1
|
Wang P, Chiang FK, Chai J, Dugulan AI, Dong J, Chen W, Broos RJP, Feng B, Song Y, Lv Y, Lin Q, Wang R, Filot IAW, Men Z, Hensen EJM. Efficient conversion of syngas to linear α-olefins by phase-pure χ-Fe 5C 2. Nature 2024:10.1038/s41586-024-08078-5. [PMID: 39415021 DOI: 10.1038/s41586-024-08078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Oil has long been the dominant feedstock for producing fuels and chemicals, but coal, natural gas and biomass are increasingly explored alternatives1-3. Their conversion first generates syngas, a mixture of CO and H2, which is then processed further using Fischer-Tropsch (FT) chemistry. However, although commercial FT technology for fuel production is established, using it to access valuable chemicals remains challenging. A case in point is linear α-olefins (LAOs), which are important chemical intermediates obtained by ethylene oligomerization at present4-8. The commercial high-temperature FT process and the FT-to-olefin process under development at present both convert syngas directly to LAOs, but also generate much CO2 waste that leads to a low carbon utilization efficiency9-14. The efficiency is further compromised by substantially fewer of the converted carbon atoms ending up as valuable C5-C10 LAOs than are found in the C2-C4 olefins that dominate the product mixtures9-14. Here we show that the use of the original phase-pure χ-iron carbide can minimize these syngas conversion problems: tailored and optimized for the process of FT to LAOs, this catalyst exhibits an activity at 290 °C that is 1-2 orders higher than dedicated FT-to-olefin catalysts can achieve above 320 °C (refs. 12-15), is stable for 200 h, and produces desired C2-C10 LAOs and unwanted CO2 with carbon-based selectivities of 51% and 9% under industrially relevant conditions. This higher catalytic performance, persisting over a wide temperature range (250-320 °C), demonstrates the potential of the system for developing a practically relevant technology.
Collapse
Affiliation(s)
- Peng Wang
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China.
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Fu-Kuo Chiang
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Jiachun Chai
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - A Iulian Dugulan
- Fundamental Aspects of Materials and Energy Group, Delft University of Technology, Delft, The Netherlands
| | - Juan Dong
- Data Technology Group, China Energy Investment Group Archives, CHN Energy, Beijing, People's Republic of China
| | - Wei Chen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Robin J P Broos
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bo Feng
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Yuanjun Song
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Yijun Lv
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Quan Lin
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Ivo A W Filot
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Zhuowu Men
- CTL Technology Research Center, National Institute of Clean-and-Low-Carbon Energy, CHN Energy, Beijing, People's Republic of China.
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Xu Y, Zhang Z, Wu K, Wang J, Hou B, Shan R, Li L, Ding M. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer-Tropsch synthesis. Nat Commun 2024; 15:7099. [PMID: 39154082 PMCID: PMC11330503 DOI: 10.1038/s41467-024-51472-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Iron-based Fischer-Tropsch synthesis (FTS) catalyst is widely used for syngas conversion, but its iron carbide active phase is easily oxidized into Fe3O4 by the water produced during reaction, leading to the deterioration of catalytic performance. Here, we show an efficient strategy for protecting the iron carbide active phase of FTS catalyst by surface hydrophobization. The hydrophobic surface can reduce the water concentration in the core vicinity of catalyst during syngas conversion, and thus inhibit the oxidation of iron species by water, which enhances the C - C coupling ability of catalyst and promotes the formation of long-chain olefins. More significantly, it is unraveled that appropriate shell thickness plays a crucial role in stabilizing the iron carbide active phase without Fe3O4 formation and achieving good catalytic performance.
Collapse
Affiliation(s)
- Yanfei Xu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
- Suzhou Institute of Wuhan University, Suzhou, 215125, China.
| | - Zhenxuan Zhang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Ke Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Jungang Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Bo Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Ruoting Shan
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Ling Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Mingyue Ding
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China.
- Academy of Advanced Interdisciplinary Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Ma H, Jiao Y, Guo W, Liu X, Li Y, Wen X. Machine learning predicts atomistic structures of multielement solid surfaces for heterogeneous catalysts in variable environments. Innovation (N Y) 2024; 5:100571. [PMID: 38379790 PMCID: PMC10878119 DOI: 10.1016/j.xinn.2024.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Solid surfaces usually reach thermodynamic equilibrium through particle exchange with their environment under reactive conditions. A prerequisite for understanding their functionalities is detailed knowledge of the surface composition and atomistic geometry under working conditions. Owing to the large number of possible Miller indices and terminations involved in multielement solids, extensive sampling of the compositional and conformational space needed for reliable surface energy estimation is beyond the scope of ab initio calculations. Here, we demonstrate, using the case of iron carbides in environments with varied carbon chemical potentials, that the stable surface composition and geometry of multielement solids under reactive conditions, which involve large compositional and conformational spaces, can be predicted at ab initio accuracy using an approach that combines the bond valence model, Gaussian process regression, and ab initio thermodynamics. Determining the atomistic structure of surfaces under working conditions paves the way toward identifying the true active sites of multielement catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Huan Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
| | - Yueyue Jiao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Industry−University Cooperation Base between Beijing Information S&T University and Synfuels China Co., Ltd., Beijing 100101, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Industry−University Cooperation Base between Beijing Information S&T University and Synfuels China Co., Ltd., Beijing 100101, China
| |
Collapse
|
4
|
Liu QY, Chen D, Shang C, Liu ZP. An optimal Fe-C coordination ensemble for hydrocarbon chain growth: a full Fischer-Tropsch synthesis mechanism from machine learning. Chem Sci 2023; 14:9461-9475. [PMID: 37712046 PMCID: PMC10498498 DOI: 10.1039/d3sc02054a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Fischer-Tropsch synthesis (FTS, CO + H2 → long-chain hydrocarbons) because of its great significance in industry has attracted huge attention since its discovery. For Fe-based catalysts, after decades of efforts, even the product distribution remains poorly understood due to the lack of information on the active site and the chain growth mechanism. Herein powered by a newly developed machine-learning-based transition state (ML-TS) exploration method to treat properly reaction-induced surface reconstruction, we are able to resolve where and how long-chain hydrocarbons grow on complex in situ-formed Fe-carbide (FeCx) surfaces from thousands of pathway candidates. Microkinetics simulations based on first-principles kinetics data further determine the rate-determining and the selectivity-controlling steps, and reveal the fine details of the product distribution in obeying and deviating from the Anderson-Schulz-Flory law. By showing that all FeCx phases can grow coherently upon each other, we demonstrate that the FTS active site, namely the A-P5 site present on reconstructed Fe3C(031), Fe5C2(510), Fe5C2(021), and Fe7C3(071) terrace surfaces, is not necessarily connected to any particular FeCx phase, rationalizing long-standing structure-activity puzzles. The optimal Fe-C coordination ensemble of the A-P5 site exhibits both Fe-carbide (Fe4C square) and metal Fe (Fe3 trimer) features.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Dongxiao Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
| |
Collapse
|
5
|
Adsorption and activation of CO on perfect and defective h-Fe7C3 surfaces for Fischer-Tropsch synthesis. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Theoretically Predicted CO Adsorption and Activation on the Co-Doped hcp-Fe7C3 Catalyst. Catalysts 2023. [DOI: 10.3390/catal13030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The Hcp-Fe7C3 phase has attracted more attention due to the high catalytic activity in Fischer–Tropsch synthesis (FTS) reactions. In this work, the adsorption and activation of CO on a Co-doped hcp-Fe7C3 catalyst were investigated by density functional theory (DFT) in order to understand the effect of Co doping on the initial step of FTS reactions on iron-based catalysts. Different Co-doped hcp-Fe7C3 001 and 11¯0 surfaces were constructed, and the CO adsorption configurations were studied. The calculated results show that the structure of the 001 surface remains basically unchanged after doping with Co atoms, while the replacement of Fe or C atoms on 11¯0 surfaces with Co atoms has a significant impact on the surface structure. The top sites on the doped Co atoms of hcp-Fe7C3 are disadvantages for the CO adsorption, whereas the T, 2F, or 3F sites around the doped Co atoms are beneficial for promoting the adsorption of CO. The CO direct dissociation pathways on the four types of Co-doped hcp-Fe7C3 001 surfaces are exothermic, while the H-assisted dissociation pathways of CO are endothermic. The H-assisted activation via HCO on the 3F1 site of the 2Co2-doped hcp-Fe7C3 001 surface shows the lowest energy barrier of 1.96 eV. For the Co-doped hcp-Fe7C3 11¯0 surfaces, the H-assisted activation via HCO is the preferred activation pathway for CO on the Co-doped surfaces with the energy barrier of approximately 1.30 eV.
Collapse
|
7
|
Zhang M, Guan X, Yu Y. Theoretical insights into the removal pathways of adsorbed oxygen on the surface of χ-Fe5C2(510). Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
8
|
Revisiting the Syngas Conversion to Olefins over Fe-Mn Bimetallic Catalysts: Insights from the Proximity Effects. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Kang SC, Park G, Kwak G, Zhang C, Jun KW, Kim YT, Choi M. Enhancing selectivity of aromatics in direct conversion of syngas over K/FeMn and HZSM-5 bifunctional catalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Kim OA, Bogdan TV, Koklin AE, Bogdan VI. Interaction of Carbon Dioxide with Hydrogen on Supported Fe,Cr-Containing Catalysts. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122070107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Duan Y, Sun H, Lu W. Theoretical study of CO adsorption and activation on h-Fe7C3 (11¯1) for Fischer-Tropsch synthesis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Influence of carbon deposits on Fe-carbide for the Fischer-Tropsch reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Cha S, Kim H, Choi H, Kim CS, Ha KS. Effects of Silica Shell Encapsulated Nanocrystals on Active χ-Fe 5C 2 Phase and Fischer-Tropsch Synthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3704. [PMID: 36296893 PMCID: PMC9610965 DOI: 10.3390/nano12203704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Among various iron carbide phases, χ-Fe5C2, a highly active phase in Fischer-Tropsch synthesis, was directly synthesized using a wet-chemical route, which makes a pre-activation step unnecessary. In addition, χ-Fe5C2 nanoparticles were encapsulated with mesoporous silica for protection from deactivation. Further structural analysis showed that the protective silica shell had a partially ordered mesoporous structure with a short range. According to the XRD result, the sintering of χ-Fe5C2 crystals did not seem to be significant, which was believed to be the beneficial effect of the protective shell providing restrictive geometrical space for nanoparticles. More interestingly, the protective silica shell was also found to be effective in maintaining the phase of χ-Fe5C2 against re-oxidation and transformation to other iron carbide phases. Fischer-Tropsch activity of χ-Fe5C2 in this study was comparable to or higher than those from previous reports. In addition, CO2 selectivity was found to be very low after stabilization.
Collapse
Affiliation(s)
- Seunghee Cha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Heewon Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| | - Hyunkyung Choi
- Department of Physics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
| | - Chul Sung Kim
- Department of Physics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
| | - Kyoung-Su Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
| |
Collapse
|
14
|
Single-Phase θ-Fe3C Derived from Prussian Blue and Its Catalytic Application in Fischer-Tropsch Synthesis. Catalysts 2022. [DOI: 10.3390/catal12101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Elucidation of the intrinsic catalytic principle of iron carbides remains a substantial challenge in iron-catalyzed Fischer-Tropsch synthesis (FTS), due to possible interference from other Fe-containing species. Here, we propose a facile approach to synthesize single-phase θ-Fe3C via the pyrolysis of a molecularly defined Fe-C complex (Fe4[Fe(CN)6]3), thus affording close examination of its catalytic behavior during FTS. The crystal structure of prepared θ-Fe3C is unambiguously verified by combined XRD and MES measurement, demonstrating its single-phase nature. Strikingly, single-phase θ-Fe3C exhibited excellent selectivity to light olefins (77.8%) in the C2-C4 hydrocarbons with less than 10% CO2 formation in typical FTS conditions. This strategy further succeeds with promotion of Mn, evident for its wide-ranging compatibility for the promising industrial development of catalysts. This work offers a facile approach for oriented preparation of single-phase θ-Fe3C and provides an in-depth understanding of its intrinsic catalytic performance in FTS.
Collapse
|
15
|
Lin T, An Y, Yu F, Gong K, Yu H, Wang C, Sun Y, Zhong L. Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caiqi Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
16
|
Effect of Preparation Conditions on Precipitated Iron-Based Catalysts for High-Temperature Fischer–Tropsch Synthesis of Light Olefins. Top Catal 2022. [DOI: 10.1007/s11244-022-01684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Huang X, Wang C, Hou Y. A perspective on the controlled synthesis of iron-based nanoalloys for the oxygen reduction reaction. Chem Commun (Camb) 2022; 58:8884-8899. [PMID: 35880675 DOI: 10.1039/d2cc02900f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The worsening ecological environment is calling for clean energy alternatives, among which hydrogen fuel cells have been one of the hot topics. The commercialized Pt/C catalyst for the oxygen reduction reaction (ORR) in the cathode of fuel cells is suffering from its high cost, serious scarcity and so on. Hence, the exploration on alternative ORR catalysts has attracted much attention. Iron(Fe)-based nanoalloys have shown advantages of low cost, high abundance, and pleasant ORR activity. In this feature, we have summarized Fe-based nanoalloy structures and our recent progress on controllable synthesis as well as their ORR performance, including iron-platinum (Fe-Pt), iron carbide (Fe-C), and iron nitride (Fe-N). Finally, the perspective on this type of ORR electrocatalyst is also discussed.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- Department of Physics, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| | - Chunxia Wang
- School of International Police Studies, People's Public Security University of China, Beijing 100038, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), School of Materials Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
18
|
He XY, Liu YZ, Wang SD, Lan X, Li XN, He SG. Multiple CO 2 reduction mediated by heteronuclear metal carbide cluster anions RhTaC 2. Dalton Trans 2022; 51:11491-11498. [PMID: 35833563 DOI: 10.1039/d2dt01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Noble metals dispersed on transition-metal carbides exhibit extraordinary activity in CO2 catalytic conversion and bimetallic carbides generated at the interface were proposed to contribute to the observed activity. Heteronuclear metal carbide clusters (HMCCs) that compositionally resemble the bimetallic carbides are suitable models to get a fundamental understanding of the reactivity of the related condensed-phase catalysts, while the reaction of HMCCs with CO2 has not been touched in the gas phase. Herein, benefiting from the newly designed double ion trap reactors, the reaction of laser-ablation generated and mass-selected RhTaC2- clusters with CO2 was studied. The experimental results identified that RhTaC2- can reduce four CO2 molecules consecutively and generate the product RhTaC2O4-. The pivotal roles of Rh-Ta synergy and the C2 ligand in driving CO2 reduction were rationalized by theoretical calculations. The presence of an attached CO unit on the product RhTaC2O4- was evidenced by the collision-induced dissociation experiment, providing a fundamental strategy to alleviate carbon deposition under a CO2 atmosphere at elevated temperatures.
Collapse
Affiliation(s)
- Xing-Yue He
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China.
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Si-Dun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei, 071002, P.R. China.
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
19
|
Shipilin M, Degerman D, Lömker P, Goodwin CM, Rodrigues GLS, Wagstaffe M, Gladh J, Wang HY, Stierle A, Schlueter C, Pettersson LGM, Nilsson A, Amann P. In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer-Tropsch Synthesis. ACS Catal 2022; 12:7609-7621. [PMID: 35815066 PMCID: PMC9254136 DOI: 10.1021/acscatal.2c00905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Carbide formation on iron-based catalysts is an integral and, arguably, the most important part of the Fischer-Tropsch synthesis process, converting CO and H2 into synthetic fuels and numerous valuable chemicals. Here, we report an in situ surface-sensitive study of the effect of pressure, temperature, time, and gas feed composition on the growth dynamics of two distinct iron-carbon phases with the octahedral and trigonal prismatic coordination of carbon sites on an Fe(110) single crystal acting as a model catalyst. Using a combination of state-of-the-art X-ray photoelectron spectroscopy at an unprecedentedly high pressure, high-energy surface X-ray diffraction, mass spectrometry, and theoretical calculations, we reveal the details of iron surface carburization and product formation under semirealistic conditions. We provide a detailed insight into the state of the catalyst's surface in relation to the reaction.
Collapse
Affiliation(s)
- Mikhail Shipilin
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - David Degerman
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Patrick Lömker
- Photon
Science, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | | | - Michael Wagstaffe
- DESY
NanoLab, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | - Jörgen Gladh
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
- PULSE
Institute, SLAC National Accelerator Laboratory, Menlo Park, 94305 California, United States
| | - Hsin-Yi Wang
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Andreas Stierle
- DESY
NanoLab, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
- Physics
Department, University of Hamburg, 20148 Hamburg, Germany
| | - Christoph Schlueter
- Photon
Science, Deutsches Elektronen-Synchrotron
DESY, 22607 Hamburg, Germany
| | | | - Anders Nilsson
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Peter Amann
- Department
of Physics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
20
|
Cao M, Huang H, Zheng Y, Zhang Q, Wang S, Ge R, Wang J, Zhao Y, Ma X. Enhanced effect of the mesoporous carbon on iron carbide catalyst for hydrogenation of dimethyl oxalate to ethanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meng Cao
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Huijiang Huang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Yuntao Zheng
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Qiaochu Zhang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Shengping Wang
- Tianjin University School of Chemical Engineering and Technology CHINA
| | - Rile Ge
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Junhu Wang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Yujun Zhao
- Tianjin University School of Chemistry and Chemical Engineering Weijin Road 92, Nankai District 300072 Tianjin CHINA
| | - Xinbin Ma
- Tianjin University School of Chemical Engineering and Technology CHINA
| |
Collapse
|
21
|
Xu M, Liu X, Song G, Cai Y, Shi B, Liu Y, Ding X, Yang Z, Tian P, Cao C, Xu J. Regulating iron species compositions by Fe-Al interaction in CO2 hydrogenation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Direct Construction of K-Fe3C@C Nanohybrids Utilizing Waste Biomass of Pomelo Peel as High-Performance Fischer–Tropsch Catalysts. Catalysts 2022. [DOI: 10.3390/catal12050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the only renewable organic carbon source, abundant biomass has long been established and developed to mass-produce functionalized carbon materials. Herein, an extremely facile and green strategy was executed for the first time to in situ construct K-Fe3C@C nanohybrids directly by one-pot carbonizing the pomelo peel impregnated with Fe(NO3)3 solutions. The pyrolytically self-assembled nanohybrids were successfully applied in Fischer–Tropsch synthesis (FTS) and demonstrated high catalytic performance. Accordingly, the optimized K-Fe3C@C catalysts revealed excellent FTS activity (92.6% CO conversion) with highlighted C5+ hydrocarbon selectivity of 61.3% and light olefin (C2-4=) selectivity of 26.0% (olefin/paraffin (O/P) ratio of 6.2). Characterization results further manifest that the high performance was correlated with the in situ formation of the core-shell nanostructure consisting of Fe3C nanoparticles enwrapped by graphitized carbon shells and the intrinsic potassium promoter originated in pomelo peel during high-temperature carbonization. This work provided a facile approach for the low-cost mass-fabrication of high-performance FTS catalysts directly utilizing waste biomass without any chemical pre-treatment or purification.
Collapse
|
23
|
Liu QY, Shang C, Liu ZP. In Situ Active Site for Fe-Catalyzed Fischer-Tropsch Synthesis: Recent Progress and Future Challenges. J Phys Chem Lett 2022; 13:3342-3352. [PMID: 35394796 DOI: 10.1021/acs.jpclett.2c00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fischer-Tropsch synthesis (FTS) that converts syngas into long-chain hydrocarbons is a key technology in the chemical industry. As one of the best catalysts for FTS, the Fe-based composite develops rich solid phases (metal, oxides, and carbides) in the catalytic reaction, which triggered the quest for the true active site in catalysis in the past century. Recent years have seen great advances in probing the active-site structure using modern experimental and theoretical tools. This Perspective serves to highlight these latest achievements, focusing on the geometrical structure and thermodynamic stability of Fe carbide bulk phases, the exposed surfaces, and their relationship to FTS activity. The current reaction mechanisms on CO activation and carbon chain growth are also discussed, in the context of theoretical models and experimental evidence. We also present the outlook regarding the current challenges in Fe-based FTS.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
24
|
Li R, Li Y, Li Z, Wei W, Hao Q, Shi Y, Ouyang S, Yuan H, Zhang T. Electronically Activated Fe 5C 2 via N-Doped Carbon to Enhance Photothermal Syngas Conversion to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ruizhe Li
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuan Li
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiqin Wei
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Quanguo Hao
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yiqiu Shi
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuxin Ouyang
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hong Yuan
- College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Defect-rich BN-supported Cu with superior dispersion for ethanol conversion to aldehyde and hydrogen. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63891-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Liu X, Xu M, Cao C, Yang Z, Xu J. Effects of Zinc on χ-Fe5C2 for Carbon Dioxide Hydrogenation to Olefins: Insights from Experimental and Density Function Theory Calculations. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Li H, Li W, Zhuang Z, Liu F, Li L, Lv Y, Men Z, Liu Z, Yan Z. Effect of reaction temperature and H2/CO ratio on deactivation behavior of precipitated iron Fischer-Tropsch synthesis catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63802-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Modulating C5+selectivity for Fischer-Tropsch synthesis by tuning pyrolysis temperature of MOFs derived Fe-based catalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
30
|
Production of Light Olefins via Fischer-Tropsch Process Using Iron-Based Catalysts: A Review. Catalysts 2022. [DOI: 10.3390/catal12020174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The production of light olefins, as the critical components in chemical industries, is possible via different technologies. The Fischer–Tropsch to olefin (FTO) process aims to convert syngas to light olefins with high selectivity over a proper catalyst, reduce methane formation, and avoid the production of excess CO2. This review describes the production of light olefins through the FTO process using both unsupported and supported iron-based catalysts. The catalytic properties and performances of both the promoted and bimetallic unsupported catalysts are reviewed. The effect of support and its physico-chemical properties on the catalyst activity are also described. The proper catalyst should have high stability to provide long-term performance without reducing the activity and selectivity towards the desired product. The good dispersion of active metals on the surface, proper porosity, optimized metal-support interaction, a high degree of reducibility, and providing a sufficient active phase for the reaction are important parameters affecting the reaction. The selection of the suitable catalyst with enhanced activity and the optimum process conditions can increase the possibility of the FTO reaction for light-olefins production. The production of light olefins via the FTO process over iron-based catalysts is a promising method, as iron is cheap, shows higher resistance to sulfur, and has a higher WGS activity which can be helpful for the feed gas with a low H2/CO ratio, and also has higher selectivity towards light olefins.
Collapse
|
31
|
Tang L, Zhou BC, Liu X, Xu S, Wang J, Xu W, Liu X, Chen L, Lu AH. Selective synthesis of core-shell structured catalyst χ-Fe5C2 surrounded by nanosized Fe3O4 for conversion of syngas to liquid fuels. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02241e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing liquid hydrocarbons selectivity and simultaneously suppressing CO2 formation are highly desirable yet challenges in iron-based Fischer-Tropsch synthesis. Herein, we report an in-situ oxidation method for the fabrication of a...
Collapse
|
32
|
Cai Z, Zhang F, Yu S, He Z, Cao X, Zhang L, Huang K. PBA-derived high-efficiency iron-based catalysts for CO 2 hydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00629d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PBA-derived iron based catalyst effectively converts CO2 to hydrocarbons, especially C5+ hydrocarbons.
Collapse
Affiliation(s)
- Zhenyu Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Fenglei Zhang
- Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, P. R. China
| | - Sibing Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Zhipeng He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinjie Cao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lei Zhang
- Intelligent Transportation System Research Center, Southeast University, Nanjing 211189, P. R. China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
33
|
Lee S, Seo JC, Chun HJ, Yang S, Sim EH, Lee J, Kim YT. Selective olefin production on silica based iron catalysts in Fischer–Tropsch synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed phases of Fe3O4 and Fe5C2, interacting properly with SiO2, produce highly selective olefins from syngas.
Collapse
Affiliation(s)
- Sungwoo Lee
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jeong-Cheol Seo
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Hee-Joon Chun
- Corporate R&D Institute, Samsung Electro-mechanics, 150, Maeyoung-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16674, Republic of Korea
| | - Sunkyu Yang
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Eun-hae Sim
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
| | - Jechan Lee
- School of Civil, Architectural Engineering, and Landscape Architecture & Department of Global Smart City, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yong Tae Kim
- C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology, Gajeong-dong, Yuseong, Daejeon, 34113, Republic of Korea
| |
Collapse
|
34
|
Yang Y, Qian W, Zhang H, Han Z, Ma H, Sun Q, Ying W. Effect of the Zr promoter on precipitated iron-based catalysts for high-temperature Fischer–Tropsch synthesis of light olefins. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
FeMnxZr and FeMnxZr2Na catalysts prepared by coprecipitation and impregnation methods were applied to investigate the promoting effects of Zr on iron-based catalysts for high-temperature Fischer–Tropsch synthesis (HTFT).
Collapse
Affiliation(s)
- Yi Yang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of chemical engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weixin Qian
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of chemical engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haitao Zhang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of chemical engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhonghao Han
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of chemical engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongfang Ma
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of chemical engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiwen Sun
- State Key Laboratory of Coal Liquefaction and Coal Chemical Technology, Shanghai 201203, China
| | - Weiyong Ying
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of chemical engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
35
|
He Y, Shi H, Johnson O, Joseph B, Kuhn JN. Selective and Stable In-Promoted Fe Catalyst for Syngas Conversion to Light Olefins. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yang He
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Hanzhong Shi
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Olusola Johnson
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - Babu Joseph
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - John N. Kuhn
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
36
|
Claeys M, van Steen E, Botha T, Crous R, Ferreira A, Harilal A, Moodley DJ, Moodley P, du Plessis E, Visagie JL. Oxidation of Hägg Carbide during High-Temperature Fischer–Tropsch Synthesis: Size-Dependent Thermodynamics and In Situ Observations. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Claeys
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| | - Eric van Steen
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town, Rondebosch 7701, South Africa
| | - Thys Botha
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Renier Crous
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Alta Ferreira
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Avinash Harilal
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Denzil James Moodley
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Prabashini Moodley
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Esna du Plessis
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| | - Jacobus L. Visagie
- Research & Technology, Sasol, 1 Klasie Havenga Street, Sasolburg 1947, South Africa
| |
Collapse
|
37
|
Fischer–Tropsch Synthesis: Effect of the Promoter’s Ionic Charge and Valence Level Energy on Activity. REACTIONS 2021. [DOI: 10.3390/reactions2040026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this contribution, we examine the effect of the promoter´s ionic charge and valence orbital energy on the catalytic activity of Fe-based catalysts, based on in situ synchrotron X-ray powder diffraction (SXRPD), temperature-programmed-based techniques (TPR, TPD, CO-TP carburization), and Fischer–Tropsch synthesis catalytic testing studies. We compared the promoting effects of K (a known promoter for longer-chained products) with Ba, which has a similar ionic radius but has double the ionic charge. Despite being partially “buried” in a crystalline BaCO3 phase, the carburization of the Ba-promoted catalyst was more effective than that of K; this was primarily due to its higher (2+) ionic charge. With Ba2+, higher selectivity to methane and lighter products were obtained compared to the K-promoted catalysts; this is likely due to Ba´s lesser capability of suppressing H adsorption on the catalyst surface. An explanation is provided in terms of a more limited mixing between electron-filled Ba2+ 5p and partially filled Fe 3d orbitals, which are expected to be important for the chemical promotion, as they are further apart in energy compared to the K+ 3p and Fe 3d orbitals.
Collapse
|
38
|
Wolke F, Hu Y, Schmidt M, Korup O, Horn R, Reichelt E, Jahn M, Michaelis A. Spatially-resolved reaction profiles in Fischer-Tropsch synthesis – influence of operating conditions and promotion for iron-based catalysts. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Direct conversion of CO2 to light olefins over FeCo/XK-ϒAL2O3 (X = La, Mn, Zn) catalyst via hydrogenation reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04562-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Han X, Li Y, Gong H, Wang Y, Lv J, Wang Y, Huang S, Ma X. Effect of Mn-dopant on carburization of the Fe3O4 catalysts in Fischer-Tropsch synthesis. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
41
|
Chai J, Pestman R, Chen W, Dugulan AI, Feng B, Men Z, Wang P, Hensen EJ. The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Abstract
Light olefins as one the most important building blocks in chemical industry can be produced via Fischer–Tropsch synthesis (FTS) from syngas. FT synthesis conducted at high temperature would lead to light paraffins, carbon dioxide, methane, and C5+ longer chain hydrocarbons. The present work focuses on providing a critical review on the light olefin production using Fischer–Tropsch synthesis. The effects of metals, promoters and supports as the most influential parameters on the catalytic performance of catalysts are discussed meticulously. Fe and Co as the main active metals in FT catalysts are investigated in terms of pore size, crystal size, and crystal phase for obtaining desirable light olefin selectivity. Larger pore size of Fe-based catalysts is suggested to increase olefin selectivity via suppressing 1-olefin readsorption and secondary reactions. Iron carbide as the most probable phase of Fe-based catalysts is proposed for light olefin generation via FTS. Smaller crystal size of Co active metal leads to higher olefin selectivity. Hexagonal close-packed (HCP) structure of Co has higher FTS activity than face-centered cubic (FCC) structure. Transition from Co to Co3C is mainly proposed for formation of light olefins over Co-based catalysts. Moreover, various catalysts’ deactivation routes are reviewed. Additionally, techno-economic assessment of FTS plants in terms of different costs including capital expenditure and minimum fuel selling price are presented based on the most recent literature. Finally, the potential for global environmental impacts associated with FTS plants including atmospheric and toxicological impacts is considered via lifecycle assessment (LCA).
Collapse
|
43
|
Liu QY, Shang C, Liu ZP. In Situ Active Site for CO Activation in Fe-Catalyzed Fischer-Tropsch Synthesis from Machine Learning. J Am Chem Soc 2021; 143:11109-11120. [PMID: 34278799 DOI: 10.1021/jacs.1c04624] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In situ-formed iron carbides (FeCx) are the key components responsible for Fischer-Tropsch synthesis (FTS, CO + H2 → long-chain hydrocarbons) on Fe-based catalysts in industry. The true active site is, however, highly controversial despite more than a century of study, which is largely due to the combined complexity in both FeCx structures and mechanism of CO hydrogenation. Herein powered by machine learning simulation, millions of structure candidates for FeCx bulk and surfaces are explored under FTS conditions, which leads to resolving the active site for CO activation. This is achieved without a priori input from experiment by first constructing the thermodynamics convex hull of bulk phases, followed by identifying the low surface energy surfaces and evaluating the adsorption ability of CO and H, and finally determining the lowest energy reaction pathway of CO activation. Rich information on FeCx structures and CO hydrogenation pathways is gleaned: (i) Fe5C2, Fe7C3, and Fe2C are the three stable bulk phases under FTS in producing olefins, where Fe7C3 and Fe2C have multiple energetically nearly degenerate bulk crystal phases; (ii) only three low surface energy surfaces of these bulk phases, namely, χ-Fe5C2(510), χ-Fe5C2(111), and η-Fe2C(111), expose the Fe sites that can adsorb H atoms exothermically, where the surface Fe:C ratio is 2, 1.75, and 2, respectively; (iii) CO activation via direct dissociation can occur at the surface C vacancies (e.g., with a barrier of 1.1 eV) that are created dynamically via hydrogenation. These atomic-level understandings facilitate the building of the structure-activity correlation and designing better FT catalysts.
Collapse
Affiliation(s)
- Qian-Yu Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
44
|
Jiang F, Wang S, Zheng J, Liu B, Xu Y, Liu X. Fischer-Tropsch synthesis to lower α-olefins over cobalt-based catalysts: Dependence of the promotional effect of promoter on supports. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Lopez Luna M, Timoshenko J, Kordus D, Rettenmaier C, Chee SW, Hoffman AS, Bare SR, Shaikhutdinov S, Roldan Cuenya B. Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mauricio Lopez Luna
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Janis Timoshenko
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - David Kordus
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Adam S. Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Simon R. Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shamil Shaikhutdinov
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
46
|
Comprehensive understanding of SiO2-promoted Fe Fischer-Tropsch synthesis catalysts: Fe-SiO2 interaction and beyond. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Lin T, Yu F, An Y, Qin T, Li L, Gong K, Zhong L, Sun Y. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Acc Chem Res 2021; 54:1961-1971. [PMID: 33599477 DOI: 10.1021/acs.accounts.0c00883] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Syngas conversion is a key platform for efficient utilization of various carbon-containing resources including coal, natural gas, biomass, organic wastes, and even CO2. One of the most classic routes for syngas conversion is Fischer-Tropsch synthesis (FTS), which is already available for commercial application. However, it still remains a grand challenge to tune the product distribution from paraffins to value-added chemicals such as olefins and higher alcohols. Breaking the selectivity limitation of the Anderson-Schulz-Flory (ASF) distribution has been one of the hottest topics in syngas chemistry.Metallic Co0 is a well-known active phase for Co-catalyzed FTS, and the products are dominated by paraffins with a small amount of chemicals (i.e., olefins or alcohols). Specifically, a cobalt carbide (Co2C) phase is typically viewed as an undesirable compound that could lead to deactivation with low activity and high methane selectivity. Although iron carbide (FexC) can produce olefins with selectivity up to ∼60%, the fraction of methane is still rather high, and the required high reaction temperature (300-350 °C) typically causes coke deposition and fast deactivation. Recently, we discovered that Co2C nanoprisms with preferentially exposed facets of (020) and (101) can effectively produce olefins from syngas conversion under mild reaction conditions with high selectivity. The methane fraction was limited within 5%, and the product distribution deviated greatly from ASF statistic law. The catalytic performances of Co2C nanoprisms are completely different from that reported for the traditional FT process, exhibiting promising potential industrial application.This Account summarizes our progress in the development of Co2C nanoprisms for Fischer-Tropsch synthesis to olefins (FTO) with remarkable efficiencies and stability. The underlying mechanism for the observed unique catalytic behaviors was extensively explored by combining DFT calculation, kinetic measurements, and various spectroscopic and microscopic investigation. We also emphasize the following issues: particle size effect of Co2C, the promotional effect of alkali and Mn promoters, and the role of metal-support interaction (SMI) in fabricating supported Co2C nanoprisms. Specially, we briefly review the synthetic methods for different Co2C nanostructures. In addition, Co2C can also be applied as a nondissociative adsorption center for higher alcohol synthesis (HAS) via syngas conversion. We also discuss the construction of a Co0/Co2C interfacial catalyst for HAS and demonstrate how to tune the reaction network and strengthen CO nondissociative adsorption ability for efficient production of higher alcohols. We believe that the advances in the development of Co2C nanocatalysts described here present a critic step to produce chemicals through the FTS process.
Collapse
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tingting Qin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liusha Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, P. R. China
| |
Collapse
|
48
|
Zhang M, Ren J, Yu Y. Investigating the CO activation mechanism on hcp-Fe7C3 (211) via density functional theory. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Modak A, Ghosh A, Bhaumik A, Chowdhury B. CO 2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv Colloid Interface Sci 2021; 290:102349. [PMID: 33780826 DOI: 10.1016/j.cis.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
CO2 is one of the major environmental pollutants and its mitigation is attracting huge attention over the years due to continuous increase in this greenhouse gas emission in the atmosphere. Being environmentally hazardous and plentiful presence in nature, CO2 utilization as C1 resource into fuels and feedstock is very demanding from the green chemistry perspectives. To accomplish this CO2 utilization issue, functional organic materials like porous organic polymers (POPs), covalent organic frameworks (COFs) as well as organic-inorganic hybrid materials like metal-organic frameworks (MOFs), having characteristics of large surface area, high thermal stability and tunability in the porous nanostructures play significant role in designing the suitable catalyst for the CO2 hydrogenation reactions. Although CO2 hydrogenation is a widely studied and emerging area of research, till date review exclusively focused on designing POPs, COFs and MOFs bearing reactive functional groups is very limited. A thorough literature review on this matter will enrich our knowledge over the CO2 hydrogenation processes and the catalytic sites responsible for carrying out these chemical transformations. We emphasize recent state-of-the art developments in POPs/COFs/MOFs having unique functionalities and topologies in stabilizing metallic NPs and molecular complexes for the CO2 reduction reactions. The major differences between MOFs and porous organics are critically summarized in the outlook section with the aim of the future benefit in mitigating CO2 emission from ambient air.
Collapse
|
50
|
Effects of Structure and Particle Size of Iron, Cobalt and Ruthenium Catalysts on Fischer–Tropsch Synthesis. REACTIONS 2021. [DOI: 10.3390/reactions2010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review emphasizes the importance of the catalytic conversion techniques in the production of clean liquid and hydrogen fuels (XTF) and chemicals (XTC) from the carbonaceous materials including coal, natural gas, biomass, organic wastes, biogas and CO2. Dependence of the performance of Fischer–Tropsch Synthesis (FTS), a key reaction of the XTF/XTC process, on catalyst structure (crystal and size) is comparatively examined and reviewed. The contribution illustrates the very complicated crystal structure effect, which indicates that not only the particle type, but also the particle shape, facets and orientation that have been evidenced recently, strongly influence the catalyst performance. In addition, the particle size effects over iron, cobalt and ruthenium catalysts were carefully compared and analyzed. For all Fe, Co and Ru catalysts, the metal turnover frequency (TOF) for CO hydrogenation increased with increasing metal particle size in the small size region i.e., less than the size threshold 7–8 nm, but was found to be independent of particle size for the catalysts with large particle sizes greater than the size threshold. There are some inconsistencies in the small particle size region for Fe and Ru catalysts, i.e., an opposite activity trend and an abnormal peak TOF value were observed on a Fe catalyst and a Ru catalyst (2 nm), respectively. Further study from the literature provides deeper insights into the catalyst behaviors. The intrinsic activity of Fe catalysts (10 nm) at 260–300 °C is estimated in the range of 0.046–0.20 s−1, while that of the Co and Ru catalysts (7–70 nm) at 220 °C are 0.1 s−1 and 0.4 s−1, respectively.
Collapse
|