1
|
Ding S, Fernandez Ainaga DL, Hu M, Qiu B, Khalid U, D'Agostino C, Ou X, Spencer B, Zhong X, Peng Y, Hondow N, Theodoropoulos C, Jiao Y, Parlett CMA, Fan X. Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes. Nat Commun 2024; 15:7718. [PMID: 39231994 PMCID: PMC11375062 DOI: 10.1038/s41467-024-51925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Spatial control over features within multifunctional catalysts can unlock efficient one-pot cascade reactions, which are themselves a pathway to aviation biofuels via hydrodeoxygenation. A synthesis strategy that encompasses spatial orthogonality, i.e., one in which different catalytic species are deposited exclusively within discrete locations of a support architecture, is one solution that permits control over potential interactions between different sites and the cascade process. Here, we report a Pd doped hierarchical zeolite, in which Pd nanoparticles are selectively deposited within the mesopores, while acidity is retained solely within the micropores of ZSM-5. This spatial segregation facilitates hydrodeoxygenation while suppressing undesirable decarboxylation and decarbonation, yielding significant enhancements in activity (30.6 vs 3.6 moldodecane molPd-1 h-1) and selectivity (C12:C11 5.2 vs 1.9) relative to a conventionally prepared counterpart (via wet impregnation). Herein, multifunctional material design can realise efficient fatty acid hydrodeoxygenation, thus advancing the field and inspiring future developments in rationalised catalyst design.
Collapse
Affiliation(s)
- Shengzhe Ding
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Institute of Catalysis Science, Beijing Research Institute of Chemical Industry, Sinopec, Beijing, 100013, China
| | | | - Min Hu
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Boya Qiu
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Ushna Khalid
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Dipartimento di Ingegneria Civile, Chimica, Università di Bologna, 40131, Bologna, Italy
| | - Xiaoxia Ou
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, China
| | - Ben Spencer
- Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Xiangli Zhong
- Henry Royce Institute, The University of Manchester, Manchester, M13 9PL, UK
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Yani Peng
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Christopher M A Parlett
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- University of Manchester at Harwell, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK.
- UK Catalysis Hub, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0FA, UK.
| | - Xiaolei Fan
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK.
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, China.
- Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China.
| |
Collapse
|
2
|
Li H, Chen GZ, Wu CD. Confining redox-active metal sites in acidic porous scaffolds for the catalytic transformation of lignin-derived phenols to naphthenes. Dalton Trans 2023; 52:17219-17228. [PMID: 37955613 DOI: 10.1039/d3dt03002d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The hydrodeoxygenation transformation of lignin-derived phenols provides an attractive pathway for the production of renewable biofuels; however, harsh process conditions strongly hinder its practical application. Herein, we report a porous metal silicate (PMS) material, PMS-36, which consists of metallic nickel and Lewis acid AlIII sites inside the pores, demonstrating high efficiency in catalyzing the hydrodeoxygenation transformation of guaiacol under mild conditions. PMS-36 also exhibits robust stability, which can be attributed to the strong interaction and charge transfer between metallic Ni and AlIII Lewis acid sites inside the confined pores. This study shows the importance of synergistic and confinement effects in developing high-performance and stable heterogeneous catalysts for the chemical transformation of biomass and its derivatives.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Guan-Ze Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Chuan-De Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
3
|
Zhang M, Liu L, Wang L, Zhang X, Li G. Four-Carbon Segmented Discrete Hydrocracking of Long-Chain Paraffins in MTT Channels Following a Pore-Mouth Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Linlin Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
He J, Lin L, Luo W. The Revitalization of ‘the Closer the Better’ in Zeolite‐Tailored Bifunctional Catalysts for Biomass Valorisation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiang He
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Lu Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Wenhao Luo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis 457 Zhongshan Road116023 116023 Dalian CHINA
| |
Collapse
|
5
|
Lyu JM, Yu S, Peng Z, Zhou J, Liu Z, Li XY, Yu-Li, Chen LH, Su BL. Control of the proximity of bifunctional zeolite@Al2O3 catalysts for efficient methanol conversion into hydrocarbons. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Shang S, Li W, Zhou A, Zhang J, Yang H, Zhang A, Guo X. Fe-Substituted Pt/HZSM-48 for Superior Selectivity of i-C12 in n-Dodecane Hydroisomerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shujie Shang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenhui Li
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ajuan Zhou
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Anfeng Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
Chen H, Li W, Zhang M, Wang W, Zhang XH, Lu F, Cheng K, Zhang Q, Wang Y. Boosting propane dehydroaromatization by confining PtZn alloy nanoparticles within H-ZSM-5 crystals. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01096h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Pt–Zn@H-ZSM-5 catalyst with Pt–Zn alloy nanoparticles confined in H-ZSM-5 crystals exhibits a significantly improved performance in the propane dehydroaromatization reaction.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingchao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wangyang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xian-Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fa Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
8
|
Del Campo P, Martínez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials. Chem Soc Rev 2021; 50:8511-8595. [PMID: 34128513 DOI: 10.1039/d0cs01459a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Microporous zeolite-type materials, with crystalline porous structures formed by well-defined channels and cages of molecular dimensions, have been widely employed as heterogeneous catalysts since the early 1960s, due to their wide variety of framework topologies, compositional flexibility and hydrothermal stability. The possible selection of the microporous structure and of the elements located in framework and extraframework positions enables the design of highly selective catalysts with well-defined active sites of acidic, basic or redox character, opening the path to their application in a wide range of catalytic processes. This versatility and high catalytic efficiency is the key factor enabling their use in the activation and conversion of different alkanes, ranging from methane to long chain n-paraffins. Alkanes are highly stable molecules, but their abundance and low cost have been two main driving forces for the development of processes directed to their upgrading over the last 50 years. However, the availability of advanced characterization tools combined with molecular modelling has enabled a more fundamental approach to the activation and conversion of alkanes, with most of the recent research being focused on the functionalization of methane and light alkanes, where their selective transformation at reasonable conversions remains, even nowadays, an important challenge. In this review, we will cover the use of microporous zeolite-type materials as components of mono- and bifunctional catalysts in the catalytic activation and conversion of C1+ alkanes under non-oxidative or oxidative conditions. In each case, the alkane activation will be approached from a fundamental perspective, with the aim of understanding, at the molecular level, the role of the active sites involved in the activation and transformation of the different molecules and the contribution of shape-selective or confinement effects imposed by the microporous structure.
Collapse
Affiliation(s)
- Pablo Del Campo
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| | | | | |
Collapse
|
9
|
Alsharif NB, Muráth S, Katana B, Szilagyi I. Composite materials based on heteroaggregated particles: Fundamentals and applications. Adv Colloid Interface Sci 2021; 294:102456. [PMID: 34107320 DOI: 10.1016/j.cis.2021.102456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Homoaggregation of dispersed particles, i.e., aggregation of particles of the same shape, charge, size, and composition, is a well-studied field and various theoretical and experimental approaches exist to understand the major phenomena involved in such processes. Besides, heteroaggregation of particles, i.e., aggregation of particles of different shape, charge, size, or composition, has attracted widespread interest due to its relevance in various biomedical, industrial, and environmental systems. For instance, heteroaggregation of plastic contaminant particles with naturally occurring solid materials in waters (e.g., clays, silica and organic polymers) plays an important role in the decontamination technologies. Moreover, nanofabrication processes involving heteroaggregation of particles to prepare novel composite materials are widely implemented in fundamental science and in more applied disciplines. In such procedures, stable particle dispersions are mixed and the desired structure forms owing to the presence of interparticle forces of various origins, which can be tuned by performing appropriate surface functionalization as well as altering the experimental conditions. These composites are widely used in different fields from sensing through catalysis to biomedical delivery. The present review summarizes the recent progresses in the field including new findings regarding the basic principles in particle heteroaggregation, preparation strategies of heteroaggregated structures of different morphology, and the application of the obtained hybrid composites. Such information will be very helpful to those involved in the design of novel composites consisting of different nano or colloidal particles.
Collapse
|
10
|
Alsharif NB, Bere K, Sáringer S, Samu GF, Takács D, Hornok V, Szilagyi I. Design of hybrid biocatalysts by controlled heteroaggregation of manganese oxide and sulfate latex particles to combat reactive oxygen species. J Mater Chem B 2021; 9:4929-4940. [PMID: 34105573 DOI: 10.1039/d1tb00505g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The preparation of an antioxidant hybrid material by controlled heteroaggregation of manganese oxide nanoparticles (MnO2 NPs) and sulfate-functionalized polystyrene latex (SL) beads was accomplished. Negatively charged MnO2 NPs were prepared by precipitation and initially functionalized with poly(diallyldimethylammonium chloride) (PDADMAC) polyelectrolyte to induce charge reversal allowing decoration of oppositely charged SL surfaces via simple mixing. The PDADMAC-functionalized MnO2 NPs (PMn) aggregated with the SL particles leading to the formation of negatively charged, neutral and positively charged (SPMn) composites. The charge neutralization resulted in rapidly aggregating dispersions, while stable samples were observed once the composites possessed sufficiently high negative and positive charge, below and above the charge neutralization point, respectively. The antioxidant assays revealed that SL served as a suitable substrate and that the PDADMAC functionalization and immobilization of MnO2 NPs did not compromise their catalase (CAT) and superoxide dismutase (SOD)-like activities, which were also maintained within a wide temperature range. The obtained SPMn composite is expected to be an excellent candidate as an antioxidant material for the efficient scavenging of reactive oxygen species at both laboratory and larger scales, even under harsh conditions, where natural antioxidants do not function.
Collapse
Affiliation(s)
- Nizar B Alsharif
- MTA-SZTE Lendület Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
11
|
van der Wal LI, Oenema J, Smulders LCJ, Samplonius NJ, Nandpersad KR, Zečević J, de Jong KP. Control and Impact of Metal Loading Heterogeneities at the Nanoscale on the Performance of Pt/Zeolite Y Catalysts for Alkane Hydroconversion. ACS Catal 2021; 11:3842-3855. [PMID: 33833901 PMCID: PMC8022326 DOI: 10.1021/acscatal.1c00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Indexed: 11/29/2022]
Abstract
![]()
The preparation of
zeolite-based bifunctional catalysts with low
noble metal loadings while maintaining optimal performance has been
studied. We have deposited 0.03 to 1.0 wt % Pt on zeolite H-USY (Si/Al
∼ 30 at./at.) using either platinum(II) tetraammine nitrate
(PTA, Pt(NH3)4(NO3)2)
or hexachloroplatinic(IV) acid (CPA, H2PtCl6·6H2O) and studied the nanoscale Pt loading heterogeneities
and global hydroconversion performance of the resulting Pt/Y catalysts.
Pt/Y samples prepared with PTA and a global Pt loading as low as 0.3
wt % Pt (nPt/nA = 0.08 mol/mol, where nPt is the number of Pt surface
sites and nA is the number of acid sites)
maintained catalytic performance during n-heptane
(T = 210–350 °C, P =
10 bar) as well as n-hexadecane (T = 170–280 °C, P = 5 bar) hydroisomerization
similar to a 1.0 wt % Pt sample. For Pt/Y catalysts prepared with
CPA, a loading of 0.3 wt % Pt (nPt/nA = 0.08 mol/mol) sufficed for n-heptane hydroisomerization, whereas a detrimental effect on n-hexadecane hydroisomerization was observed, in particular
undesired secondary cracking occurred to a significant extent. The
differences between PTA and CPA are explained by differences in Pt
loading per zeolite Y crystal (size ∼ 500 nm), shown from extensive
transmission electron microscopy energy-dispersive X-ray spectroscopy
experiments, whereby crystal-based nPt/nA ratios could be determined. From
earlier studies, it is known that the Al content per crystal of USY
varied tremendously and that PTA preferentially is deposited on crystals
with higher Al content due to ion-exchange with zeolite protons. Here,
we show that this preferential deposition of PTA on Al-rich crystals
led to a more constant value of nPt/nA ratio from one zeolite crystal to another,
which was beneficial for catalytic performance. Use of CPA led to
a large variation of Pt loading independent of Al content, giving
rise to larger variations of nPt/nA ratio from crystal to crystal that negatively
affected the catalytic performance. This study thus shows the impact
of local metal loading variations at the zeolite crystal scale (nanoscale)
caused by different interactions of metal precursors with the zeolite,
which are essential to design and synthesize optimal catalysts, in
particular at low noble metal loadings.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jogchum Oenema
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Luc C. J. Smulders
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nonne J. Samplonius
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Karan R. Nandpersad
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
12
|
Promotional Effect of Pd Addition on the Catalytic Activity of Composite Pt-Pd/AlSBA-15–β Catalyst for Enhanced n-Heptane Hydroisomerization. Catalysts 2021. [DOI: 10.3390/catal11030377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hierarchical AlSBA-15–zeolite materials were utilized as a supports for preparing hydroisomerization catalysts. Detailed consideration was given to: (i) the effect of the zeolite type introduced into AlSBA-15–zeolite composites (where zeolite is β, mordenite or ZSM-5) as well as (ii) the promotion effect of Pd addition. The composites showed higher activity in isomerization as compared to Pt/AlSBA-15. The enhanced isomerization efficiency were explained by the appropriate metallic and acidic function as well as suitable transport properties. The modification of the hydrogenating function by Pd incorporation increases the hydroisomerization efficiency of Pt-Pd/AlSBA-15–β catalyst. Over bimetallic Pt-Pd/AlSBA-15–β, the high yields of isomers (68 wt%) with respect to 50 wt% for a control catalyst. The most promising Pt-Pd/AlSBA-15–β catalyst allows to improve research octane number from 0 to the 74 value.
Collapse
|
13
|
Mirena JI, Thybaut JW, Marin GB, Martens JA, Galvita VV. Impact of the Spatial Distribution of Active Material on Bifunctional Hydrocracking. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan I. Mirena
- Ghent University, Laboratory for Chemical Technology, Technologiepark 125, Ghent, 9052, Belgium
| | - Joris W. Thybaut
- Ghent University, Laboratory for Chemical Technology, Technologiepark 125, Ghent, 9052, Belgium
| | - Guy B. Marin
- Ghent University, Laboratory for Chemical Technology, Technologiepark 125, Ghent, 9052, Belgium
| | - Johan A. Martens
- KU Leuven, Center for Surface Chemistry and Catalysis, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Vladimir V. Galvita
- Ghent University, Laboratory for Chemical Technology, Technologiepark 125, Ghent, 9052, Belgium
| |
Collapse
|
14
|
Oenema J, Harmel J, Vélez RP, Meijerink MJ, Eijsvogel W, Poursaeidesfahani A, Vlugt TJ, Zečević J, de Jong KP. Influence of Nanoscale Intimacy and Zeolite Micropore Size on the Performance of Bifunctional Catalysts for n-Heptane Hydroisomerization. ACS Catal 2020; 10:14245-14257. [PMID: 33312750 PMCID: PMC7723304 DOI: 10.1021/acscatal.0c03138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/02/2020] [Indexed: 11/28/2022]
Abstract
![]()
In
this study, Pt nanoparticles on zeolite/γ-Al2O3 composites (50/50 wt) were located either in the zeolite or on the γ-Al2O3 binder, hereby varying the average distance (intimacy) between
zeolite acid sites and metal sites from “closest” to
“nanoscale”. The catalytic performance of these catalysts
was compared to physical mixtures of zeolite and Pt/γ-Al2O3 powders, which provide a “microscale”
distance between sites. Several beneficial effects on catalytic activity
and selectivity for n-heptane hydroisomerization
were observed when Pt nanoparticles are located on the γ-Al2O3 binder in nanoscale proximity with zeolite acid
sites, as opposed to Pt nanoparticles located inside zeolite crystals.
On ZSM-5-based catalysts, mostly monobranched isomers were produced,
and the isomer selectivity of these catalysts was almost unaffected
with an intimacy ranging from closest to microscale, which can be
attributed to the high diffusional barriers of branched isomers within
ZSM-5 micropores. For composite catalysts based on large-pore zeolites
(zeolite Beta and zeolite Y), the activity and selectivity benefitted
from the nanoscale intimacy with Pt, compared to both the closest
and microscale intimacies. Intracrystalline gradients of heptenes
as reaction intermediates are likely contributors to differences in
activity and selectivity. This paper aims to provide insights into
the influence of the metal–acid intimacy in bifunctional catalysts
based on zeolites with different framework topologies.
Collapse
Affiliation(s)
- Jogchum Oenema
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Justine Harmel
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Roxana Pérez Vélez
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark J. Meijerink
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Willem Eijsvogel
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ali Poursaeidesfahani
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Thijs J.H. Vlugt
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Wang D, Kang X, Gu Y, Zhang H, Liu J, Wu A, Yan H, Tian C, Fu H. Electronic Tuning of Ni by Mo Species for Highly Efficient Hydroisomerization of n-Alkanes Comparable to Pt-Based Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01159] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongxu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Xin Kang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Ying Gu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Hongyan Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Jiancong Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Aiping Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
16
|
Mendes PSF, Silva JM, Ribeiro MF, Daudin A, Bouchy C. Bifunctional Intimacy and its Interplay with Metal‐Acid Balance in Shaped Hydroisomerization Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pedro S. F. Mendes
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- Catalysis, Biocatalysis and Separation Division IFP Energies Nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
- Present address: Laboratory for Chemical Technology Ghent University 9052 Ghent Belgium
| | - João M. Silva
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- ADEQ-ISEL Instituto Superior de Engenharia de Lisboa Instituto Politécnico de Lisboa R. Cons. Emídio Navarro 1959-007 Lisboa Portugal
| | - M. Filipa Ribeiro
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Antoine Daudin
- Catalysis, Biocatalysis and Separation Division IFP Energies Nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
| | - Christophe Bouchy
- Catalysis, Biocatalysis and Separation Division IFP Energies Nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
| |
Collapse
|
17
|
Cheng K, Wal LI, Yoshida H, Oenema J, Harmel J, Zhang Z, Sunley G, Zečević J, Jong KP. Impact of the Spatial Organization of Bifunctional Metal–Zeolite Catalysts on the Hydroisomerization of Light Alkanes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915080] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kang Cheng
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University 3584 CG Utrecht The Netherlands
| | - Lars I. Wal
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University 3584 CG Utrecht The Netherlands
| | - Hideto Yoshida
- The Institute of Scientific and Industrial ResearchOsaka University 8-1 Mihogaoka, Ibaraki Osaka 567-0047 Japan
| | - Jogchum Oenema
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University 3584 CG Utrecht The Netherlands
| | - Justine Harmel
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University 3584 CG Utrecht The Netherlands
| | - Zhaorong Zhang
- Applied Chemistry and Physics Centre of ExpertiseBP Group Research 150 West Warenville Road Naperville IL 60563 USA
| | - Glenn Sunley
- Hull Research and Technology CenterBP plc, c/o BP Chemicals, Saltend Hull HU 12 8DS UK
| | - Jovana Zečević
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University 3584 CG Utrecht The Netherlands
| | - Krijn P. Jong
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht University 3584 CG Utrecht The Netherlands
| |
Collapse
|
18
|
Impact of the Spatial Organization of Bifunctional Metal–Zeolite Catalysts on the Hydroisomerization of Light Alkanes. Angew Chem Int Ed Engl 2020; 59:3592-3600. [DOI: 10.1002/anie.201915080] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 11/07/2022]
|
19
|
Oenema J, Hofmann JP, Hensen EJM, Zečević J, de Jong KP. Assessment of the Location of Pt Nanoparticles in Pt/zeolite Y/γ-Al 2O 3 Composite Catalysts. ChemCatChem 2020; 12:615-622. [PMID: 32064008 PMCID: PMC7006758 DOI: 10.1002/cctc.201901617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Indexed: 11/10/2022]
Abstract
The location of Pt nanoparticles was studied in Pt/zeolite Y/γ-Al2O3 composite catalysts prepared by H2PtCl6 ⋅ 6H2O (CPA) or Pt(NH3)4(NO3)2 (PTA) as Pt precursors. The aim of this study is to validate findings from Transmission Electron Microscopy (TEM) by using characterization techniques that sample larger amounts of catalyst per measurement. Quantitative X-ray Photoelectron Spectroscopy (XPS) showed that the catalyst prepared with CPA led to a significantly higher Pt/Al atomic ratio than the catalyst prepared with PTA confirming that the 1-2 nm sized Pt nanoparticles in the former catalyst were located on the open and mesoporous γ-Al2O3 component, whereas they were located in the micropores of zeolite Y in the latter. By using infrared spectroscopy, a shift in the absorption band maximum of CO chemisorbed on Pt nanoparticles was observed, which can be attributed to a difference in electronic properties depending on the support of the Pt nanoparticles. Finally, model hydrogenation experiments were performed using β-phenylcinnamaldehyde, a reactant molecule with low diffusivity in zeolite Y micropores, resulting in a 5 times higher activity for the catalyst prepared by CPA compared to PTA. The combined use of these characterization techniques allow us to draw more robust conclusions on the ability to control the location of Pt nanoparticles by using either CPA or PTA as precursors in zeolite/γ-Al2O3 composite catalyst materials.
Collapse
Affiliation(s)
- Jogchum Oenema
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Jan P. Hofmann
- Laboratory for Inorganic Materials and Catalysis Department of Chemical Engineering and ChemistryEindhoven University of Technology P.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Emiel J. M. Hensen
- Laboratory for Inorganic Materials and Catalysis Department of Chemical Engineering and ChemistryEindhoven University of Technology P.O. Box 513Eindhoven5600 MBThe Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| |
Collapse
|
20
|
Harmel J, van der Wal LI, Zečević J, de Jongh PE, de Jong KP. Influence of intimacy for metal-mesoporous solid acids catalysts for n-alkanes hydro-conversion. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02510c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt on both ordered mesoporous Al-SBA-15 and commercial amorphous mesoporous silica–alumina bi-functional catalysts were prepared and studied for n-heptane hydro-isomerization and n-hexadecane hydro-cracking.
Collapse
Affiliation(s)
- Justine Harmel
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Lars I. van der Wal
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Petra E. de Jongh
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
21
|
Mendes PSF, Chizallet C, Pérez-Pellitero J, Raybaud P, Silva JM, Ribeiro MF, Daudin A, Bouchy C. Interplay of the adsorption of light and heavy paraffins in hydroisomerization over H-beta zeolite. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00788a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydroisomerization: controlling selectivity by tuning the Pt/zeolite properties.
Collapse
Affiliation(s)
- Pedro S. F. Mendes
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | | | | | | | - João M. Silva
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - M. Filipa Ribeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | | | | |
Collapse
|
22
|
Wang W, Liu CJ, Wu W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal–acid balance and textural structure. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00499h] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The summary of recent advances reveals excellent potentials for the preparation of novel bifunctional catalysts with excellent catalytic performances for n-alkane hydroisomerization.
Collapse
Affiliation(s)
- Wei Wang
- National Center for International Research on Catalytic technology
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion
- College of Heilongjiang Province
- School of Chemistry and Material Sciences
- Heilongjiang University
| | - Chang-Jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wei Wu
- National Center for International Research on Catalytic technology
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion
- College of Heilongjiang Province
- School of Chemistry and Material Sciences
- Heilongjiang University
| |
Collapse
|
23
|
Shamzhy M, Opanasenko M, Concepción P, Martínez A. New trends in tailoring active sites in zeolite-based catalysts. Chem Soc Rev 2019; 48:1095-1149. [DOI: 10.1039/c8cs00887f] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses approaches for tailoring active sites in extra-large pore, nanocrystalline, and hierarchical zeolites and their performance in emerging catalytic applications.
Collapse
Affiliation(s)
- Mariya Shamzhy
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- 12840 Prague 2
- Czech Republic
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry
- Faculty of Science
- Charles University in Prague
- 12840 Prague 2
- Czech Republic
| | - Patricia Concepción
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- 46022 Valencia
- Spain
| | - Agustín Martínez
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- 46022 Valencia
- Spain
| |
Collapse
|