1
|
Azaiza-Dabbah D, Wang F, Haddad E, Solé-Daura A, Carmieli R, Poblet JM, Vogt C, Neumann R. Heterometallic Transition Metal Oxides Containing Lewis Acids as Molecular Catalysts for the Reduction of Carbon Dioxide to Carbon Monoxide with Bimodal Activity. J Am Chem Soc 2024; 146:27871-27885. [PMID: 39326444 PMCID: PMC11468775 DOI: 10.1021/jacs.4c10412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Electrocatalytic CO2 reduction (e-CO2RR) to CO is replete with challenges including the need to carry out e-CO2RR at low overpotentials. Previously, a tricopper-substituted polyoxometalate was shown to reduce CO2 to CO with a very high faradaic efficiency albeit at -2.5 V versus Fc/Fc+. It is now demonstrated that introducing a nonredox metal Lewis acid, preferably GaIII, as a binding site for CO2 in the first coordination sphere of the polyoxometalate, forming heterometallic polyoxometalates, e.g., [SiCuIIFeIIIGaIII(H2O)3W9O37]8-, leads to bimodal activity optimal both at -2.5 and -1.5 V versus Fc/Fc+; reactivity at -1.5 V being at an overpotential of ∼150 mV. These results were observed by cyclic voltammetry and quantitative controlled potential electrolysis where high faradaic efficiency and chemoselectivity were obtained at -2.5 and -1.5 V. A reaction with 13CO2 revealed that CO2 disproportionation did not occur at -1.5 V. EPR spectroscopy showed reduction, first of CuII to CuI and FeIII to FeII and then reduction of a tungsten atom (WVI to WV) in the polyoxometalate framework. IR spectroscopy showed that CO2 binds to [SiCuIIFeIIIGaIII(H2O)3W9O37]8- before reduction. In situ electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) with pulsed potential modulated excitation revealed different observable intermediate species at -2.5 and -1.5 V. DFT calculations explained the CV, the formation of possible activated CO2 species at both -2.5 and -1.5 V through series of electron transfer, proton-coupled electron transfer, protonation and CO2 binding steps, the active site for reduction, and the role of protons in facilitating the reactions.
Collapse
Affiliation(s)
- Dima Azaiza-Dabbah
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Fei Wang
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Elias Haddad
- Schulich
Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Albert Solé-Daura
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Josep M. Poblet
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Charlotte Vogt
- Schulich
Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Ronny Neumann
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
3
|
Mallick L, Chakraborty B. Ionic γ-FeO(OH) Nanocrystal Stabilized by Small Isopolymolybdate Clusters as Reactive Core for Water Oxidation. Chemistry 2023; 29:e202203033. [PMID: 36310518 DOI: 10.1002/chem.202203033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
At near neutral to basic pH, hydrolysis-induced aggregation to insoluble bulk iron-oxide is often regarded as the pitfalls of molecular iron clusters. Iron-oxide nanocrystals are encouragingly active over the molecular clusters and/or bulk oxides albeit, stabilizing such nanostructures in aqueous pH and under turnover condition remain a perdurable challenge. Herein, an Anderson-type [Mo7 O24 ]6- isopolyanion, a small (dimension ca. 0.85 nm) isolable polyoxometalate (POM) possessing only {31} atoms, has been introduced for the first time as a covalent linker to stabilize an infinitely stable and aqueous-soluble γ-FeO(OH) nanocore. During the hydrothermal isolation of the material, a partial dissociation of the parent [Mo7 O24 ]6- may lead to the in situ generation of few analogous [Mox Oy ]n- clusters, proved by Raman study, which can also participate in stabilizing the γ-FeO(OH) nanocore, Mox Oy @FeO(OH). However, due to high ionic charge on {Mo=O} terminals of the [Mox Oy ]n- , they are covalently linked via MoVI -μ2 O-FeIII bridging to γ-FeO(OH) core in Mox Oy @FeO(OH), established by numerous spectroscopic and microscopic evidence. Such bonding mode is more likely as precedent from the coordination motif documented in the transition metal clusters stabilized by this POM. The γ-FeO(OH) nanocore of Mox Oy @FeO(OH) behaves as potent active center for electrochemical water oxidation with a overpotential, 263 mV @ 10 mA cm-2 , lower than that observed for bare γ-FeO(OH). Despite of some molybdenum dissolution from the POM ligands to the electrolyte, residual anionic POM fragments covalently bound to the OER active γ-FeO(OH) core of the Mox Oy @FeO(OH) makes the surface predominantly ionic that results in an ordered electrical double layer to promote a better charge transport across the electrode-electrolyte junction, less likely in bulk γ-FeO(OH).
Collapse
Affiliation(s)
- Laxmikanta Mallick
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
| |
Collapse
|
4
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Tsai YF, Natarajan T, Lin ZH, Tsai IK, Janmanchi D, Chan SI, Yu SSF. Voltage-Gated Electrocatalysis of Efficient and Selective Methane Oxidation by Tricopper Clusters under Ambient Conditions. J Am Chem Soc 2022; 144:9695-9706. [PMID: 35622083 DOI: 10.1021/jacs.2c01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selective methane oxidation is difficult chemistry. Here we describe a strategy for the electrocatalysis of selective methane oxidation by immobilizing tricopper catalysts on the cathodic surface. In the presence of dioxygen and methane, the activation of these catalysts above a threshold cathodic potential can initiate the dioxygen chemistry for O atom transfer to methane. The catalytic turnover is completed by facile electron injections into the tricopper catalysts from the electrode. This technology leads to dramatic enhancements in performance of the catalysts toward methane oxidation. Unprecedented turnover frequencies (>40 min-1) and high product throughputs (turnover numbers >30 000 in 12 h) are achieved for this challenging chemical transformation in water under ambient conditions. The technology is green and suitable for on-site direct conversion of methane into methanol.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | | | - Zhi-Han Lin
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - I-Kuen Tsai
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Damodar Janmanchi
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Robinson AL, Rebilly J, Guillot R, Herrero C, Maisonneuve H, Banse F. A Tale of Two Complexes: Electro‐Assisted Oxidation of Thioanisole by an “O
2
Activator/Oxidizing Species” Tandem System of Non‐Heme Iron Complexes. Chemistry 2022; 28:e202200217. [DOI: 10.1002/chem.202200217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Amanda Lyn Robinson
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris-Saclay CNRS 91405 Orsay cedex France
| | - Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris-Saclay CNRS 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris-Saclay CNRS 91405 Orsay cedex France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris-Saclay CNRS 91405 Orsay cedex France
| | - Hélène Maisonneuve
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris-Saclay CNRS 91405 Orsay cedex France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay Université Paris-Saclay CNRS 91405 Orsay cedex France
| |
Collapse
|
7
|
Stergiou AD, Symes MD. Organic transformations using electro-generated polyoxometalate redox mediators. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Khenkin AM, Herman A, Haviv E, Neumann R. Electrocatalytic Oxyesterification of Hydrocarbons by Tetravalent Lead. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander M. Khenkin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Herman
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eynat Haviv
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Matsuda A, Tateno H, Kamata K, Hara M. Iron phosphate nanoparticle catalyst for direct oxidation of methane into formaldehyde: effect of surface redox and acid–base properties. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01265g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The surface redox and the weakly basic properties of FePO4 nanoparticles would contribute to the selective CH4 oxidation to HCHO and the suppression of over-oxidation, respectively.
Collapse
Affiliation(s)
- Aoi Matsuda
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Haruka Tateno
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- JST, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
10
|
Bugnola M, Shen K, Haviv E, Neumann R. Reductive Electrochemical Activation of Molecular Oxygen Catalyzed by an Iron-Tungstate Oxide Capsule: Reactivity Studies Consistent with Compound I Type Oxidants. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Bugnola
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kaiji Shen
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eynat Haviv
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Chen Q, Shen C, He L. Recent advances of polyoxometalate-catalyzed selective oxidation based on structural classification. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:1182-1201. [PMID: 30398171 DOI: 10.1107/s2053229618010902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
The structural diversity and tenability observed in POMs has encouraged extensive investigations into their catalytic activity. Based on the structural classification of POMs, this review summarizes recent advances relating to POM-catalyzed selective oxidation and places most emphasis on dynamic developments from 2015 onwards. Work which contributes to comparing the catalytic performance of POMs with delicate structural differences (e.g. the same type of POM structure with differences of the heteroatom, addenda, protonated state or counter-ion) and in elucidating the origin/distinction of catalytic activity, as well as reasonable mechanisms, are especially highlighted.
Collapse
Affiliation(s)
- Qiongyao Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Chaoren Shen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|