1
|
Ni P, Gao C, Wu J, Song W, Li X, Wei W, Chen X, Liu L. Production of 1,4-Butanediol from Succinic Acid Using Escherichia Coli Whole-Cell Catalysis. Chembiochem 2024:e202400142. [PMID: 38742957 DOI: 10.1002/cbic.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The widespread attention towards 1,4-butanediol (BDO) as a key chemical raw material stems from its potential in producing biodegradable plastics. However, the efficiency of its biosynthesis via current bioprocesses is limited. In this study, a dual-pathway approach for 1,4-BDO production from succinic acid was developed. Specifically, a double-enzyme catalytic pathway involving carboxylic acid reductase and ethanol dehydrogenase was proposed. Optimization of the expression levels of the pathway enzymes led to a significant 318 % increase in 1,4-BDO titer. Additionally, the rate-limiting enzyme MmCAR was engineered to enhance the kcat/KM values by 50 % and increase 1,4-BDO titer by 46.7 %. To address cofactor supply limitations, an NADPH and ATP cycling system was established, resulting in a 48.9 % increase in 1,4-BDO production. Ultimately, after 48 hours, 1,4-BDO titers reached 201 mg/L and 1555 mg/L in shake flask and 5 L fermenter, respectively. This work represents a significant advancement in 1,4-BDO synthesis from succinic acid, with potential applications in the organic chemical and food industries.
Collapse
Affiliation(s)
- Ping Ni
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomin Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122
| |
Collapse
|
2
|
Nimbalkar AS, Oh KR, Han SJ, Yun GN, Cha SH, Upare PP, Awad A, Hwang DW, Hwang YK. Nickel-Tin Nanoalloy Supported ZnO Catalysts from Mixed-Metal Zeolitic Imidazolate Frameworks for Selective Conversion of Glycerol to 1,2-Propanediol. CHEMSUSCHEM 2024; 17:e202301315. [PMID: 37932870 DOI: 10.1002/cssc.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
The successful synthesis of finely tuned Ni1.5 Sn nanoalloy phases containing ZnO catalyst with a small particle size (6.7 nm) from a mixed-metal zeolitic imidazolate framework (MM-ZIF) is investigated. The catalyst was evaluated for the efficient production of 1,2-propanediol (1,2-PDO) from crude glycerol and comprehensively characterized using several analytical techniques. Among the catalysts, 3Ni1Sn/ZnO (Ni/Sn=3/1) showed the best catalytic performance and produced the highest yield (94.2 %) of 1,2-PDO at ~100 % conversion of glycerol; it also showed low apparent activation energy (15.4 kJ/mol) and excellent stability. The results demonstrated that the synergy between Ni-Sn alloy, finely dispersed Ni metallic sites, and the Lewis acidity of SnOx species-loaded ZnO played a pivotal role in the high activity and selectivity of the catalyst. The confirmation of acetol intermediate and theoretical calculations verify the Ni1.5 Sn phases provide the least energetic pathway for the formation of 1,2-PDO selectively. The reusability of solvent for successive ZIF synthesis, along with the excellent recyclability of the ZIF-derived catalyst, enables an overall sustainable process. We believe that the present synthetic protocol that uses MM-ZIF for the conversion of various biomass-derived platform chemicals into valuable products can be applied to various nanoalloy preparations.
Collapse
Affiliation(s)
- Ajaysing S Nimbalkar
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Kyung-Ryul Oh
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, United States
| | - Seung Ju Han
- C1 Gas and Carbon Convergent Research Center, Korea Research Institute for Chemical Technology, Dajeon, 34114, South Korea
| | - Gwang-Nam Yun
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Seung Hyeok Cha
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | | | - Ali Awad
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Dong Won Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| | - Young Kyu Hwang
- Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Daejeon, 34113, South Korea
| |
Collapse
|
3
|
Guo H, Bian K, Ding S, Cai H, Zhang H, Chen X, Wang C, Yao S, Chen X. Efficient Utilization of Biomass Hydrolysis Residues in Preparing a Metal/Acid Bifunctional Catalyst for Butyl Levulinate Hydrogenation to γ-Valerolactone. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Haijun Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
- Jiangsu Senmao Energy Developments Co. Ltd, Xuyi 211700, Jiangsu, P. R. China
| | - Ke Bian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
- Shenyang University of Chemical Technology, Shenyang 110142, Liaoning, P. R. China
| | - Shuai Ding
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
| | - Haiyan Cai
- Jiangsu Senmao Energy Developments Co. Ltd, Xuyi 211700, Jiangsu, P. R. China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
| | - Shimiao Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, P. R. China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, Jiangsu, P. R. China
| |
Collapse
|
4
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
5
|
A Review on the Production of C4 Platform Chemicals from Biochemical Conversion of Sugar Crop Processing Products and By-Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development and commercialization of sustainable chemicals from agricultural products and by-products is necessary for a circular economy built on renewable natural resources. Among the largest contributors to the final cost of a biomass conversion product is the cost of the initial biomass feedstock, representing a significant challenge in effective biomass utilization. Another major challenge is in identifying the correct products for development, which must be able to satisfy the need for both low-cost, drop-in fossil fuel replacements and novel, high-value fine chemicals (and/or commodity chemicals). Both challenges can be met by utilizing wastes or by-products from biomass processing, which have very limited starting cost, to yield platform chemicals. Specifically, sugar crop processing (e.g., sugarcane, sugar beet) is a mature industry that produces high volumes of by-products with significant potential for valorization. This review focuses specifically on the production of acetoin (3-hydroxybutanone), 2,3-butanediol, and C4 dicarboxylic (succinic, malic, and fumaric) acids with emphasis on biochemical conversion and targeted upgrading of sugar crop products/by-products. These C4 compounds are easily derived from fermentations and can be converted into many different final products, including food, fragrance, and cosmetic additives, as well as sustainable biofuels and other chemicals. State-of-the-art literature pertaining to optimization strategies for microbial conversion of sugar crop byproducts to C4 chemicals (e.g., bagasse, molasses) is reviewed, along with potential routes for upgrading and valorization. Directions and opportunities for future research and industrial biotechnology development are discussed.
Collapse
|
6
|
Mu D, Li Z, Yu S, Liu S. Wastewater treatment via hydro-de-heteroatoms using hydrogen donors. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Ding S, Zhang H, Li B, Xu W, Chen X, Yao S, Xiong L, Guo H, Chen X. Selective hydrogenation of butyl levulinate to γ-valerolactone over sulfonated activated carbon-supported SnRuB bifunctional catalysts. NEW J CHEM 2022. [DOI: 10.1039/d1nj04800g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sulfonated activated carbon (SAC) supported SnRuB catalyst was developed through the co-impregnation followed by a chemical reduction process and applied for BL hydrogenation to GVL for the first time.
Collapse
Affiliation(s)
- Shuai Ding
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Bo Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Shimiao Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Haijun Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi 211700, China
| |
Collapse
|
8
|
Le SD, Nishimura S. Selective hydrogenation of succinic acid to gamma-butyrolactone with PVP-capped CuPd catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01735g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable catalyst with a low metal loading amount of PVP-capped Pd rich CuPd nanoparticles was explored for highly selective production of γ-butyrolactone via hydrogenation of succinic acid at mild hydrogen pressure.
Collapse
Affiliation(s)
- Son Dinh Le
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
9
|
Rojas M, Bernales G, Dongil AB, Pecchi G, Escalona N. Reduced alkaline earth metal (Ca, Sr) substituted LaCoO 3 catalysts for succinic acid conversion. NEW J CHEM 2022. [DOI: 10.1039/d2nj03714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surface distribution and particle size play a key role in the catalytic activity of substituted La1−xAxCoO3 (A = Ca/Sr, x = 0.2–0.4) perovskites.
Collapse
Affiliation(s)
- Mabel Rojas
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Gabriel Bernales
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Departamento Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Chile
| | - Ana Belen Dongil
- Instituto de Catálisis y Petroleoquímica CSIC, Marie Curie 2 28049, Madrid, Spain
| | - Gina Pecchi
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Departamento Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Chile
| | - Néstor Escalona
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Coronel, Chile
| |
Collapse
|
10
|
Lin HH, Cheng Y, Huo J, Shanks BH. Selective Ammonolysis of Bioderived Esters for Biobased Amide Synthesis. ACS OMEGA 2021; 6:30040-30049. [PMID: 34778675 PMCID: PMC8582026 DOI: 10.1021/acsomega.1c04750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Amidation is an important reaction for bioderived platform molecules, which can be upgraded for use in applications such as polymers. However, fundamental understanding of the reaction especially in the presence of multiple groups is still lacking. In this study, the amidation of dimethyl fumarate, maleate, and succinate through ester ammonolysis was examined. The reaction networks and significant side reactions, such as conjugate addition and ring closing, were determined. A preliminary kinetic comparison among additional C4 and C6 esters showed a significant correlation between molecular structure and ammonolysis reactivity. Esters with a C=C double bond in the molecule backbone were found to have higher ammonolysis reactivity. To improve the selectivity to unsaturated amides rather than byproducts, the effects of thermal conditions and additives in dimethyl fumarate ammonolysis were examined. Lower temperature and decreasing methoxide ion concentration in the solution relative to the base case conditions increased the fumaramide selectivity from 67.1 to 90.6%.
Collapse
Affiliation(s)
- Hsi-Hsin Lin
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| | - Yan Cheng
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| | - Jiajie Huo
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| | - Brent H. Shanks
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
for Biorenewable Chemicals (CBiRC), Iowa
State University, Ames, Iowa 50011, United
States
| |
Collapse
|
11
|
Hidajat MJ, Yun GN, Hwang DW. Highly selective and stable ZnO-supported bimetallic RuSn catalyst for the hydrogenation of octanoic acid to octanol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Huo J, Tessonnier JP, Shanks BH. Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiajie Huo
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Jean-Philippe Tessonnier
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| | - Brent H. Shanks
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
13
|
Matsumura Y, Kojima T, Yamada Y, Sato S. Preparative chemistry of calcia-stabilized ZrO2 for vapor-phase dehydration of 1,4-butanediol. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Sivo A, Galaverna RDS, Gomes GR, Pastre JC, Vilé G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00411a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We review the emerging use of flow technologies for circular chemistry and material manufacturing, highlighting advances, challenges, and future directions.
Collapse
Affiliation(s)
- Alessandra Sivo
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| | | | | | | | - Gianvito Vilé
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| |
Collapse
|
15
|
Zhang M, Lv Y, Xu Z, Wang S, Wang J. The Removal of Platinum Group Metals, Cs, Se, and Te from Nuclear Waste Glass Using Liquid Sb Extraction and Phase Separation Methods. MATERIALS 2020; 13:ma13225305. [PMID: 33238639 PMCID: PMC7700306 DOI: 10.3390/ma13225305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022]
Abstract
Recovery of platinum group metals (PGMs: Pd, Ru, Rh), Cs, Se, and Te from molten borosilicate glass containing simulated high level radwaste through the combination of liquid metal extraction and phase separation method under reductive heat-treatment was studied. In this process, the PGMs were extracted in recovered liquid metal phase, where Sb and Bi metals were used as the collecting metals. Meanwhile, Cs, Se, and Te were enriched in the phase separated potassium-rich materials on glass surface, which were extracted by water. The type of liquid metals had profound influence on the extraction behaviors of PGMs and other fission products from the glass melt. As a result, except the near extraction efficiency of Pd, Sb showed higher affinity for Ru and Rh than Bi metal. The higher phase separation efficiency of potassium-rich materials led to the higher extraction efficiencies of Cs, Se, and Te in liquid Sb extraction than Bi. Among the examined conditions, using liquid Sb extraction, the Pd, Ru, and Rh extraction efficiencies were 78.6%, 62.1% and 100% in liquid Sb metal phase, and 93.76% of Cs, 60.4% of Se, and 23.65% of Te in leachate were obtained.
Collapse
Affiliation(s)
- Meng Zhang
- Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, Shaanxi, China;
| | - Ying Lv
- College of Materials Science and Engineering, Xi’an Shiyou University, No. 18, 2nd East Dianzi Road, Xi’an 710065, Shaanxi, China;
| | - Zhanglian Xu
- Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, Shaanxi, China;
- Correspondence: (Z.X.); (S.W.); (J.W.); Tel.: +86-177-7897-3029 (Z.X.); +86-029-8266-5059 (S.W. & J.W.); Fax: +86-029-8266-5059 (S.W. & J.W.)
| | - Sheng Wang
- Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, Shaanxi, China;
- Correspondence: (Z.X.); (S.W.); (J.W.); Tel.: +86-177-7897-3029 (Z.X.); +86-029-8266-5059 (S.W. & J.W.); Fax: +86-029-8266-5059 (S.W. & J.W.)
| | - Jie Wang
- Shaanxi Key Laboratory of Advanced Nuclear Energy and Technology, and Shaanxi Engineering Research Center of Advanced Nuclear Energy, School of Nuclear Science and Technology, Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an 710049, Shaanxi, China;
- Correspondence: (Z.X.); (S.W.); (J.W.); Tel.: +86-177-7897-3029 (Z.X.); +86-029-8266-5059 (S.W. & J.W.); Fax: +86-029-8266-5059 (S.W. & J.W.)
| |
Collapse
|
16
|
Pirmoradi M, Janulaitis N, Gulotty RJ, Kastner JR. Bi-Metal-Supported Activated Carbon Monolith Catalysts for Selective Hydrogenation of Furfural. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryam Pirmoradi
- Biochemical Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Nida Janulaitis
- Biochemical Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Robert J. Gulotty
- Applied Catalysts/Applied Ceramics Inc., 2 Technology Place, Laurens, South Carolina 29360, United States
| | - James R. Kastner
- Biochemical Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| |
Collapse
|
17
|
Ly BK, Tapin B, Epron F, Pinel C, Especel C, Besson M. In situ preparation of bimetallic ReOx-Pd/TiO2 catalysts for selective aqueous-phase hydrogenation of succinic acid to 1,4-butanediol. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
19
|
Hamdan MA, Lilic A, Vecino-Mantilla M, Nikitine C, Vilcocq L, Jahjah M, Pinel C, Perret N. Influence of Reduction–Carburization Parameters on the Performance of Supported Molybdenum Carbide Catalysts in Succinic Acid Hydrogenation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Marwa Abou Hamdan
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Aleksandra Lilic
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | | | - Clémence Nikitine
- Univ Lyon, Université Claude Bernard Lyon 1, CPE-Lyon, LGPC, F-69616 Villeurbanne, France
| | - Léa Vilcocq
- Univ Lyon, Université Claude Bernard Lyon 1, CPE-Lyon, LGPC, F-69616 Villeurbanne, France
| | - Mohamad Jahjah
- LCIO, Laboratoire de Chimie de Coordination Inorganique et Organométallique, Université Libanaise-Faculté des Sciences I, Beyrouth, Liban
| | - Catherine Pinel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| | - Noémie Perret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626 Villeurbanne, France
| |
Collapse
|
20
|
Huo X, Vanneste J, Cath TY, Strathmann TJ. A hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery from nitrate-contaminated waste ion exchange brine. WATER RESEARCH 2020; 175:115688. [PMID: 32171095 DOI: 10.1016/j.watres.2020.115688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0.30 ± 0.03 mM min-1 gRu-1 under baseline condition) were comparable to the state-of-the-art bimetallic Pd catalyst. In the second stage of the hybrid process, membrane distillation was applied to recover the ammonia product from the brine matrix, capturing nitrogen as ammonium sulfate, a commercial fertilizer product. Solution pH significantly influenced the rate of ammonia mass transfer through the gas-permeable membrane by controlling the fraction of free ammonia species (NH3) present in the solution. The rate of ammonia recovery was not affected by increasing salt levels in the brine, indicating the feasibility of membrane distillation for recovering ammonia over repeated reuse cycles. Finally, high rates of nitrate hydrogenation (apparent rate constant 1.80 ± 0.04 mM min-1 gRu-1) and ammonia recovery (overall mass transfer coefficient 0.20 m h-1) with the hybrid treatment process were demonstrated when treating a real waste ion exchange brine obtained from a drinking water utility. These findings introduce an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater.
Collapse
Affiliation(s)
- Xiangchen Huo
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Johan Vanneste
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
21
|
Huo J, Shanks BH. Bioprivileged Molecules: Integrating Biological and Chemical Catalysis for Biomass Conversion. Annu Rev Chem Biomol Eng 2020; 11:63-85. [PMID: 32155351 DOI: 10.1146/annurev-chembioeng-101519-121127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Further development of biomass conversions to viable chemicals and fuels will require improved atom utilization, process efficiency, and synergistic allocation of carbon feedstock into diverse products, as is the case in the well-developed petroleum industry. The integration of biological and chemical processes, which harnesses the strength of each type of process, can lead to advantaged processes over processes limited to one or the other. This synergy can be achieved through bioprivileged molecules that can be leveraged to produce a diversity of products, including both replacement molecules and novel molecules with enhanced performance properties. However, important challenges arise in the development of bioprivileged molecules. This review discusses the integration of biological and chemical processes and its use in the development of bioprivileged molecules, with a further focus on key hurdles that must be overcome for successful implementation.
Collapse
Affiliation(s)
- Jiajie Huo
- Center for Biorenewable Chemicals and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Brent H Shanks
- Center for Biorenewable Chemicals and Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, USA;
| |
Collapse
|
22
|
Pirmoradi M, Gulotty RJ, Kastner JR. Continuous hydroxyketone production from furfural using Pd–TiO 2 supported on activated carbon. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01556c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pd–TiO2, Pd–Cu and Pd–Fe activated carbon (AC) supported catalysts were employed for continuous selective hydrogenation of furfural.
Collapse
Affiliation(s)
- Maryam Pirmoradi
- Biochemical Engineering
- College of Engineering Driftmier Engineering Center
- The University of Georgia
- Athens
- USA
| | | | - James R. Kastner
- Biochemical Engineering
- College of Engineering Driftmier Engineering Center
- The University of Georgia
- Athens
- USA
| |
Collapse
|
23
|
Wang T, Nakagawa Y, Tamura M, Okumura K, Tomishige K. Tungsten–zirconia-supported rhenium catalyst combined with a deoxydehydration catalyst for the one-pot synthesis of 1,4-butanediol from 1,4-anhydroerythritol. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00085j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomass-derived 1,4-anhydroerythritol is reduced to 1,4-butanediol over a reusable mixture of heterogeneous catalysts, ReOx–Au/CeO2 and ReOx/WO3–ZrO2.
Collapse
Affiliation(s)
- Tianmiao Wang
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Masazumi Tamura
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| | - Kazu Okumura
- Department of Applied Chemistry
- Faculty of Engineering
- Kogakuin University
- Tokyo 192-0015
- Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry
- School of Engineering
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
24
|
Performance-advantaged ether diesel bioblendstock production by a priori design. Proc Natl Acad Sci U S A 2019; 116:26421-26430. [PMID: 31843899 DOI: 10.1073/pnas.1911107116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lignocellulosic biomass offers a renewable carbon source which can be anaerobically digested to produce short-chain carboxylic acids. Here, we assess fuel properties of oxygenates accessible from catalytic upgrading of these acids a priori for their potential to serve as diesel bioblendstocks. Ethers derived from C2 and C4 carboxylic acids are identified as advantaged fuel candidates with significantly improved ignition quality (>56% cetane number increase) and reduced sooting (>86% yield sooting index reduction) when compared to commercial petrodiesel. The prescreening process informed conversion pathway selection toward a C11 branched ether, 4-butoxyheptane, which showed promise for fuel performance and health- and safety-related attributes. A continuous, solvent-free production process was then developed using metal oxide acidic catalysts to provide improved thermal stability, water tolerance, and yields. Liter-scale production of 4-butoxyheptane enabled fuel property testing to confirm predicted fuel properties, while incorporation into petrodiesel at 20 vol % demonstrated 10% improvement in ignition quality and 20% reduction in intrinsic sooting tendency. Storage stability of the pure bioblendstock and 20 vol % blend was confirmed with a common fuel antioxidant, as was compatibility with elastomeric components within existing engine and fueling infrastructure. Technoeconomic analysis of the conversion process identified major cost drivers to guide further research and development. Life-cycle analysis determined the potential to reduce greenhouse gas emissions by 50 to 271% relative to petrodiesel, depending on treatment of coproducts.
Collapse
|
25
|
Vorotnikov V, Eaton TR, Settle AE, Orton K, Wegener EC, Yang C, Miller JT, Beckham GT, Vardon DR. Inverse Bimetallic RuSn Catalyst for Selective Carboxylic Acid Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02726] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vassili Vorotnikov
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Todd R. Eaton
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Amy E. Settle
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kellene Orton
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Evan C. Wegener
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ce Yang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Derek R. Vardon
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
26
|
Abstract
The production of chemicals from biomass, a renewable feedstock, is highly desirable in replacing petrochemicals to make biorefineries more economical. The best approach to compete with fossil-based refineries is the upgradation of biomass in integrated biorefineries. The integrated biorefineries employed various biomass feedstocks and conversion technologies to produce biofuels and bio-based chemicals. Bio-based chemicals can help to replace a large fraction of industrial chemicals and materials from fossil resources. Biomass-derived chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid, furfurals, sugar alcohols, lactic acid, succinic acid, and phenols, are considered platform chemicals. These platform chemicals can be further used for the production of a variety of important chemicals on an industrial scale. However, current industrial production relies on relatively old and inefficient strategies and low production yields, which have decreased their competitiveness with fossil-based alternatives. The aim of the presented review is to provide a survey of past and current strategies used to achieve a sustainable conversion of biomass to platform chemicals. This review provides an overview of the chemicals obtained, based on the major components of lignocellulosic biomass, sugars, and lignin. First, important platform chemicals derived from the catalytic conversion of biomass were outlined. Later, the targeted chemicals that can be potentially manufactured from the starting or platform materials were discussed in detail. Despite significant advances, however, low yields, complex multistep synthesis processes, difficulties in purification, high costs, and the deactivation of catalysts are still hurdles for large-scale competitive biorefineries. These challenges could be overcome by single-step catalytic conversions using highly efficient and selective catalysts and exploring purification and separation technologies.
Collapse
|
27
|
Jin X, Fang T, Wang J, Liu M, Pan S, Subramaniam B, Shen J, Yang C, Chaudhari RV. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. CHEM REC 2018; 19:1952-1994. [PMID: 30474917 DOI: 10.1002/tcr.201800144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Indexed: 11/12/2022]
Abstract
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom-economical and energy-efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value-added chemicals from biomass resources.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Siyuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| |
Collapse
|
28
|
Highly Selective Silica‐supported Copper Catalysts Derived from Copper Phyllosilicates in the Hydrogenation of Adipic Acid to 1,6‐hexanediol. ChemCatChem 2018. [DOI: 10.1002/cctc.201801580] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Gérardy R, Emmanuel N, Toupy T, Kassin VE, Tshibalonza NN, Schmitz M, Monbaliu JCM. Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800149] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| | - Noémie Emmanuel
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| | - Thomas Toupy
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| | - Victor-Emmanuel Kassin
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| | - Nelly Ntumba Tshibalonza
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| | - Michaël Schmitz
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis; Department of Chemistry; Research Unit MolSys; University of Liège; Quartier Agora, Allée du six Aout, 13 4000 Liège (Sart Tilman) Belgium
| |
Collapse
|