, Bai J, Chen X, Zhang J, Sun Y. Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiyang Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Fu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Wenbo Kong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Shuqing Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Changkun Yuan
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Jieru Bai
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xia Chen
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jun Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, P.R. China
- Institute of 2060, ShanghaiTech University, Shanghai 201203, P.R. China
- Shanghai Institute of Clean Technology, Shanghai 201620, P.R. China
| |
Collapse
|
16
|
Gómez D, Candia C, Jiménez R, Karelovic A. Isotopic transient kinetic analysis of CO2 hydrogenation to methanol on Cu/SiO2 promoted by Ga and Zn. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Rational design of intermetallic compound catalysts for propane dehydrogenation from a descriptor-based microkinetic analysis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Liu R. Dynamic Microkinetic Modeling for Heterogeneously Catalyzed Hydrogenation Reactions: a Coverage-Oriented View. ACS OMEGA 2021; 6:29432-29448. [PMID: 34778616 PMCID: PMC8581974 DOI: 10.1021/acsomega.1c03292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
In most studies, the microkinetics for multistep reactions are numerically solved due to their complexity; the obtained numerical results are only valid under given reaction conditions at a static point. In this work, the microkinetics of heterogeneously catalyzed hydrogenation reactions are analytically solved as a function of three coupled physical parameters, which are energy, reaction rate, and coverage. The results correlate the surface reactions and the gaseous-phased reactant/product by energy and thus provide a dynamic view over the whole reaction process rather than at a static point. The analytical expressions are given for a simple hydrogenation reaction and three more complicated hypothetical hydrogenation reactions with side products, side reaction paths, or even multiple active sites. Compared with the numerical solution, the analytical solution is valid under all reaction conditions in practice and can provide more guidance to optimize the overall outcome or catalyst development.
Collapse
|
19
|
Coordination tailoring of Cu single sites on C 3N 4 realizes selective CO 2 hydrogenation at low temperature. Nat Commun 2021; 12:6022. [PMID: 34654822 PMCID: PMC8519910 DOI: 10.1038/s41467-021-26316-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022] Open
Abstract
CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N4 and Cu–N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu–N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g–1 h–1 and 95.5%, respectively, for Cu–N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts. CO2 hydrogenation has attracted intense scientific attention yet suffers from the disadvantage of poor activity and low selectivity. Here, the authors report that Cu single atom catalysts with tailored coordination environments on C3N4 serve as highly selective catalysts for CO2 hydrogenation.
Collapse
|
20
|
Posada-Borbón A, Grönbeck H. A First-Principles-Based Microkinetic Study of CO 2 Reduction to CH 3OH over In 2O 3(110). ACS Catal 2021. [DOI: 10.1021/acscatal.1c01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alvaro Posada-Borbón
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
21
|
Zaffran J, Yang B. Theoretical Insights into the Formation Mechanism of Methane, Ethylene and Methanol in Fischer‐Tropsch Synthesis at Co
2
C Surfaces. ChemCatChem 2021. [DOI: 10.1002/cctc.202100216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremie Zaffran
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| | - Bo Yang
- School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road Shanghai 201210 P. R. China
| |
Collapse
|
22
|
Zhu J, Ciolca D, Liu L, Parastaev A, Kosinov N, Hensen EJM. Flame Synthesis of Cu/ZnO-CeO 2 Catalysts: Synergistic Metal-Support Interactions Promote CH 3OH Selectivity in CO 2 Hydrogenation. ACS Catal 2021; 11:4880-4892. [PMID: 33898079 PMCID: PMC8057230 DOI: 10.1021/acscatal.1c00131] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Indexed: 11/28/2022]
Abstract
![]()
The hydrogenation
of CO2 to CH3OH is an important
reaction for future renewable energy scenarios. Herein, we compare
Cu/ZnO, Cu/CeO2, and Cu/ZnO–CeO2 catalysts
prepared by flame spray pyrolysis. The Cu loading and support composition
were varied to understand the role of Cu–ZnO and Cu–CeO2 interactions. CeO2 addition improves Cu dispersion
with respect to ZnO, owing to stronger Cu–CeO2 interactions.
The ternary Cu/ZnO–CeO2 catalysts displayed a substantially
higher CH3OH selectivity than binary Cu/CeO2 and Cu/ZnO catalysts. The high CH3OH selectivity in comparison
with a commercial Cu–ZnO catalyst is also confirmed for Cu/ZnO–CeO2 catalyst prepared with high Cu loading (∼40 wt %).
In situ IR spectroscopy was used to probe metal–support interactions
in the reduced catalysts and to gain insight into CO2 hydrogenation
over the Cu–Zn–Ce oxide catalysts. The higher CH3OH selectivity can be explained by synergistic Cu–CeO2 and Cu–ZnO interactions. Cu–ZnO interactions
promote CO2 hydrogenation to CH3OH by Zn-decorated
Cu active sites. Cu–CeO2 interactions inhibit the
reverse water–gas shift reaction due to a high formate coverage
of Cu and a high rate of hydrogenation of the CO intermediate to CH3OH. These insights emphasize the potential of fine-tuning
metal–support interactions to develop improved Cu-based catalysts
for CO2 hydrogenation to CH3OH.
Collapse
Affiliation(s)
- Jiadong Zhu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Diana Ciolca
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Liang Liu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
23
|
Chen BWJ, Bhandari S, Mavrikakis M. Role of Hydrogen-bonded Bimolecular Formic Acid–Formate Complexes for Formic Acid Decomposition on Copper: A Combined First-Principles and Microkinetic Modeling Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin W. J. Chen
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Saurabh Bhandari
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Yang K, Yang B. Addressing the uncertainty of DFT-determined hydrogenation mechanisms over coinage metal surfaces. Faraday Discuss 2021; 229:50-61. [PMID: 33660703 DOI: 10.1039/c9fd00122k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory (DFT) has been considered as a powerful tool for the identification of reaction mechanisms. However, it is still unclear whether the error of DFT calculations would lead to mis-identification of mechanisms. Here, taking the hydrogenation of acetylene and 1,3-butadiene as model reactions and employing a well-trained Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), we try to estimate the error of DFT calculation results statistically, and therefore predict the reliability of the hydrogenation mechanisms identified. With an ensemble of 2000 functionals obtained around the BEEF-vdW functional as well as a descriptor developed to represent the possibility of different mechanisms, we found that the non-Horiuti-Polanyi mechanism is preferred on Ag(211) and Au(211), while the Horiuti-Polanyi mechanism is dominant on Cu(211). We further discovered that the descriptor is linearly correlated with the adsorption energies of reaction intermediates during acetylene and butadiene hydrogenation, and the hydrogenation of strongly adsorbed species are more likely to follow the Horiuti-Polanyi mechanism. We found the probability of following the non-HP mechanism obeys the order Cu(211) < Au(211) < Ag(211). Our work gives a more comprehensive explanation for the mechanisms of coinage metal catalyzed hydrogenation reactions, and also provides more theoretical insights into the development of new high-performance catalysts for selective hydrogenation reactions.
Collapse
Affiliation(s)
- Kunran Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. and CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
25
|
Zhou Z, Qin B, Li S, Sun Y. A DFT-based microkinetic study on methanol synthesis from CO 2 hydrogenation over the In 2O 3 catalyst. Phys Chem Chem Phys 2021; 23:1888-1895. [PMID: 33458735 DOI: 10.1039/d0cp05947a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we performed density functional theory (DFT)-based microkinetic simulations to elucidate the reaction mechanism of methanol synthesis on two of the most stable facets of the cubic In2O3 (c-In2O3) catalyst, namely the (111) and (110) surfaces. Our DFT calculations show that for both surfaces, it is difficult for the H atom adsorbed at the remaining surface O atom around the O vacancy (Ov) active site to migrate to an O adsorbed at the Ov due to the very high energy barrier involved. In addition, we also find that the C-O bond in the bt-CO2* chemisorption structure can directly break to form CO with a lower energy barrier than that in its hydrogenation to the COOH* intermediate in the COOH route. However, our microkinetic simulations suggest that for both surfaces, CO2 deoxygenation to form CO in both pathways, namely the COOH and CO-O routes, are kinetically slower than methanol formation under typical steady state conditions assuming a CO2 conversion of 10% and a CO selectivity of 1%. Although these results agree with previous experimental observations at relatively low reaction temperature, where methanol formation dominates, they cannot explain the predominant formation of CO at relatively high reaction temperature. We tentatively attribute this to the simplicity of our microkinetic model as well as possible structural changes of the catalyst at relatively high reaction temperature. Furthermore, although the rate-determining step (RDS) from the degree of rate control (DRC) analysis is usually consistent with that judged from the DFT calculated energy barriers, for CO2 hydrogenation to methanol over the (111) surface, our DRC analysis suggests homolytic H2 dissociation to be the rate-controlling step, which is not apparent from the DFT-calculated energy barriers. This indicates that CO2 conversion and methanol selectivity over the (111) surface can be further enhanced if homolytic H2 dissociation can be accelerated for instance by introducing transition metal dopants as already shown by some experimental observations.
Collapse
Affiliation(s)
- Zhimin Zhou
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China.
| | | | | | | |
Collapse
|
26
|
Jung S, Reed N, Yablonsky G, Biswas P. Characterization of flame synthesized Pd–TiO 2 nanocomposite catalysts for oxygen removal from CO 2-rich streams in oxy combustion exhausts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00133g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Metallic Pd and/or reduced Pd oxide on Pd–TiO2 is found to be the intrinsic active site for O2 removal.
Collapse
Affiliation(s)
- Sungyoon Jung
- Department of Energy, Environmental and Chemical Engineering
- Washington University in St. Louis
- St. Louis
- USA
| | - Nathan Reed
- Department of Energy, Environmental and Chemical Engineering
- Washington University in St. Louis
- St. Louis
- USA
| | - Gregory Yablonsky
- Department of Energy, Environmental and Chemical Engineering
- Washington University in St. Louis
- St. Louis
- USA
| | - Pratim Biswas
- Department of Energy, Environmental and Chemical Engineering
- Washington University in St. Louis
- St. Louis
- USA
| |
Collapse
|
27
|
Gu T, Zhu W, Yang B. Ethanol steam reforming on Rh: microkinetic analyses on the complex reaction network. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01202a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction networks were generated for ethanol steam reforming to CO and CO2. After the pruning of the networks, the preferred reaction pathways of the CO and CO2 production on Rh(111) were identified and detailed kinetic information was analyzed.
Collapse
Affiliation(s)
- Tangjie Gu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wen Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
28
|
Xiao L, Shan YL, Sui ZJ, Chen D, Zhou XG, Yuan WK, Zhu YA. Beyond the Reverse Horiuti–Polanyi Mechanism in Propane Dehydrogenation over Pt Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03381] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ling Xiao
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu-Ling Shan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Jun Sui
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Xing-Gui Zhou
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-Kang Yuan
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi-An Zhu
- UNILAB, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
29
|
Zhu J, Su Y, Chai J, Muravev V, Kosinov N, Hensen EJM. Mechanism and Nature of Active Sites for Methanol Synthesis from CO/CO2 on Cu/CeO2. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02909] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jiadong Zhu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Yaqiong Su
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Jiachun Chai
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600, The Netherlands
| |
Collapse
|
30
|
Multi sites vs single site for catalytic combustion of methane over Co3O4(110): A first-principles kinetic Monte Carlo study. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63563-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Affiliation(s)
- Benjamin W. J. Chen
- Department of Chemical and Biological Engineering, University of Wisconsin − Madison, Madison, Wisconsin 53706, United States
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin − Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
32
|
Chen S, Yang B. Theoretical understandings on the unusual selectivity of 1,3-Butadiene hydrogenation to butenes over gold catalysts. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.04.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Gu T, Wang B, Chen S, Yang B. Automated Generation and Analysis of the Complex Catalytic Reaction Network of Ethanol Synthesis from Syngas on Rh(111). ACS Catal 2020. [DOI: 10.1021/acscatal.0c00630] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tangjie Gu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Baochuan Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Bejing 100049, China
| | - Shuyue Chen
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China
- University of Chinese Academy of Sciences, Bejing 100049, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
34
|
Ding C, Shen T, Yang Y, Xu X. Involvement of the Unoccupied Site Changes the Kinetic Trend Significantly: A Case Study on Formic Acid Decomposition. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chen Ding
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Tonghao Shen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yuqi Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
35
|
Chen S, Zaffran J, Yang B. Descriptor Design in the Computational Screening of Ni-Based Catalysts with Balanced Activity and Stability for Dry Reforming of Methane Reaction. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04429] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuyue Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jeremie Zaffran
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
36
|
Chen BWJ, Mavrikakis M. How coverage influences thermodynamic and kinetic isotope effects for H2/D2 dissociative adsorption on transition metals. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02338k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hydrogen isotope effects are influenced by adsorbate coverage: at high coverages, isotope effects are lower than at low coverages. This helps to rationalize observed isotope effects, allowing more precise elucidation of reaction mechanisms.
Collapse
Affiliation(s)
- Benjamin W. J. Chen
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering
- University of Wisconsin – Madison
- Madison
- USA
| |
Collapse
|
37
|
Yang K, Zaffran J, Yang B. Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor. Phys Chem Chem Phys 2020; 22:890-895. [DOI: 10.1039/c9cp04885e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the pyramidalization angle as a localized geometric descriptor for oxygen reduction reaction (ORR) activity of carbon nanotubes (CNTs), we show the ORR activity of these systems can be readily predicted with mere structural optimization of CNTs.
Collapse
Affiliation(s)
- Kunran Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Jeremie Zaffran
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| |
Collapse
|
38
|
Xu D, Wu P, Yang B. Origin of CO 2 as the main carbon source in syngas-to-methanol process over Cu: theoretical evidence from a combined DFT and microkinetic modeling study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00602e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A theoretical study combining DFT and microkinetic modeling provides evidence that CO2 is the main carbon source in methanol synthesis from syngas (CO, CO2 and H2) over Cu.
Collapse
Affiliation(s)
- Dongyang Xu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering
| | - Panpan Wu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| |
Collapse
|
39
|
Liu H, Liu J, Yang B. Computational insights into the strain effect on the electrocatalytic reduction of CO 2 to CO on Pd surfaces. Phys Chem Chem Phys 2020; 22:9600-9606. [PMID: 32322855 DOI: 10.1039/d0cp01042a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) provides a promising scenario to achieve carbon renewable energy storage and alleviate energy depletion. It was found experimentally in the literature that strain over Pd surfaces can adjust the activity and selectivity of electrocatalytic CO2RR. Here, using density functional theory (DFT) calculations and the Sabatier analysis method, we investigated the electrochemical reduction of CO2 to CO at different electric potentials over Pd surfaces with lattice strains of -2%, -1%, 1% and 2%. Four types of Pd surfaces with different structures and co-ordination numbers were considered, namely Pd(111), (100), (110) and (211). We obtained the differential adsorption energy of key intermediates in CO2RR, i.e. COOH and CO, with DFT as a function of CO coverage on these Pd surfaces. Further analysis showed that the adsorption energy at high coverage might be correlated with the Coulomb interaction energy between surface species. With the adsorbate-adsorbate interactions included in the analyses, we found that the strained Pd(111) surface shows the highest CO2RR activity among the four surfaces considered, which is consistent with previous experimental observations. These results highlight the significance of surface strain effects on the reactivity of CO2RR and provide guidance for practical catalyst development.
Collapse
Affiliation(s)
- Hong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. and CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
40
|
Gao Y, Shi L, Li S, Ren Q. Mechanistic insights into higher alcohol synthesis from syngas on Rh/Cu single-atom alloy catalysts. Phys Chem Chem Phys 2020; 22:5070-5077. [DOI: 10.1039/c9cp06379j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations show that C–C coupling is more favored on Rh/Cu single-atom alloy catalysts than on pure metal catalysts.
Collapse
Affiliation(s)
- Yihao Gao
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Lei Shi
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Qinghua Ren
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| |
Collapse
|
41
|
Shao ZJ, Zhang L, Liu H, Cao XM, Hu P. Enhanced Interfacial H2 Activation for Nitrostyrene Catalytic Hydrogenation over Rutile Titania-Supported Gold by Coadsorption: A First-Principles Microkinetic Simulation Study. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zheng-Jiang Shao
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lidong Zhang
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huihui Liu
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - P. Hu
- Key Laboratory for Advanced Materials, Center for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China
- School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, U.K
| |
Collapse
|
42
|
Tarasov AV, Seitz F, Schlögl R, Frei E. In Situ Quantification of Reaction Adsorbates in Low-Temperature Methanol Synthesis on a High-Performance Cu/ZnO:Al Catalyst. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01241] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Andrey V. Tarasov
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Friedrich Seitz
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mühlheim an der Ruhr, Germany
| | - Elias Frei
- Department of Inorganic Chemistry, Fritz-Haber Institut der Max-Plack Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
43
|
Ortuño MA, López N. Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01351b] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The frontiers between homogeneous and heterogeneous catalysis are progressively disappearing.
Collapse
Affiliation(s)
- Manuel A. Ortuño
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| |
Collapse
|
44
|
Karelovic A, Galdames G, Medina JC, Yévenes C, Barra Y, Jiménez R. Mechanism and structure sensitivity of methanol synthesis from CO2 over SiO2-supported Cu nanoparticles. J Catal 2019. [DOI: 10.1016/j.jcat.2018.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Liu H, Liu J, Yang B. Modeling the effect of surface CO coverage on the electrocatalytic reduction of CO2 to CO on Pd surfaces. Phys Chem Chem Phys 2019; 21:9876-9882. [DOI: 10.1039/c8cp07427e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crucial role of surface coverage and adsorbate–adsorbate interactions on the electrocatalytic reduction of CO2 to CO on Pd surfaces is highlighted.
Collapse
Affiliation(s)
- Hong Liu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- University of Chinese Academy of Sciences
| | - Jian Liu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| |
Collapse
|
46
|
Wu P, Yang B. Intermetallic PdIn catalyst for CO2 hydrogenation to methanol: mechanistic studies with a combined DFT and microkinetic modeling method. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01242g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reaction pathways of methanol and carbon monoxide formation from CO2 hydrogenation over PdIn(110) and (211) with a combined density functional theory and microkinetic modeling approach.
Collapse
Affiliation(s)
- Panpan Wu
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
| | - Bo Yang
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering
| |
Collapse
|
47
|
Huš M, Kopač D, Likozar B. Catalytic Hydrogenation of Carbon Dioxide to Methanol: Synergistic Effect of Bifunctional Cu/Perovskite Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03810] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matej Huš
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, SE-41296 Gothenburg, Sweden
| | - Drejc Kopač
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
48
|
Influence of surface strain on activity and selectivity of Pd-based catalysts for the hydrogenation of acetylene: A DFT study. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63081-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Liu L, Liu C. Origin of the overpotentials for HCOO− and CO formation in the electroreduction of CO2 on Cu(211): the reductive desorption processes decide. Phys Chem Chem Phys 2018; 20:5756-5765. [DOI: 10.1039/c7cp08440d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potential-related free energy profiles of CO and HCOO− pathways in CO2RR on Cu(211) are computed with implicit solvent model.
Collapse
Affiliation(s)
- Ling Liu
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Chungen Liu
- Institute of Theoretical and Computational Chemistry
- Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE)
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
50
|
Huš M, Kopač D, Štefančič NS, Jurković DL, Dasireddy VDBC, Likozar B. Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01659j] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Multi-scale modelling of various copper-based catalysts showed how and why different catalysts perform in methanol synthesis via carbon dioxide hydrogenation.
Collapse
Affiliation(s)
- Matej Huš
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1001 Ljubljana
- Slovenia
| | - Drejc Kopač
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1001 Ljubljana
- Slovenia
| | - Neja Strah Štefančič
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1001 Ljubljana
- Slovenia
| | - Damjan Lašič Jurković
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1001 Ljubljana
- Slovenia
| | - Venkata D. B. C. Dasireddy
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1001 Ljubljana
- Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1001 Ljubljana
- Slovenia
| |
Collapse
|