1
|
Cheng H, Shen Z, Liu W, Luo M, Huo F, Hui J, Zhu Q, Zhang H. Vanadium Intercalation into Niobium Disulfide to Enhance the Catalytic Activity for Lithium-Sulfur Batteries. ACS NANO 2023. [PMID: 37470340 DOI: 10.1021/acsnano.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Despite their high specific energy and great promise for next-generation energy storage, lithium-sulfur (Li-S) batteries suffer from polysulfide shuttling, slow redox kinetics, and poor cyclability. Catalysts are needed to accelerate polysulfide conversion and suppress the shuttling effect. However, a lack of structure-activity relationships hinders the rational development of efficient catalysts. Herein, we studied the Nb-V-S system and proposed a V-intercalated NbS2 (Nb3VS6) catalyst for high-efficiency Li-S batteries. Structural analysis and modeling revealed that undercoordinated sulfur anions of [VS6] octahedra on the surface of Nb3VS6 may break the catalytic inertness of the basal planes, which are usually the primary exposed surfaces of many 2D layered disulfides. Using Nb3VS6 as the catalyst, the resultant Li-S batteries delivered high capacities of 1541 mAh g-1 at 0.1 C and 1037 mAh g-1 at 2 C and could retain 73.2% of the initial capacity after 1000 cycles. Such an intercalation-induced high activity offers an alternative approach to building better Li-S catalysts.
Collapse
Affiliation(s)
- Huiting Cheng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mingting Luo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qingshan Zhu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huigang Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
2
|
Huerta-Mata C, Chowdari R, Soto-Arteaga C, Infantes-Molina A, Alonso-Núñez G, Fuentes-Moyado S, Huirache-Acuña R, Díaz de León J. Hydrothermal synthesis of bulk Ni impregnated WO3 2D layered structures as catalysts for the desulfurization of 3-methyl thiophene. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
3
|
Li Z, Ning S, Zhu H, Wang X, Yin X, Fujita T, Wei Y. Novel NbCo-MOF as an advanced peroxymonosulfate catalyst for organic pollutants removal: Growth, performance and mechanism study. CHEMOSPHERE 2022; 288:132600. [PMID: 34666073 DOI: 10.1016/j.chemosphere.2021.132600] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Multivariate metal-organic frameworks (MTV-MOFs) are expected as catalyst to apply to the advanced oxidation processes (AOPs) based on sulfate radical (SO4·-) to treat wastewater containing organic pollutants. Mixing metals de novo method was combined with stringent solvothermal conditions to synthesize macaroon-like NbCo-MOF catalyst. NbCo-MOF catalyst prepared with different atom ratios and growth time presented various morphology, structure, performance, and distinctive MTV-MOFs growth law which were confirmed by SEM, TEM, EDS, XRD, FTIR, raman spectra and UV-vis spectra. Besides, optimum peroxymonosulfate (PMS) catalytic activation conditions were studied. Furthermore, the effects of anions (Cl-, NO3-, HCO3-, and C2O42-) on NbCo-MOF catalytic activation were explored which were proved very limited. Particularly, the Co2+/Co3+ cycle combining with the Nb4+/Nb5+ cycle for PMS activation were verified by XPS. EPR and quenching experiment results indicated exists non-radical pathway (1O2), but radical pathways are dominant (SO4·- O2·-, and ·OH). Moreover, the TC removal rate exhibited no significant reduce after three times run. Furthermore, NbCo-MOF exhibited excellent decomposing ability towards methylene blue, tylosin tartrate, rhodamine B, and tetracycline with the removal rate reaching to 100%, 98.4%, 99.7%, and 99.7% in 30 min respectively and also maintained good performance in actual water environment.
Collapse
Affiliation(s)
- Zengzhiqiang Li
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Shunyan Ning
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China.
| | - Hao Zhu
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Xinpeng Wang
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, PR China.
| | - Toyohisa Fujita
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, PR China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang, 421001, PR China
| |
Collapse
|
4
|
The role of Nb2O5 in controlling metal-acid sites of CoMoS/γ-Al2O3 catalyst for the enhanced hydrodeoxygenation of guaiacol into hydrocarbons. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Application of Urchin-Alumina as Catalyst Support in Hydrodesulfuization of Siberian (Ruassia) Crude Oil. Catal Letters 2021. [DOI: 10.1007/s10562-021-03582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Wang Z, Wang X, Chen Q, Wang X, Huang X, Huang W. Core@shell and lateral heterostructures composed of SnS and NbS 2. NANOSCALE 2021; 13:5489-5496. [PMID: 33687419 DOI: 10.1039/d0nr08415h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The spatial arrangement of heterostructures based on two-dimensional layered materials is important in controlling their electronic and optoelectronic properties. In this contribution, by controlling the reaction kinetics and thus the nucleation and growth sequence of p-type SnS and metallic NbS2, controllable preparation of both SnS@NbS2 core@shell and SnS/NbS2 lateral heterostructures was realized. The SnS@NbS2 core@shell heterostructures were further applied in photodetectors, and interestingly, a negative photoresponse was observed due to the Seebeck effect exerted on the NbS2 shell. Compared with the pure metallic NbS2, the SnS@NbS2 core@shell heterostructures showed a 15 times increased signal-to-noise ratio and much improved photocurrent stability, largely due to the charge and heat transfer between the SnS core and NbS2 shell.
Collapse
Affiliation(s)
- Zhiwei Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiang Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
7
|
Chen G, Xie W, Li Q, Wang W, Bing L, Wang F, Wang G, Fan C, Liu S, Han D. Three-dimensionally ordered macro-mesoporous CoMo bulk catalysts with superior performance in hydrodesulfurization of thiophene. RSC Adv 2020; 10:37280-37286. [PMID: 35521282 PMCID: PMC9057108 DOI: 10.1039/d0ra07153f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
The introduction of surfactants during the fabrication of hydrodesulfurization catalysts could not only tune the microstructure but also promote the dispersion of active components. In this work, CoMo bulk catalysts with the hierarchical structure of three-dimensionally ordered macro-mesopores were successfully fabricated by using a colloidal crystal template with the addition of PEG 400 and/or F127 surfactants. The obtained samples were characterized by various techniques, and the possible mechanism of the structure formation was also discussed. The characterization and evaluation results reveal that the addition of surfactants can promote the formation of the mesopores (3-4 nm) inside the macroporous walls of these bulk catalysts, which is essential for the increase of catalyst surface area, and the active sites for reaction. The CoMo-PF-1 catalyst displayed superior catalytic performance for thiophene hydrodesulfurization with the thiophene conversion of 99.4% under 1 MPa at 360 °C, which is much higher than that (77.8%) at 0.1 MPa. This result is even comparable to our previous report with the thiophene conversion of 99.2% over the 3DOM CoMo catalyst under 3 MPa.
Collapse
Affiliation(s)
- Guoliang Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University GPO Box U1987 Perth WA 6845 Australia
| | - Wenpeng Xie
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Qinghong Li
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Wentai Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China Qingdao 266100 China
| | - Liancheng Bing
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Fang Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Guangjian Wang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Chunyan Fan
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University GPO Box U1987 Perth WA 6845 Australia
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University GPO Box U1987 Perth WA 6845 Australia
| | - Dezhi Han
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
8
|
Lin B, Chen Z, Song P, Liu H, Kang L, Di J, Luo X, Chen L, Xue C, Ma B, Yang G, Tang J, Zhou J, Liu Z, Liu F. A Tandem 0D/2D/2D NbS 2 Quantum Dot/Nb 2 O 5 Nanosheet/g-C 3 N 4 Flake System with Spatial Charge-Transfer Cascades for Boosting Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003302. [PMID: 32969149 DOI: 10.1002/smll.202003302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The relatively high recombination rate of charges remains the most critical limiting factor for solar-driven water splitting for hydrogen generation. Herein, a tandem 0D/2D/2D NbS2 quantum dot/Nb2 O5 nanosheet/g-C3 N4 flake (NSNOCN) system is designed. Owing to the unique spatial-arrangement and elaborate morphology of 0D NbS2 , 2D Nb2 O5 , and 2D g-C3 N4 in the newly designed NSNOCN, plenty of spatial charge-transfer cascades from g-C3 N4 to NbS2 via Nb2 O5 are formed to accelerate separation and transfer of charges significantly, thus contributing to a high photocatalytic H2 generation rate of 13.99 mmol h-1 g-1 (an apparent quantum efficiency of 10.8% at 420 nm), up to 107.6 and 43.7 times by contrast with that of g-C3 N4 and Nb2 O5 , respectively. This work can provide a new platform in the design of artificial photocatalytic systems with high charge-transfer efficiency.
Collapse
Affiliation(s)
- Bo Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zihao Chen
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pin Song
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Haishi Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixing Kang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jun Di
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xiao Luo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Longqing Chen
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Chao Xue
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Bowen Ma
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guidong Yang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jun Tang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Jiadong Zhou
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zheng Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
9
|
Liu X, Liu J, Li L, Guo R, Zhang X, Ren S, Guo Q, Wen XD, Shen B. Hydrodesulfurization of Dibenzothiophene on TiO2–x-Modified Fe-Based Catalysts: Electron Transfer Behavior between TiO2–x and Fe Species. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuandong Liu
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, P. R. China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P.R. China
| | - Lei Li
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, P. R. China
| | - Rong Guo
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, P. R. China
| | - Xinyue Zhang
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, P. R. China
| | - Shenyong Ren
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, P. R. China
| | - Qiaoxia Guo
- College of Science, China University of Petroleum, No. 18 Fuxue Road, Changping, Beijing 102249, P. R. China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, CAS, Taiyuan 030001, P. R. China
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing 101400, P.R. China
| | - Baojian Shen
- State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
10
|
Wu P, Jia Q, He J, Lu L, Chen L, Zhu J, Peng C, He M, Xiong J, Zhu W, Li H. Mechanical exfoliation of boron carbide: A metal-free catalyst for aerobic oxidative desulfurization in fuel. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122183. [PMID: 32036308 DOI: 10.1016/j.jhazmat.2020.122183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Metal-free catalysts have been proved to be a low-cost and environmentally friendly species in aerobic oxidative desulfurization (ODS). In this work, exfoliated metal-free boron carbide with few-layered structure, small size, and abundant defects, was first employed in an aerobic ODS system for ultra-deep desulfurization. The exfoliation process was realized by employing a planetary ball mill strategy. Detailed characterizations showed that the ball milling process not only induces thinner layers and small sizes but also introduces numerous defects into the boron carbide catalysts, which is vital in metal-free catalysis. Furthermore, the exfoliated boron carbide catalyst was applied in aerobic ODS system, and 99.5 % of sulfur removal was obtained. Moreover, the catalyst can be recycled 17 times without a significant decrease in catalytic activity. In particular, it was found that ∼90 % of the sulfur compounds in real diesel oil could be removed by the current aerobic ODS system.
Collapse
Affiliation(s)
- Peiwen Wu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Qingdong Jia
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing He
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Linjie Lu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Linlin Chen
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Zhu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chong Peng
- Schoolof Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minqiang He
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jun Xiong
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenshuai Zhu
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Huaming Li
- Schoolof Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
11
|
Luo J, Chao Y, Tang Z, Hua M, Li X, Wei Y, Ji H, Xiong J, Zhu W, Li H. Design of Lewis Acid Centers in Bundlelike Boron Nitride for Boosting Adsorptive Desulfurization Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01745] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Recent Insights in Transition Metal Sulfide Hydrodesulfurization Catalysts for the Production of Ultra Low Sulfur Diesel: A Short Review. Catalysts 2019. [DOI: 10.3390/catal9010087] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The literature from the past few years dealing with hydrodesulfurization catalysts to deeply remove the sulfur-containing compounds in fuels is reviewed in this communication. We focus on the typical transition metal sulfides (TMS) Ni/Co-promoted Mo, W-based bi- and tri-metallic catalysts for selective removal of sulfur from typical refractory compounds. This review is separated into three very specific topics of the catalysts to produce ultra-low sulfur diesel. The first issue is the supported catalysts; the second, the self-supported or unsupported catalysts and finally, a brief discussion about the theoretical studies. We also inspect some details about the effect of support, the use of organic and inorganic additives and aspects related to the preparation of unsupported catalysts. We discuss some hot topics and details of the unsupported catalyst preparation that could influence the sulfur removal capacity of specific systems. Parameters such as surface acidity, dispersion, morphological changes of the active phases, and the promotion effect are the common factors discussed in the vast majority of present-day research. We conclude from this review that hydrodesulfurization performance of TMS catalysts supported or unsupported may be improved by using new methodologies, both experimental and theoretical, to fulfill the societal needs of ultra-low sulfur fuels, which more stringent future regulations will require.
Collapse
|