1
|
Ding M, Zhang Y, Guo Y, Hua W, Yang J, Wang L, Guo Y, Dai Q, Wang A, Zhan W. Selective Adsorption of Chlorine Species on RuO 2 Sites for Efficient Elimination of Vinyl Chloride on the Ru/SnO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:956-967. [PMID: 39758035 DOI: 10.1021/acs.est.4c09658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The main bottleneck in the catalytic combustion of chlorinated volatile organic compounds (CVOCs) is deactivation and the production of chlorine-containing byproducts originating from the chlorine species deposited on the catalyst. Herein, Ru supported on SnO2 (Ru/SnO2) was prepared with the lattice matching principle. As RuO2 and SnO2 are both rutile phases, Ru species were present as highly dispersed RuO2 particles on the Ru/SnO2 catalyst. These particles adsorbed chlorine species with greater efficiency during the CVOCs combustion, thereby protecting the oxygen vacancies. Therefore, the double sites, oxygen vacancy to oxidize and RuO2 to adsorb chlorine species, on the Ru/SnO2 catalyst led to a notable enhancement in activity, stability, and byproduct selectivity. In contrast, the high dispersion of Ru species on the CeO2 support, as the typical catalyst for chlorinated hydrocarbon combustion, gave rise to a predominantly Ru-O-Ce structure. This structure did not prevent the adsorption of chlorine species on the oxygen vacancies, resulting in deactivation at low temperatures and an increased polychlorinated byproduct concentration. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further corroborated the variation in the adsorption sites of chlorine species on the two catalysts. This work provides a new strategy for designing efficient Ru-based catalysts for catalytic CVOCs combustion.
Collapse
Affiliation(s)
- Min Ding
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenchao Hua
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jing Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
2
|
Chen S, Xu Y, Chang X, Pan Y, Sun G, Wang X, Fu D, Pei C, Zhao ZJ, Su D, Gong J. Defective TiO x overlayers catalyze propane dehydrogenation promoted by base metals. Science 2024; 385:295-300. [PMID: 39024431 DOI: 10.1126/science.adp7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
The industrial catalysts utilized for propane dehydrogenation (PDH) to propylene, an important alternative to petroleum-based cracking processes, either use expensive metals or metal oxides that are environmentally unbenign. We report that a typically less-active oxide, titanium oxide (TiO2), can be combined with earth-abundant metallic nickel (Ni) to form an unconventional Ni@TiOx catalyst for efficient PDH. The catalyst demonstrates a 94% propylene selectivity at 40% propane conversion and superior stability under industrially relevant conditions. Complete encapsulation of Ni nanoparticles was allowed at elevated temperatures (>550°C). A mechanistic study suggested that the defective TiOx overlayer consisting of tetracoordinated Ti sites with oxygen vacancies is catalytically active. Subsurface metallic Ni acts as an electronic promoter to accelerate carbon-hydrogen bond activation and hydrogen (H2) desorption on the TiOx overlayer.
Collapse
Affiliation(s)
- Sai Chen
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Yiyi Xu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Xin Chang
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guodong Sun
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xianhui Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Donglong Fu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Chunlei Pei
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center for Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Wang J, Li R, Zhang G, Dong C, Fan Y, Yang S, Chen M, Guo X, Mu R, Ning Y, Li M, Fu Q, Bao X. Confinement-Induced Indium Oxide Nanolayers Formed on Oxide Support for Enhanced CO 2 Hydrogenation Reaction. J Am Chem Soc 2024; 146:5523-5531. [PMID: 38367215 DOI: 10.1021/jacs.3c13355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
An enclosed nanospace often shows a significant confinement effect on chemistry within its inner cavity, while whether an open space can have this effect remains elusive. Here, we show that the open surface of TiO2 creates a confined environment for In2O3 which drives spontaneous transformation of free In2O3 nanoparticles in physical contact with TiO2 nanoparticles into In oxide (InOx) nanolayers covering onto the TiO2 surface during CO2 hydrogenation to CO. The formed InOx nanolayers are easy to create surface oxygen vacancies but are against over-reduction to metallic In in the H2-rich atmospheres, which thus show significantly enhanced activity and stability in comparison with the pure In2O3 catalyst. The formation of interfacial In-O-Ti bonding is identified to drive the In2O3 dispersion and stabilize the metastable InOx layers. The InOx overlayers with distinct chemistry from their free counterpart can be confined on various oxide surfaces, demonstrating the important confinement effect at oxide/oxide interfaces.
Collapse
Affiliation(s)
- Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangli Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Tang X, Yu A, Yang Q, Yuan H, Wang Z, Xie J, Zhou L, Guo Y, Ma D, Dai S. Significance of Epitaxial Growth of PtO 2 on Rutile TiO 2 for Pt/TiO 2 Catalysts. J Am Chem Soc 2024; 146:3764-3772. [PMID: 38304977 DOI: 10.1021/jacs.3c10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
TiO2-supported Pt species have been widely applied in numerous critical reactions involving photo-, thermo-, and electrochemical-catalysis for decades. Manipulation of the state of the Pt species in Pt/TiO2 catalysts is crucial for fine-tuning their catalytic performance. Here, we report an interesting discovery showing the epitaxial growth of PtO2 atomic layers on rutile TiO2, potentially allowing control of the states of active Pt species in Pt/TiO2 catalysts. The presence of PtO2 atomic layers could modulate the geometric configuration and electronic state of the Pt species under reduction conditions, resulting in a spread of the particle shape and obtaining a Pt/PtO2/TiO2 structure with more positive valence of Pt species. As a result, such a catalyst exhibits exceptional electrocatalytic activity and stability toward hydrogen evolution reaction, while also promoting the thermocatalytic CO oxidation, surpassing the performance of the Pt/TiO2 catalyst with no epitaxial structure. This novel epitaxial growth of the PtO2 structure on rutile TiO2 in Pt/TiO2 catalysts shows its potential in the rational design of highly active and economical catalysts toward diverse catalytic reactions.
Collapse
Affiliation(s)
- Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Anwen Yu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qianqian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Junzhong Xie
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Zhou J, Xia F, Zhang C, Ni J, Lin J, Lin B, Jiang L. Oxygen-Induced Activation of a Ceria-Supported Ru Catalyst for Enhancing Ammonia Synthesis Activity. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Jian Zhou
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Fei Xia
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Chuanfeng Zhang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Jun Ni
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Jianxin Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Bingyu Lin
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Lilong Jiang
- National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Yu J, Zhang P, Li L, Li K, Zhang G, Liu J, Wang T, Zhao ZJ, Gong J. Electroreductive coupling of benzaldehyde by balancing the formation and dimerization of the ketyl intermediate. Nat Commun 2022; 13:7909. [PMID: 36564379 PMCID: PMC9789095 DOI: 10.1038/s41467-022-35463-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Electroreductive coupling of biomass-derived benzaldehyde offers a sustainable approach to producing value-added hydrobenzoin. The low efficiency of the reaction mainly ascribes to the mismatch of initial formation and subsequent dimerization of ketyl intermediates (Ph-CH = O → Ph-C·-OH → Ph-C(OH)-C(OH)-Ph). This paper describes a strategy to balance the active sites for the generation and dimerization of ketyl intermediates by constructing bimetallic Pd/Cu electrocatalysts with tunable surface coverage of Pd. A Faradaic efficiency of 63.2% and a hydrobenzoin production rate of up to 1.27 mmol mg-1 h-1 (0.43 mmol cm-2 h-1) are achieved at -0.40 V vs. reversible hydrogen electrode. Experimental results and theoretical calculations reveal that Pd promotes the generation of the ketyl intermediate, and Cu enhances their dimerization. Moreover, the balance between these two sites facilitates the coupling of benzaldehyde towards hydrobenzoin. This work offers a rational strategy to design efficient electrocatalysts for complex reactions through the optimization of specified active sites for different reaction steps.
Collapse
Affiliation(s)
- Jia Yu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Peng Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Lulu Li
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Kailang Li
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jia Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
7
|
Liu M, Zhang Z, Xie Y, Guo Z, Feng H, Liu W, Wang H. Titanium nitride as a promising sodium-ion battery anode: interface-confined preparation and electrochemical investigation. Dalton Trans 2022; 51:12855-12865. [PMID: 35972320 DOI: 10.1039/d2dt02074b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for new electrode materials for sodium-ion batteries (SIBs), especially for enhancing the specific capacity and cycling stability of anodes, is of great significance for the development of new energy conversion and storage materials. Here, a new type of titanium nitride composite anode (TiN@C) coated with 2D carbon nanosheets was prepared for the first time using a rationally designed topochemical conversion approach of interface-confinement. Subsequently, the electrochemical performance and Na+ storage mechanism of TiN@C as an anode for SIBs was investigated. The quantum-dot-sized TiN anodes exhibited shorter ionic transport pathways, while the 2D ultrathin carbon nanosheets reinforced the structural stability of the composite and provided a high electron transformation rate. As a result, the TiN/C composite anode can deliver a high reversible capacity of 170 mA h g-1 and 149 mA h g-1 after 5000 cycles at a current density of 0.5 A g-1 and 1 A g-1, indicating excellent electrochemical properties. This work provides new opportunities to explore the convenient and controllable preparation of metal nitride anodes for other energy conversion and storage applications.
Collapse
Affiliation(s)
- Ming Liu
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Zilu Zhang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yunyun Xie
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhiwei Guo
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Hua Feng
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Wenyou Liu
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Hai Wang
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China. .,College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.,State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
8
|
Wang X, Wan X, Qin X, Chen C, Qian X, Guo Y, Xu Q, Cai WB, Yang H, Jiang K. Electronic Structure Modulation of RuO 2 by TiO 2 Enriched with Oxygen Vacancies to Boost Acidic O 2 Evolution. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaojun Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuhao Wan
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, Hubei, China
| | - Xianxian Qin
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Chi Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiaoshi Qian
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, Hubei, China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Wen-Bin Cai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Kun Jiang
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Tan X, Nielsen J. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chem Soc Rev 2022; 51:4763-4785. [PMID: 35584360 DOI: 10.1039/d2cs00309k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dependence on fossil fuels has caused excessive emissions of greenhouse gases (GHGs), leading to climate changes and global warming. Even though the expansion of electricity generation will enable a wider use of electric vehicles, biotechnology represents an attractive route for producing high-density liquid transportation fuels that can reduce GHG emissions from jets, long-haul trucks and ships. Furthermore, to achieve immediate alleviation of the current environmental situation, besides reducing carbon footprint it is urgent to develop technologies that transform atmospheric CO2 into fossil fuel replacements. The integration of bio-catalysis and electrocatalysis (bio-electrocatalysis) provides such a promising avenue to convert CO2 into fuels and chemicals with high-chain lengths. Following an overview of different mechanisms that can be used for CO2 fixation, we will discuss crucial factors for electrocatalysis with a special highlight on the improvement of electron-transfer kinetics, multi-dimensional electrocatalysts and their hybrids, electrolyser configurations, and the integration of electrocatalysis and bio-catalysis. Finally, we prospect key advantages and challenges of bio-electrocatalysis, and end with a discussion of future research directions.
Collapse
Affiliation(s)
- Xinyi Tan
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden. .,BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark
| |
Collapse
|
10
|
Li C, Zhang Z, Zheng Y, Fang B, Ni J, Lin J, Lin B, Wang X, Jiang L. Titanium modified Ru/CeO2 catalysts for ammonia synthesis. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Gong Y, Liu R, Jiang L, Peng A, Xu C, Lu X, Ma R, Fu Y, Zhu W, Wang S, Zhou L. Catalyst Development for HCl Oxidation to Cl2 in the Fluorochemical Industry. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yufeng Gong
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Ruixin Liu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Lingyan Jiang
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Anna Peng
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Chunhui Xu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Xinqing Lu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Rui Ma
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Yanghe Fu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People’s Republic of China
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People’s Republic of China
| | - Shuhua Wang
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People’s Republic of China
| | - Liyang Zhou
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People’s Republic of China
| |
Collapse
|
12
|
Li S, Xu B, Wang Y, Liu Y, Lu X, Ma R, Fu Y, Wang S, Zhou L, Zhu W. Insight into the effects of calcination temperature on the structure and performance of RuO 2/TiO 2 in the Deacon process. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00812b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With an appropriate calcination temperature for preparing a rutile-TiO2 supported RuO2 catalyst, rich surface RuO2 species can be formed on TiO2, leading to its high activity in the oxidation of HCl.
Collapse
Affiliation(s)
- Siyao Li
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Bowen Xu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Yuexia Wang
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Yupei Liu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Xinqing Lu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Rui Ma
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Yanghe Fu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
| | - Shuhua Wang
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People's Republic of China
| | - Liyang Zhou
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People's Republic of China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, 321004 Jinhua, People's Republic of China
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., 324004 Quzhou, People's Republic of China
| |
Collapse
|
13
|
Lin B, Wu Y, Fang B, Li C, Ni J, Wang X, Lin J, Jiang L. Ru surface density effect on ammonia synthesis activity and hydrogen poisoning of ceria-supported Ru catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63787-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Zhao W, Li Y, Shen W. Tuning the shape and crystal phase of TiO 2 nanoparticles for catalysis. Chem Commun (Camb) 2021; 57:6838-6850. [PMID: 34137748 DOI: 10.1039/d1cc01523k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthesis of TiO2 nanoparticles with tunable shape and crystal phase has attracted considerable attention for the design of highly efficient heterogeneous catalysts. Tailoring the shape of TiO2, in the crystal phases of anatase, rutile, brookite and TiO2(B), allows tuning of the atomic configurations on the dominantly exposed facets for maximizing the active sites and regulating the reaction route towards a specific channel for achieving high selectivity. Moreover, the shape and crystal phase of TiO2 nanoparticles alter their interactions with metal species, which are commonly termed as strong metal-support interactions involving interfacial strain and charge transfer. On the other hand, metal particles, clusters and single atoms interact differently with TiO2, because of the variation of the electronic structure, while the surface of TiO2 determines the interfacial bonding via a geometric effect. The dynamic behavior of the metal-titania interfaces, driven by the chemisorption of the reactive molecules at elevated temperatures, also plays a decisive role in elaborating the structure-reactivity relationship.
Collapse
Affiliation(s)
- Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
15
|
García-Ramírez P, Ramírez-Morales E, Solis Cortazar JC, Sirés I, Silva-Martínez S. Influence of ruthenium doping on UV- and visible-light photoelectrocatalytic color removal from dye solutions using a TiO 2 nanotube array photoanode. CHEMOSPHERE 2021; 267:128925. [PMID: 33213874 DOI: 10.1016/j.chemosphere.2020.128925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
The photocatalytic activity of TiO2 anodes was enhanced by synthesizing Ru-doped Ti|TiO2 nanotube arrays. Such photoanodes were fabricated via Ti anodization followed by Ru impregnation and annealing. The X-ray diffractograms revealed that anatase was the main TiO2 phase, while rutile was slightly present in all samples. Scanning electron microscopy evidenced a uniform morphology in all samples, with nanotube diameter ranging from 60 to 120 nm. The bias potential for the photoelectrochemical (PEC) treatment was selected from the electrochemical characterization of each electrode, made via linear sweep voltammetry. All the Ru-doped TiO2 nanotube array photoanodes showed a peak photocurrent (PP) and a saturation photocurrent (SP) upon their illumination with UV or visible light. In contrast, the undoped TiO2 nanotubes only showed the SP, which was higher than that reached with the Ru-doped photoanodes using UV light. An exception was the Ru(0.15 wt%)-doped TiO2, whose SP was comparable under visible light. Using that anode, the activity enhancement during the PEC treatment of a Terasil Blue dye solution at Ebias(PP) was much higher than that attained at Ebias(SP). The percentage of color removal at 120 min with the Ru(0.15 wt%)-doped TiO2 was 98% and 55% in PEC with UV and visible light, respectively, being much greater than 82% and 28% achieved in photocatalysis. The moderate visible-light photoactivity of the Ru-doped TiO2 nanotube arrays suggests their convenience to work under solar PEC conditions, aiming at using a large portion of the solar spectrum.
Collapse
Affiliation(s)
- Patricia García-Ramírez
- Posgrado de Doctorado en Ingeniería y Ciencias Aplicadas, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma Del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, C.P. 62209, Mexico
| | - Erik Ramírez-Morales
- División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Av. Universidad S/N, Col. Magisterial, C.P. 86040, Villahermosa, Tabasco, Mexico
| | - Juan Carlos Solis Cortazar
- Posgrado en Ciencias en Ingeniería, Universidad Juárez Autónoma de Tabasco, Av. Universidad S/N, Col. Magisterial, C.P. 86040, Villahermosa, Tabasco, Mexico
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, 08028, Barcelona, Spain.
| | - Susana Silva-Martínez
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma Del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
16
|
Effects of the Support-Crystal Size on the Catalytic Performance of RuO2/TiO2 in the Deacon Process. Catal Letters 2021. [DOI: 10.1007/s10562-020-03493-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Wang Z, Khalid O, Wang W, Wang Y, Weber T, Spriewald Luciano A, Zhan W, Smarsly BM, Over H. Comparison study of the effect of CeO 2-based carrier materials on the total oxidation of CO, methane, and propane over RuO 2. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01277k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While activity and kinetics of catalytic CO and propane combustion over RuO2 depends sensitively on the carrier material, methane combustion on RuO2 is hardly affected by the carrier.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Omeir Khalid
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Wei Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Yu Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Tim Weber
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | | | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bernd M. Smarsly
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Herbert Over
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
18
|
Saha S, Kishor K, Pala RGS. Climbing with support: scaling the volcano relationship through support–electrocatalyst interactions in electrodeposited RuO 2 for the oxygen evolution reaction. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00375e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interfacial charge transfer and support-induced electrocatalyst faceting in thin catalysts enable ‘climbing up’ the volcano map for OER electrocatalysts. The conductivity of the support determines the OER activity of thick catalysts.
Collapse
Affiliation(s)
- Sulay Saha
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
| | - Koshal Kishor
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
- S. N. Patel Institute of Technology & Research Centre
| | - Raj Ganesh S. Pala
- Department of Chemical Engineering
- Indian Institute of Technology
- Kanpur
- India
- Materials Science Programme
| |
Collapse
|
19
|
Chen S, Pei C, Chang X, Zhao Z, Mu R, Xu Y, Gong J. Coverage‐Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Rentao Mu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
20
|
Chen S, Pei C, Chang X, Zhao Z, Mu R, Xu Y, Gong J. Coverage‐Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation. Angew Chem Int Ed Engl 2020; 59:22072-22079. [DOI: 10.1002/anie.202005968] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/06/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Xin Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Zhi‐Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Rentao Mu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Yiyi Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineering and Technology Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
| |
Collapse
|
21
|
Li X, Lin J, Li L, Huang Y, Pan X, Collins SE, Ren Y, Su Y, Kang L, Liu X, Zhou Y, Wang H, Wang A, Qiao B, Wang X, Zhang T. Controlling CO
2
Hydrogenation Selectivity by Metal‐Supported Electron Transfer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoyu Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Sebastián E. Collins
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) Universidad Nacional del Litoral CONICET Güemes 3450 S3000GLN Santa Fe Argentina
| | - Yujing Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Leilei Kang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Yanliang Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- University of Chinese Academy of Sciences 100049 Beijing China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| |
Collapse
|
22
|
Li X, Lin J, Li L, Huang Y, Pan X, Collins SE, Ren Y, Su Y, Kang L, Liu X, Zhou Y, Wang H, Wang A, Qiao B, Wang X, Zhang T. Controlling CO 2 Hydrogenation Selectivity by Metal-Supported Electron Transfer. Angew Chem Int Ed Engl 2020; 59:19983-19989. [PMID: 32666637 DOI: 10.1002/anie.202003847] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/01/2020] [Indexed: 11/09/2022]
Abstract
Tuning CO2 hydrogenation selectivity to obtain targeted value-added chemicals and fuels has attracted increasing attention. However, a fundamental understanding of the way to control the selectivity is still lacking, posing a challenge in catalyst design and development. Herein, we report our new discovery in ambient pressure CO2 hydrogenation reaction where selectivity can be completely reversed by simply changing the crystal phases of TiO2 support (anatase- or rutile-TiO2 ) or changing metal loadings on anatase-TiO2 . Operando spectroscopy and NAP-XPS studies reveal that the determining factor is a different electron transfer from metal to the support, most probably as a result of the different extents of hydrogen spillover, which changes the adsorption and activation of the intermediate of CO. Based on this new finding, we can not only regulate CO2 hydrogenation selectivity but also tune catalytic performance in other important reactions, thus opening up a door for efficient catalyst development by rational design.
Collapse
Affiliation(s)
- Xiaoyu Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoli Pan
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Sebastián E Collins
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral, CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
| | - Yujing Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Leilei Kang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yanliang Zhou
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| |
Collapse
|
23
|
Huang J, Hou M, Wang J, Teng X, Niu Y, Xu M, Chen Z. RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135878] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Wang D, Huang J, Liu F, Xu X, Fang X, Liu J, Xie Y, Wang X. Rutile RuO2 dispersion on rutile and anatase TiO2 supports: The effects of support crystalline phase structure on the dispersion behaviors of the supported metal oxides. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Wang Y, Liu S, Pei C, Fu Q, Zhao ZJ, Mu R, Gong J. Modulating the surface defects of titanium oxides and consequent reactivity of Pt catalysts. Chem Sci 2019; 10:10531-10536. [PMID: 32055375 PMCID: PMC6988757 DOI: 10.1039/c9sc03119g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
In heterogeneous catalysis, it is widely believed that the surface states of catalyst supports can strongly influence the catalytic performance, because active components are generally anchored on supports. This paper describes a detailed understanding of the influence of surface defects of TiO2 supports on the catalytic properties of Pt catalysts. Pt was deposited on reduced (r-), hydroxylated (h-), and oxidized (o-) TiO2 surfaces, respectively, and the different surface states of TiO2 not only lead to differences in metal dispersion, but also distinct electronic interactions between the metal and the support. The highest reactivity for catalytic CO oxidation can be achieved over the Pt catalyst supported on reduced TiO2 with surface oxygen vacancies. The turnover frequency (TOF) of this catalyst is determined to be ∼11 times higher than that of Pt supported on oxidized TiO2. More importantly, the reactivity is seen to increase in the sequence of Pt/o-TiO2 < Pt/h-TiO2 < Pt/r-TiO2, which is well consistent with the trend of the calculated Bader charge of Pt.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China . ;
| | - Sihang Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China . ;
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China . ;
| | - Qiang Fu
- State Key Laboratory of Catalysis , iChEM , Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China . ;
| | - Rentao Mu
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China . ;
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education , School of Chemical Engineering and Technology , Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China . ;
| |
Collapse
|