1
|
Shi Y, Li G, Wang R, Zhao XJ, He Y. Copper and electrocatalytic synergy for the construction of fused quinazolinones with 2-aminobenzaldehydes and cyclic amines. RSC Adv 2024; 14:32195-32199. [PMID: 39399257 PMCID: PMC11467720 DOI: 10.1039/d4ra06539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
A new copper and electrocatalytic synergy strategy for efficiently constructing fused quinazolinones has been developed. In the presence of cupric acetate and oxygen, aryl ketones and 1,2,3,4-tetrahydroisoquinoline can smoothly participate in this transformation, thus providing a variety of substituted quinazolones in an undivided cell. The reaction shows good functional group tolerance and provides universal quinazolinones at a good yield under mild conditions.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Ruirui Wang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine Kunming 650000 P. R. China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission, School of Ethnic Medicine, Yunnan Minzu University Kunming 650500 China
| |
Collapse
|
2
|
Liu XQ, Chen YJ, Zou PS, Su JC, Pan CX, Mo DL, Su GF. Synthesis of Indole-Fused Pyrazino[1,2-a]quinazolinones by Copper(I)-Catalyzed Selective Hydroamination-Cyclization of Alkynyl-tethered Quinazolinones. Chemistry 2024; 30:e202402085. [PMID: 38926940 DOI: 10.1002/chem.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
We described a copper(I)-catalyzed atom economic and selective hydroamination-cyclization of alkynyl-tethered quinazolinones to prepare a variety of indole-fused pyrazino[1,2-a]quinazolinones in good to excellent yields ranging from 39 %-99 % under mild reaction conditions. Control experiments revealed that coordination-directed method of quinazolinone moiety with copper(I) was important for the selective hydroamination-cyclization of alkynes at the N1-atom instead of N3-atom of quinazolinone. The reaction could be easily performed at gram scales and some prepared indole-fused pyrazino[1,2-a]quinazolinones with donating groups on the indole moiety showed a distinct fluorescence emission wavelength with blue shift under the acid conditions.
Collapse
Affiliation(s)
- Xiao-Qing Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Yan-Jie Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Pei-Sen Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| |
Collapse
|
3
|
Huang J, Ban C, Qin J, Xu J, Gu Y, Wei L, Yuan JM, Huang G. Visible-light promoted radical cascade cyclization of 3-allyl-2-arylquinazolinones for the synthesis of phosphorylated dihydroisoquinolino[1,2- b]quinazolinones. Chem Commun (Camb) 2024; 60:8119-8122. [PMID: 38995155 DOI: 10.1039/d4cc02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
A novel visible-light promoted metal-free radical cascade cyclization reaction has been developed with 3-allyl-2-arylquinazolinones as a new class of radical acceptor. This photocatalytic protocol represents an efficient approach to construct phosphorylated dihydroisoquinolino[1,2-b]quinazolinones featuring mild conditions, broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Caijin Ban
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiangping Qin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jiali Xu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Yunqiong Gu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Liang Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jing-Mei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zhu L, Lu Y, Lei X, Li Y. "One pot" synthesis of quinazolinone-[2,3]-fused polycyclic scaffolds in a three-step reaction sequence. Org Biomol Chem 2024; 22:4720-4726. [PMID: 38775781 DOI: 10.1039/d4ob00529e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Diverse quinazolinone-[2,3]-fused polycyclic skeletons occupy a prominent position in drug discovery. Even with currently available methods there still remain unmet needs for flexible access to such structures. Herein, we have explored a mild "one pot" procedure for the construction of various quinazolinone-[2,3]-fused polycycles. The procedure involves Pd-catalyzed carbonylation of N-(2-iodophenyl)acetamides, release of the masked terminal amine, and two sequential and spontaneous cyclizations. This generally applicable approach features easy assembly of precursors from readily available starting materials, mild reaction conditions, non-cumbersome operation, and polycyclic diversity.
Collapse
Affiliation(s)
- Yuanmu Zhang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Lingxuan Zhu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yi Lu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Xinsheng Lei
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| | - Yingxia Li
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong Zone, Shanghai 201203, China.
| |
Collapse
|
5
|
Pan XY, Sun GX, Huang FP, Qin WJ, Teng QH, Wang K. Photogenerated chlorine radicals activate C(sp3)-H bonds of alkylbenzenes to access quinazolinones. Org Biomol Chem 2024; 22:2968-2973. [PMID: 38529682 DOI: 10.1039/d4ob00129j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
An Fe-catalyzed visible-light induced condensation of alkylbenzenes with anthranilamides has been developed. Upon irradiation, the trivalent iron complex could generate chlorine radicals, which successfully abstracted the hydrogen of benzylic C-H bonds to form benzyl radicals. And these benzyl radicals were converted into oxygenated products under air conditions, which subsequently reacted with anthranilamides for the synthesis of quinazolinones.
Collapse
Affiliation(s)
- Xin-Yao Pan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Gui-Xia Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Fang-Ping Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Wen-Jian Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Qing-Hu Teng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
6
|
Gao S, Cai M, Xu G, Jin Q, Wang X, Xu L, Wang L, Dai L. (NH 4) 2S 2O 8 promoted tandem radical cyclization of quinazolin-4(3 H)-ones with oxamic acids for the construction of fused quinazolinones under metal-free conditions. Org Biomol Chem 2024; 22:2241-2251. [PMID: 38372133 DOI: 10.1039/d3ob02081a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel cascade radical addition/cyclization reaction of non-activated olefins and oxamic acids has been proposed. Under transition metal-free conditions, 36 quinazolinone derivatives containing an amide moiety were successfully synthesized, with the highest yield being 81%. This method involves the preparation of aminoacyl fused quinazolinone derivatives under mild conditions, offering advantages such as a high yield, a broad substrate compatibility, and a high atom economy.
Collapse
Affiliation(s)
- Shenyuan Gao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Menglu Cai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, PR China.
| | - Gang Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Qiaolin Jin
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Xiaozhong Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Linze Xu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Lixiang Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Liyan Dai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
7
|
Tang JJ, Zhao MY, Lin YJ, Yang LH, Xie LY. Persulfate-Promoted Carbamoylation/Cyclization of Alkenes: Synthesis of Amide-Containing Quinazolinones. Molecules 2024; 29:997. [PMID: 38474508 DOI: 10.3390/molecules29050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The incorporation of amide groups into biologically active molecules has been proven to be an efficient strategy for drug design and discovery. In this study, we present a simple and practical method for the synthesis of amide-containing quinazolin-4(3H)-ones under transition-metal-free conditions. This is achieved through a carbamoyl-radical-triggered cascade cyclization of N3-alkenyl-tethered quinazolinones. Notably, the carbamoyl radical is generated in situ from the oxidative decarboxylative process of oxamic acids in the presence of (NH4)2S2O8.
Collapse
Affiliation(s)
- Jia-Jun Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Meng-Yang Zhao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Ying-Jun Lin
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China
| |
Collapse
|
8
|
Huang S, Jin L, Liu Y, Yang G, Wang A, Le Z, Jiang G, Xie Z. Visible light-mediated synthesis of quinazolinones from benzyl bromides and 2-aminobenzamides without using any photocatalyst or additive. Org Biomol Chem 2024; 22:784-789. [PMID: 38168690 DOI: 10.1039/d3ob01491f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This paper reports a novel method for the visible-light-mediated synthesis of quinazolinones from the reaction of benzyl bromides with 2-aminobenzamides. The reaction proceeded efficiently at room temperature upon irradiation with an 18 W blue light-emitting diode in air without photocatalysts or additives. By varying the solvent type, substrate molar ratio, and reaction time, the optimal reaction conditions, including the use of methanol solvent, room temperature, and reaction time of 28 h, were identified. Under these conditions, various quinazolinones were obtained using 18 substrates, with the highest yield of 93%. To determine the industrial value of the proposed method, a scale-up reaction was performed and 80% product yield was achieved. Mechanistic studies revealed that the reaction likely proceeded via a radical pathway and that the hydrogen bromide by-product generated during the first step of the reaction of benzyl bromide with 2-aminobenzamide promoted the subsequent step.
Collapse
Affiliation(s)
- Sheng Huang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Yufeng Liu
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guoping Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Aixin Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Guofang Jiang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
9
|
Guo YM, Wang H, Yang JR, Chen Q, Cao C, Chen JZ. Synthesis of 2,3-Fused Quinazolinones via the Radical Cascade Pathway and Reaction Mechanistic Studies by DFT Calculations. J Org Chem 2023; 88:10448-10459. [PMID: 37458429 DOI: 10.1021/acs.joc.2c03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient radical cascade cyclization of unactivated alkenes toward the synthesis of a series of ring-fused quinazolinones has been developed in moderate to excellent yields using commercially available ethers, alkanes, and alcohols, respectively, under a base-free condition in a short time without a transition metal as catalyst. Notably, the transformations can be carried out with the advantages of a broad substrate scope and high atomic economy. Density functional theory calculations and wavefunction analyses were performed to elucidate the radical reaction mechanism.
Collapse
Affiliation(s)
- Ya-Min Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Hao Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Jin-Rong Yang
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Qiang Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| | - Cheng Cao
- Polytechnic Institute, Zhejiang University, 269 Shixiang Rd., Hangzhou 310015, Zhejiang, China
| | - Jian-Zhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou 310058, Zhejiang, China
| |
Collapse
|
10
|
Chen X, Jin L, Wang Y, Yang H, Le Z, Xie Z. Synthesis of fused quinazolinones via visible light induced cyclization of 2-aminobenzaldehydes with tetrahydroisoquinolines. Org Biomol Chem 2023; 21:3863-3870. [PMID: 37093566 DOI: 10.1039/d3ob00198a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
This study reports a novel method for the synthesis of fused quinazolinones by visible-light-induced cyclization of 2-aminobenzaldehydes and tetrahydroisoquinolines. The reaction is easily carried out by irradiation with a blue LED in the presence of 9-fluorenone and air. A broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. Moreover, using 2-aminophenone as the substrate and under similar reaction conditions, the same product was obtained when a carbon was removed. The bio-active naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The success of the reaction on the gram-scale and the further transformation of the substrate demonstrated the synthetic practicability of this reaction.
Collapse
Affiliation(s)
- Xuehua Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yihong Wang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Hong Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang 330013, Jiangxi, China.
| |
Collapse
|
11
|
Wang Z, Zhao Y, Chen J, Chen M, Li X, Jiang T, Liu F, Yang X, Sun Y, Zhu Y. One-Pot Synthesis of Isoxazole-Fused Tricyclic Quinazoline Alkaloid Derivatives via Intramolecular Cycloaddition of Propargyl-Substituted Methyl Azaarenes under Metal-Free Conditions. Molecules 2023; 28:molecules28062787. [PMID: 36985760 PMCID: PMC10057414 DOI: 10.3390/molecules28062787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
A practical method was developed for the convenient synthesis of isoxazole-fused tricyclic quinazoline alkaloids. This procedure accesses diverse isoxazole-fused tricyclic quinazoline alkaloids and their derivatives via intramolecular cycloaddition of methyl azaarenes with tert-butyl nitrite (TBN). In this method, TBN acts as the radical initiator and the source of N-O. Moreover, this protocol forms new C-N, C-C, and C-O bonds via sequence nitration and annulation in a one-pot process with broad substrate scope and functionalization of natural products.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuhan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Mengyao Chen
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuehan Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ting Jiang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Fang Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xi Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuanyuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai 264005, China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
12
|
Opportunities from Metal Organic Frameworks to Develop Porous Carbons Catalysts Involved in Fine Chemical Synthesis. Catalysts 2023. [DOI: 10.3390/catal13030541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
In the last decade, MOFs have been proposed as precursors of functional porous carbons with enhanced catalytic performances by comparison with other traditional carbonaceous catalysts. This area is rapidly growing mainly because of the great structural diversity of MOFs offering almost infinite possibilities. MOFs can be considered as ideal platforms to prepare porous carbons with highly dispersed metallic species or even single-metal atoms under strictly controlled thermal conditions. This review briefly summarizes synthetic strategies to prepare MOFs and MOF-derived porous carbons. The main focus relies on the application of the MOF-derived porous carbons to fine chemical synthesis. Among the most explored reactions, the oxidation and reduction reactions are highlighted, although some examples of coupling and multicomponent reactions are also presented. However, the application of this type of catalyst in the green synthesis of biologically active heterocyclic compounds through cascade reactions is still a challenge.
Collapse
|
13
|
Wang M, Ye W, Sun N, Yu W, Chang J. Synthesis of Quinazolinone-Fused Tetrahydroisoquinolines and Related Polycyclic Scaffolds by Iodine-Mediated sp 3 C-H Amination. J Org Chem 2023; 88:1061-1074. [PMID: 36630199 DOI: 10.1021/acs.joc.2c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An iodine-mediated intramolecular sp3 C-H amination reaction producing quinazolinone-fused polycyclic skeletons from 2-aminobenzamide precursors is reported. This reaction does not use transition metals, has a broad substrate scope, and can be used on a gram scale. Under the optimal reaction conditions, a variety of quinazolinone-fused tetrahydroisoquinolines and derivatives of Rutaecarpine were synthesized from readily accessible compounds. The reaction proceeds well with crude 2-aminobenzamide derivatives, allowing for the synthesis of the products from simple 2-aminobenzoic acids and tetrahydroisoquinolines without purification of the 2-aminobenzamide intermediates. Preliminary biological experiments have identified Cereblon (CRBN) inhibitory activity and relevant anti-myeloma medicinal properties in some of these polycyclic products.
Collapse
Affiliation(s)
- Manman Wang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjun Ye
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Nannan Sun
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- Green Catalysis Center and College of Chemistry, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
14
|
Yuan JW, Zhang MY, Liu Y, Hu WY, Yang LR, Xiao YM, Diao XQ, Zhang SR, Mao J. Transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes: access to ArCF 2-substituted ring-fused quinazolinones. Org Biomol Chem 2022; 20:9722-9733. [PMID: 36440712 DOI: 10.1039/d2ob01904c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A mild and efficient transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes toward the synthesis of difluorobenzylated polycyclic quinazolinone derivatives with easily accessible α,α-difluoroarylacetic acids has been developed. This transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. This methodology provided a highly attractive access to pharmaceutically valuable ArCF2-containing polycyclic quinazolinones.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mei-Yue Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan Liu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Qiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Rao K, Chai Z, Zhou P, Liu D, Sun Y, Yu F. Transition-metal-free approach to quinolines via direct oxidative cyclocondensation reaction of N,N-dimethyl enaminones with o-aminobenzyl alcohols. Front Chem 2022; 10:1008568. [PMID: 36212061 PMCID: PMC9532769 DOI: 10.3389/fchem.2022.1008568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
A transition-metal-free method for the construction of 3-substituted or 3,4-disubstituted quinolines from readily available N,N-dimethyl enaminones and o-aminobenzyl alcohols is reported. The direct oxidative cyclocondensation reaction tolerates broad functional groups, allowing the efficient synthesis of various quinolines in moderate to excellent yields. The reaction involves a C (sp3)-O bond cleavage and a C=N bind and a C=C bond formation during the oxidative cyclization process, and the mechanism was proposed.
Collapse
|
16
|
Zhang WK, Li JZ, Zhang CC, Zhang J, Zheng YN, Hu Y, Li T, Wei WT. The Synthesis of Polycyclic Quinazolinones via C(sp3)–H Functionalization of Inert Alkanes or Visible‐light Promoted Oxidation Decarboxylation of N‐hydroxyphthalimide (NHP‐esters). European J Org Chem 2022. [DOI: 10.1002/ejoc.202200523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | | | | | | | - Ting Li
- Nanyang Normal University chemistry CHINA
| | - Wen-Ting Wei
- Ningbo University Materials Science and Chemical Engineering 818, Fenghua Road, Jiangbei District 315211 Ningbo CHINA
| |
Collapse
|
17
|
Nitrogen-doped Carbon Supported Nanocobalt for the Synthesis of Functionalized Triazines via Oxidative Cleavage of Biomass Derived vicinal Diols as Carbon Synthons. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Study on the Bimetallic Synergistic Effect of Cu/Al@SBA-15 Nanocomposite on Dehydrogenation Coupling Strategy. Catal Letters 2022. [DOI: 10.1007/s10562-022-03929-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
19
|
WANG W, Zou PS, PANG L, Pan C, Mo DL, SU GF. Recent Advances on the Synthesis of 2,3-Fused Quinazolinones. Org Biomol Chem 2022; 20:6293-6313. [DOI: 10.1039/d2ob00778a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As one of the most important structural units in pharmaceuticals and medicinal chemistry, quinazolinone and its derivatives exhibit a wide range of biological and pharmacological activities, including anti-inflammatory, antitubercular, antiviral,...
Collapse
|
20
|
Chongdar S, Bhattacharjee S, Bhanja P, Bhaumik A. Porous organic-inorganic hybrid materials for catalysis, energy and environmental applications. Chem Commun (Camb) 2022; 58:3429-3460. [DOI: 10.1039/d1cc06340e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction of organic functionalities into the porous inorganic materials make the resulting hybrid porous framework not only more flexible and hydrophobic, but also provide additional scope for further functionalization, which...
Collapse
|
21
|
Lin S, Sheng X, Zhang X, Liu H, Luo C, Hou S, Li B, Chen X, Li Y, Xie F. Layered Double Hydroxides as Reusable Catalysts for Cyclocondensation of Amidines and Aminoalcohols: Access to Multi-functionalized Oxazolines. J Org Chem 2021; 87:1366-1376. [PMID: 34964647 DOI: 10.1021/acs.joc.1c02696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An efficient catalytic protocol based on reusable MgAl-layered double hydroxides has been developed for the synthesis of multi-functionalized oxazolines via the cyclocondensation of amidines and aminoalcohols. The developed method has a broad substrate scope and excellent functional group tolerance and uses a reusable catalyst. The catalyst can be conveniently recycled by filtration and reused for at least five times without obvious deactivation. Additionally, the selective ortho C-H silylation of oxazolines was performed using Ru(II) as the catalyst and triethyl silane as the silylating reagent, which proved to be a convenient and practical method for the synthesis of versatile organosilyl-functionalized oxazolines with advantageous biological and physical properties.
Collapse
Affiliation(s)
- Shizhuo Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xing Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiangyu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Haibo Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chujun Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shuaishuai Hou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
22
|
Ly D, Nguyen TT, Tran CTH, Nguyen VPT, Nguyen KX, Pham PH, Le NTH, Nguyen TT, Phan NTS. Metal-Free Annulation of 2-Nitrobenzyl Alcohols and Tetrahydroisoquinolines toward the Divergent Synthesis of Quinazolinones and Quinazolinethiones. J Org Chem 2021; 87:103-113. [PMID: 34918926 DOI: 10.1021/acs.joc.1c02017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple metal-free method for the synthesis of quinazolinones from commercially available 2-nitrobenzyl alcohols and tetrahydroisoquinolines is developed. The reaction conditions were tolerant of an array of functionalities such as halogen, tertiary amine, protected alcohol, and ester groups. Under nearly identical conditions, quinazolinethiones were obtained in the presence of elemental sulfur and suitable mediators.
Collapse
Affiliation(s)
- Duc Ly
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Cam T H Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Vy P T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nhan T H Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
23
|
Zheng L, Xie Z, Cai L, Liu G, Mei W, Zou X, Zhuo X, Fan X, Guo W. Green Catalyst‐ and Additive‐Free Three‐Component Deamination Cyclization Synthesis of 3‐Substituted‐4‐ oxo‐2‐quinazolinonyl Sulfides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
24
|
Yang T, Nie ZW, Su MD, Li H, Luo WP, Liu Q, Guo CC. Unexpected Annulation between 2-Aminobenzyl Alcohols and Benzaldehydes in the Presence of DMSO: Regioselective Synthesis of Substituted Quinolines. J Org Chem 2021; 86:15228-15241. [PMID: 34632772 DOI: 10.1021/acs.joc.1c01850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unexpected annulation among 2-aminobenzyl alcohols, benzaldehydes, and DMSO to quinolines has been disclosed. For the reported annulation between 2-aminobenzyl alcohols and benzaldehydes, the change of the solvent from toluene to DMSO led to the change of the product from the diheteroatomic cyclic benzoxazines to monoheteroatomic cyclic quinolines. This annulation can be used to synthesize regioselectively different substituted quinolines by the choice of different 2-amino alcohols, aldehydes, and sulfoxides as substrates. Interestingly, introducing substituent groups to the α-position of sulfoxides resulted in the interchange of the positions between benzaldehydes and sulfoxides in the product quinolines. On the basis of the control experiments and literatures, a plausible mechanism for this annulation was proposed.
Collapse
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhi-Wen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-Dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-Ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
25
|
Yasukawa T, Kume S, Yamashita Y, Kobayashi S. Olefination of Aldehydes with Ethyl Diazoacetate Catalyzed by Nitrogen-doped Carbon-supported Metal. CHEM LETT 2021. [DOI: 10.1246/cl.210355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sanshiro Kume
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Tashrifi Z, Mohammadi Khanaposhtani M, Larijani B, Mahdavi M. C1‐Functionalization of 1,2,3,4‐Tetrahydroisoquinolines (THIQs). ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zahra Tashrifi
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Nguyen TT, Nguyen KX, Pham PH, Ly D, Nguyen DK, Nguyen KD, Nguyen TT, Phan NTS. Copper-catalyzed synthesis of pyrido-fused quinazolinones from 2-aminoarylmethanols and isoquinolines or tetrahydroisoquinolines. Org Biomol Chem 2021; 19:4726-4732. [PMID: 33969845 DOI: 10.1039/d1ob00229e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pyrido-fused quinazolinones were synthesized via copper-catalyzed cascade C(sp2)-H amination and annulation of 2-aminoarylmethanols with isoquinolines or pyridines. The transformation proceeded readily in the presence of a commercially available CuCl2 catalyst with molecular oxygen as a green oxidant. Moreover, the dehydrogenative cross-coupling of 2-aminoarylmethanols with tetrahydroisoquinolines was explored, in which CuBr exhibited higher catalytic activity than CuCl2. Broad substrate scope with good tolerance of functionalities was observed under the optimized reaction conditions. The bioactive naturally occurring alkaloid rutaecarpine could be obtained by this strategy. The remarkable feature of this protocol is that complicated heterocyclic structures are readily achieved in a single synthetic step from easily accessible reactants and catalysts. This pathway to pyrido-fused quinazolinones would be complementary to existing protocols.
Collapse
Affiliation(s)
- Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duc Ly
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Duyen K Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Khoa D Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam. and Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Hou H, Ma X, Lin Y, Lin J, Sun W, Wang L, Xu X, Ke F. Electrochemical synthesis of quinazolinone via I 2-catalyzed tandem oxidation in aqueous solution. RSC Adv 2021; 11:17721-17726. [PMID: 35480173 PMCID: PMC9033184 DOI: 10.1039/d1ra02706a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The development of protocols for synthesizing quinazolinones using biocompatible catalysts in aqueous medium will help to resolve the difficulties of using green and sustainable chemistry for their synthesis. Herein, using I2 in coordination with electrochemical synthesis induced a C-H oxidation reaction which is reported when using water as the environmentally friendly solvent to access a broad range of quinazolinones at room temperature. The reaction mechanism strongly showed that I2 cooperates electrochemically promoted the oxidation of alcohols, then effectively cyclizing amides to various quinazolinones.
Collapse
Affiliation(s)
- Huiqing Hou
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Xinhua Ma
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Yingying Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Jin Lin
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Weiming Sun
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Lei Wang
- School of Science, Xuchang University Xuchang 461000 China
| | - Xiuzhi Xu
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350004 China +86-591-22862016 +86-591-22862016.,Faculty of Material and Chemical Engineering, Yibin University Yibin 644000 China
| |
Collapse
|
29
|
Zhang X, Luo C, Chen X, Ma W, Li B, Lin Z, Chen X, Li Y, Xie F. Direct synthesis of quinazolinones via the carbon-supported acid-catalyzed cascade reaction of isatoic anhydrides with amides and aldehydes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
30
|
Zhu J, Xu D, Ding LJ, Wang PC. CoPd Nanoalloys with Metal-Organic Framework as Template for Both N-Doped Carbon and Cobalt Precursor: Efficient and Robust Catalysts for Hydrogenation Reactions. Chemistry 2021; 27:2707-2716. [PMID: 33084099 DOI: 10.1002/chem.202003640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 11/07/2022]
Abstract
In this work, a series of metal-organic framework (MOF)-derived CoPd nanoalloys have been prepared. The nanocatalysts exhibited excellent activities in the hydrogenation of nitroarenes and alkenes in green solvent (ethanol/water) under mild conditions (H2 balloon, room temperature). Using ZIF-67 as template for both carbon matrix and cobalt precursor coating with a mesoporous SiO2 layer, the catalyst CoPd/NC@SiO2 was smoothly constructed. Catalytic results revealed a synergistic effect between Co and Pd components in the hydrogenation process due to the enhanced electron density. The mesoporous SiO2 shell effectively prevented the sintering of hollow carbon and metal NPs at high temperature, furnishing the well-dispersed nanoalloy catalysts and better catalytic performance. Moreover, the catalyst was durable and showed negligible activity decay in recycling and scale-up experiments, providing a mild and highly efficient way to access amines and arenes.
Collapse
Affiliation(s)
- Jie Zhu
- School of Chemical Engineering, Nanjing University of, Science & Technology, Nanjing, 210094, P.R. China.,College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Deng Xu
- School of Chemical Engineering, Nanjing University of, Science & Technology, Nanjing, 210094, P.R. China
| | - Lu-Jia Ding
- School of Chemical Engineering, Nanjing University of, Science & Technology, Nanjing, 210094, P.R. China
| | - Peng-Cheng Wang
- School of Chemical Engineering, Nanjing University of, Science & Technology, Nanjing, 210094, P.R. China
| |
Collapse
|
31
|
Yang L, Hou H, Li L, Wang J, Zhou S, Wu M, Ke F. Electrochemically induced synthesis of quinazolinones via cathode hydration of o-aminobenzonitriles in aqueous solutions. Org Biomol Chem 2021; 19:998-1003. [PMID: 33448270 DOI: 10.1039/d0ob02286a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient and practical electrochemically catalyzed transition metal-free process for the synthesis of substituted quinazolinones from simple and readily available o-aminobenzonitriles and aldehydes in water has been accomplished. I2/base and water play an unprecedented and vital role in the reaction. By electrochemically catalysed hydrolysis of o-aminobenzonitriles, the synthesis of quinazolinones with benzaldehyde was first proposed. The synthetic utility of this method was demonstrated by gram-scale operation, as well as the preparation of bioactive N-(2,5-dichlorophenyl)-6-(2,2,2-trifluoroethoxy) pteridin-4-amine, which enables straightforward, practical and environmentally benign quinazolinone formation.
Collapse
Affiliation(s)
- Li Yang
- College of Chemistry & Chemical Engineering, Yibin University, Yibin, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Y, Xiong W, Chen L, Shao Y, Li R, Chen Z, Ge J, Lv N, Chen J. Palladium-catalyzed cascade reactions in aqueous media: synthesis and photophysical properties of pyrazino-fused quinazolinones. Org Chem Front 2021. [DOI: 10.1039/d0qo01244k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A convenient, efficient, and direct approach toward the synthesis of pyrazino-fused quinazolinone frames has been developed. The photophysical properties of 3e with the AIE effect were investigated.
Collapse
Affiliation(s)
- Yetong Zhang
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Wenzhang Xiong
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Lepeng Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Renhao Li
- School of Pharmaceutical Sciences
- Wenzhou Medical University
- Wenzhou 325035
- P. R. China
| | - Zhongyan Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jingyuan Ge
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Ningning Lv
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
33
|
Kakati P, Singh P, Yadav P, Awasthi SK. Aiding the versatility of simple ammonium ionic liquids by the synthesis of bioactive 1,2,3,4-tetrahydropyrimidine, 2-aminothiazole and quinazolinone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj00280e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The work presented in this paper showcases the utility of ionic liquids in the synthesis of tetrahydropyrimidinone, 2-aminothiazole and quinazolinone derivatives in a sustainable protocol.
Collapse
Affiliation(s)
- Praachi Kakati
- Chemical Biology Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Preeti Singh
- Chemical Biology Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Priyanka Yadav
- Chemical Biology Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| |
Collapse
|
34
|
Wang D, Xiao F, Zhang F, Huang H, Deng G. Copper‐Catalyzed
Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to
Isoquinolino‐Fused
Quinazolinones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Feng Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
- School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410128 China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
35
|
Selective reductive cross-coupling of N-heteroarenes by an unsymmetrical PNP-ligated manganese catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2020.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh FK, Wu KCW. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213319] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Afanasyev OI, Podyacheva E, Rudenko A, Tsygankov AA, Makarova M, Chusov D. Redox Condensations of o-Nitrobenzaldehydes with Amines under Mild Conditions: Total Synthesis of the Vasicinone Family. J Org Chem 2020; 85:9347-9360. [PMID: 32515592 DOI: 10.1021/acs.joc.0c00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A total synthesis of the vasicinone family of natural products from bulk chemicals was developed. Reductive condensation of o-nitrobenzaldehydes with amines utilizing iron pentacarbonyl as a reducing agent followed by subsequent oxidation leads to a great variety of polycyclic nitrogen-containing heterocycles under mild conditions. Enantiomerically pure vasicinone, rutaecarpine, isaindigotone, and luotonin were synthesized from readily available starting materials like hydroxyproline, nitrobenzaldehyde, pyrrolidine, and piperidine in two to four operational steps without chromatography. The antifungal activity of all products was tested.
Collapse
Affiliation(s)
- Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Alexander Rudenko
- Higher Chemical College, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Alexey A Tsygankov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Maria Makarova
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,Higher Chemical College, Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, Moscow 125047, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation.,G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow 117997, Russia
| |
Collapse
|
38
|
Tan Z, Fu Z, Yang J, Wu Y, Cao L, Jiang H, Li J, Zhang M. Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. iScience 2020; 23:101003. [PMID: 32278286 PMCID: PMC7150509 DOI: 10.1016/j.isci.2020.101003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Selective linkage of renewable alcohols and ammonia into functional products would not only eliminate the prepreparation steps to generate active amino agents but also help in the conservation of our finite fossil carbon resources and contribute to the reduction of CO2 emission. Herein the development of a novel 2-(4-methoxyphenyl)-1,8-naphthyridine-based iridium (III) complex is reported, which exhibits excellent catalytic performance toward a new hydrogen transfer-mediated annulation reaction of 2-nitrobenzylic alcohols with alcohols and ammonia. The catalytic transformation proceeds with the striking features of good substrate and functional group compatibility, high step and atom efficiency, no need for additional reductants, and liberation of H2O as the sole by-product, which endows a new platform for direct access to valuable quinazolines. Mechanistic investigations suggest that the non-coordinated N-atom in the ligand serves as a side arm to significantly promote the condensation process by hydrogen bonding.
Collapse
Affiliation(s)
- Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhongxin Fu
- Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Wu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Juan Li
- Department of Chemistry, Jinan University, Huangpu Road West 601, Guangzhou, Guangdong 510632, P. R. China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
39
|
Chen Q, Xie R, Jia H, Sun J, Lu G, Jiang H, Zhang M. Access to Phenothiazine Derivatives via Iodide-Mediated Oxidative Three-Component Annulation Reaction. J Org Chem 2020; 85:5629-5637. [PMID: 32203658 DOI: 10.1021/acs.joc.0c00562] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, a new iodide-mediated three-component annulation reaction of secondary anilines, cyclohexanones, and elemental sulfur is demonstrated, which allows access to various phenothiazines with the merits of formation of multiple chemical bonds in one single operation, high step and atom efficiency, readily available feedstocks and catalyst system, and good substrate and functional group compatibility. The developed chemistry capable of constructing novel phenothiazines with structural diversity offers a significant basis for further applications.
Collapse
Affiliation(s)
- Qinghua Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Rong Xie
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Huanhuan Jia
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Guangpeng Lu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P.R. China
| |
Collapse
|
40
|
He J, Dong J, Su L, Wu S, Liu L, Yin SF, Zhou Y. Selective Oxidative Cleavage of 3-Methylindoles with Primary Amines Affording Quinazolinones. Org Lett 2020; 22:2522-2526. [DOI: 10.1021/acs.orglett.0c00271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Junhui He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- Department of Educational Science, Hunan First Normal University, Changsha 410205, China
| | - Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lixin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
41
|
Trinh KH, Tran PH, Nguyen TT, Doan SH, Le M, Nguyen TT, Phan NT. Direct oxidative C(sp
3
)─H/C(sp
2
)─H coupling reaction using recyclable Sr‐doped LaCoO
3
perovskite catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Khang H. Trinh
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Phuong H. Tran
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Thanh T. Nguyen
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Son H. Doan
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Minh‐Vien Le
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Tung T. Nguyen
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| | - Nam T.S. Phan
- Faculty of Chemical EngineeringHCMC University of Technology VNU‐HCM, 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam
| |
Collapse
|
42
|
Chen X, Zhang X, Lu S, Sun P. Electrosynthesis of polycyclic quinazolinones and rutaecarpine from isatoic anhydrides and cyclic amines. RSC Adv 2020; 10:44382-44386. [PMID: 35517151 PMCID: PMC9058480 DOI: 10.1039/d0ra09382c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
A direct decarboxylative cyclization between readily available isatoic anhydrides and cyclic amines was established to construct polycyclic fused quinazolinones employing electrochemical methods. This procedure was performed in an undivided cell without the use of a transition-metal-catalyst and external oxidant. A broad scope of polycyclic fused quinazolinones were obtained in moderate to good yields. Additionally, rutaecarpine was also prepared through our method in one step in good yield. Polycyclic quinazolinones and rutaecarpine were synthesized from isatoic anhydrides and cyclic amines through an electrochemical method without an external oxidant and transition-metal-catalyst.![]()
Collapse
Affiliation(s)
- Xingyu Chen
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Xing Zhang
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Sixian Lu
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Peng Sun
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| |
Collapse
|
43
|
Li X, Zhao H, Chen X, Jiang H, Zhang M. Copper-catalysed oxidative α-C(sp3)–H nitroalkylation of (hetero)arene-fused cyclic amines. Org Chem Front 2020. [DOI: 10.1039/c9qo01208g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Under aerobic copper catalysis, a direct α-C(sp3)–H nitroalkylation of N-unsubstituted (hetero)arene-fused cyclic amines with nitroalkanes has been demonstrated.
Collapse
Affiliation(s)
- Xiu Li
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiuwen Chen
- School of Chemical & Environmental Engineering
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
44
|
Jia FC, Chen TZ, Hu XQ. TFA/TBHP-promoted oxidative cyclisation for the construction of tetracyclic quinazolinones and rutaecarpine. Org Chem Front 2020. [DOI: 10.1039/d0qo00345j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient TFA/TBHP-promoted oxidative cyclisation of readily available isatins with 1,2,3,4-tetrahydroisoquinolines has been firstly developed. The potential utility of this strategy was demonstrated by one-step synthesis of a natural alkaloid Rutaecarpin.
Collapse
Affiliation(s)
- Feng-Cheng Jia
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Tian-Zhi Chen
- School of Chemistry and Environmental Engineering
- Wuhan Institute of Technology
- Wuhan 430073
- China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|
45
|
Chen J, Liang T, Zhao H, Lin C, Chen L, Zhang M. Silver-mediated three-component cycloaddition reaction for direct synthesis of 1-N-vinyl-substituted 1,2,3-triazoles. Org Biomol Chem 2019; 17:4843-4849. [PMID: 31033976 DOI: 10.1039/c9ob00686a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report direct synthesis of 1-N-vinyl-1,2,3-triazoles via silver-mediated three-component cycloaddition reaction of phenylacetylenes, trimethylsilylazide, and 1,3-dicarbonyl compounds. The synthetic protocol proceeds with operational simplicity, good substrate and functional group compatibility, and easily available feedstocks, and without the need for pre-installation of vinylazide precursors, and offers a practical method for the efficient elaboration of triazole derivatives.
Collapse
Affiliation(s)
- Jinpeng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Rd, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
46
|
Niu B, Li S, Cui C, Yan Y, Tang L, Wang J. New Strategy for the Synthesis of Heterocycles via Copper-Catalyzed Oxidative Decarboxylative Amination of Glyoxylic Acid. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Niu
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Shaoqing Li
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Chang Cui
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Yizhe Yan
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Jianyong Wang
- School of Light Industry and Engineering; Qilu University of Technology (Shandong Academy of Sciences); 250353 Jinan P. R. China
| |
Collapse
|
47
|
Li J, Wang ZB, Xu Y, Lu XC, Zhu SR, Liu L. Catalyst-free cyclization of anthranils and cyclic amines: one-step synthesis of rutaecarpine. Chem Commun (Camb) 2019; 55:12072-12075. [PMID: 31536093 DOI: 10.1039/c9cc06160f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An efficient synthesis of a variety of quinazolinone derivatives via a direct cyclization reaction between commercially available anthranils and cyclic amines is described. The developed transformation proceeds with the merits of high step- and atom-efficiency, a broad substrate scope, and good to excellent yields, without additional catalysts, and offers a practical way for the preparation of rutaecarpine and its derivatives with structural diversity.
Collapse
Affiliation(s)
- Jian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, 213164, China.
| | - Zheng-Bing Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, 213164, China.
| | - Yue Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, 213164, China.
| | - Xue-Chen Lu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, 213164, China.
| | - Shang-Rong Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, 213164, China.
| | - Li Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
48
|
Yan Y, Cui C, Wang J, Li S, Tang L, Liu Y. Transition metal-free C-F/C-Cl/C-C cleavage of ClCF 2COONa for the synthesis of heterocycles. Org Biomol Chem 2019; 17:8071-8074. [PMID: 31464338 DOI: 10.1039/c9ob01641d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A transition metal-free and external oxidant-free annulation of substrates having two nitrogen-nucleophilic sites with ClCF2COONa was demonstrated, affording a series of 1,3,5-triazines and quinazolinones in up to 96% yields. Notably, ClCF2COONa was employed as the C1 synthon for valuable heterocycles. Using this protocol, two C-N bonds were formed in one pot via the cleavage of two C-F bonds, one C-Cl bond and one C-C bond. This method avoided the use of a transition metal and an oxidant and generated low toxicity inorganic waste.
Collapse
Affiliation(s)
- Yizhe Yan
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Chang Cui
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Jianyong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Shaoqing Li
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yanqi Liu
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
49
|
Geng X, Wang C, Huang C, Zhao P, Zhou Y, Wu YD, Wu AX. I 2-Promoted Multicomponent Dicyclization and Ring-Opening Sequences: Direct Synthesis of Benzo[ e][1,4]diazepin-3-ones via Dual C-O Bond Cleavage. Org Lett 2019; 21:7504-7508. [PMID: 31486652 DOI: 10.1021/acs.orglett.9b02789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel and efficient formal [4 + 2+1] annulation of aryl methyl ketones and 2-aminobenzyl alcohols for the synthesis of benzo[e][1,4]diazepin-3-ones is reported. This reaction successfully affords diverse seven-membered ring lactams via dual C-O bond cleavage. A preliminary mechanistic study showed that a multicomponent dicyclization and ring-opening sequence might occur, with the introduction of methyl sulfide proposed as the last step. This efficient strategy with mild reaction conditions and a broad substrate scope has potential applications in chemistry and medicine.
Collapse
Affiliation(s)
- Xiao Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Can Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
50
|
Xie R, Xie F, Zhou CJ, Jiang HF, Zhang M. Hydrogen transfer-mediated selective dual C–H alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. J Catal 2019. [DOI: 10.1016/j.jcat.2019.07.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|