1
|
Li H, Zhang Y, Han F, Zhang Z, Yin M, Han P, Jing L. Photoredox Catalyzed Tandem Denitrogenative [4 + 2] Annulation of 1,2,3-Benzotriazin-4(3H)-ones with Terminal Olefins. J Org Chem 2024; 89:16043-16048. [PMID: 39402890 DOI: 10.1021/acs.joc.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The dihydroisoquinolones skeleton is ubiquitous in natural products and biological molecules. Reported strategies for constructing dihydroisoquinolones usually require noble metal catalysts or stoichiometric oxidants, which limit their wide applications. Herein, we developed a photoredox catalyzed tandem denitrogenative [4 + 2] annulation reaction of 1,2,3-benzotriazin-4(3H)-ones with terminal olefins. A variety of dihydroisoquinolones can be accessed in moderate to excellent yield. This protocol features high atom-economy, mild reaction conditions, and is external oxidant-free, enabling the synthesis of various substituted dihydroisoquinolones.
Collapse
Affiliation(s)
- Haiqiong Li
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
- Panzhihua No. 3 Senior High School, Panzhihua 617000, P. R. China
| | - Yu Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Fen Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Zhengbing Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| |
Collapse
|
2
|
Zhang H, Yuan T, Zhumabay N, Ruan Z, Qian H, Rueping M. Ketone-functionalized conjugated organic polymers boost red-light-driven molecular oxygen-mediated oxygenation. Chem Sci 2024:d4sc05816j. [PMID: 39371460 PMCID: PMC11446402 DOI: 10.1039/d4sc05816j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Photocatalytic molecular oxygen activation has emerged as a valuable tool for organic synthesis, environmental remediation and energy conversion. Most reported instances have relied on high-energy light sources. Herein, 9-fluorenone-functionalized porous organic polymers (POPs) were reported to enable red-light-excited photocatalysis for the organic oxygenation reaction. Notably, this modification extends the conjugated backbone, allowing the capture of lower-energy light. Incorporating ketone groups into POPs also facilitates charge separation and enhances carrier concentration, thereby promoting catalytic efficiency. The new POP photomaterials exhibit high activity for the direct α-oxygenation of N-substituted tetrahydroisoquinolines (THIQs) using O2 as a green oxidant under 640 nm light irradiation, achieving high yield in short reaction times. Detailed mechanistic investigations clearly showed the role of oxygen and the photocatalyst. This work provides valuable insights into the potential of ketone-modified POPs for superior photocatalytic activation of molecular oxygen under low-energy light conditions.
Collapse
Affiliation(s)
- Hao Zhang
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Nursaya Zhumabay
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University 351100 Fujian China
| | - Hai Qian
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
3
|
Sau S, Sahoo S, Manna A, Mal P. Moisture-resistant radical anions of quinoxalin-2(1 H)-ones in aerial dioxygen activation. Org Biomol Chem 2024; 22:4662-4666. [PMID: 38804113 DOI: 10.1039/d4ob00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
This study demonstrates the successful formation of a radical anion intermediate in a moist atmosphere, facilitating chemical reactions by activating aerial dioxygen through a single electron transfer (SET) mechanism. Derived from deprotonating quinoxaline-2(1H)-one with KOtBu, it shows potential in oxygenation chemistry. Validation comes from radical scavenging and EPR experiments.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Sathi Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Anupam Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
4
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
5
|
Ye T, Li Y, Ma Y, Tan S, Li F. Aerobic Benzylic C(sp 3)-H Bond Oxygenations Catalyzed by NBS under Visible Light Irradiation. J Org Chem 2024; 89:534-540. [PMID: 38131349 DOI: 10.1021/acs.joc.3c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An efficient photocatalytic oxidation of benzylic C(sp3)-H bonds to ketones, esters, and amides has been developed using NBS as a metal-free photocatalyst and O2 as an oxidant. A variety of synthetically and biologically valuable compounds are assembled in moderate to excellent yields. The synthetic utility of this approach has been demonstrated by gram-scale experiments. A possible free radical mechanism was proposed to rationalize the reaction procedure.
Collapse
Affiliation(s)
- Taiqiang Ye
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuzheng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yanni Ma
- Henan Natural Products Biotechnology Co., LTD, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Shenpeng Tan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
6
|
Wei L, Bai W, Hu Z, Yang Z, Xu L. Visible light-induced metal-free chemoselective oxidative cleavage of benzyl C-heteroatom (N, S, Se) bonds utilizing organoboron photocatalysts. Chem Commun (Camb) 2023; 59:13344-13347. [PMID: 37872818 DOI: 10.1039/d3cc04073a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The oxidation process is widely explored and used to synthesize diverse organic chemicals. Herein, a unified metal-free photooxidative platform for the cleavage of C-heteroatom bonds has been developed. In these reactions, the aminoquinolate diarylboron (AQDAB) complex is utilized as the photocatalyst, instigating the oxidation process induced by visible light. The cleavage of C-heteroatom bonds can be achieved chemoselectively, affording the formal carbonylation product of C-N, C-S, and C-Se bonds. This method provides a channel for connecting amines, thiols, or selenides with the carbonyl compounds directly, broadening the potential applications of oxidation as a synthetic tool.
Collapse
Affiliation(s)
- Lanfeng Wei
- School of Safety Science and Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830000, China.
- Key Laboratory of Coal Resources and Green Mining in Xinjiang, Ministry of Education, Urumqi, Xinjiang 830000, China
| | - Wenbo Bai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Zhiyan Hu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Zhiyong Yang
- School of Safety Science and Engineering, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830000, China.
- Key Laboratory of Coal Resources and Green Mining in Xinjiang, Ministry of Education, Urumqi, Xinjiang 830000, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
7
|
Yadav N, Payra S, Tamuly P, Narasimha Moorthy J. Dioxygen concentration-dependent selective hydroxysulfonylation of olefins by rose bengal-sensitized photocatalysis. Org Biomol Chem 2023; 21:7994-8002. [PMID: 37755316 DOI: 10.1039/d3ob01162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The synthesis of β-hydroxysulfones selectively in preference to β-ketosulfones by dye-sensitized photocatalysis is demonstrated by employing inexpensive and readily available olefins and sulfonyl hydrazides/N-hydroxy sulfonamides in the presence of oxygen. The facile hydroxysulfonylation reaction, which involves the use of rose bengal (RB) as a photocatalyst and dioxygen as an oxidant, permits access selectively to secondary and tertiary β-hydroxysulfones in good to excellent isolated yields at rt and is compatible with aryl, heteroaryl and alkyl sulfonyl hydrazides. Mechanistically, sulfonyl radicals are generated by a cascade of redox reactions, set off by the photocatalyst RB, between sulfonyl hydrazide and dioxygen. Attack of the sulfonyl radicals on olefins followed by oxygenation of the radical intermediates leads to hydroxysulfonylation products selectively without the requirement of a metal catalyst/additive/reductant/base, conforming to the tenets of sustainable chemistry. It is shown that the formations of β-hydroxysulfones and β-ketosulfones proceed concurrently through two different routes and that the outcome is crucially dependent on oxygen concentration with the former being formed predominantly under an oxygen atmosphere, a feature that is heretofore unprecedented to the best of our knowledge.
Collapse
Affiliation(s)
- Navin Yadav
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
| | - Soumen Payra
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
| | - Parag Tamuly
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
| | - Jarugu Narasimha Moorthy
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
8
|
Kishor K, Prabhakar NS, Singh KN. Visible-Light-Mediated Synthesis of α-Ketoamides via Oxidative Amination of 2-Bromoacetophenones Using Eosin Y as a Photoredox Catalyst. Chem Asian J 2023; 18:e202300669. [PMID: 37642246 DOI: 10.1002/asia.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 08/31/2023]
Abstract
An oxidative amination of 2-bromoacetophenones has been accomplished to provide α-ketoamides by using photoredox catalysis with air as oxidant. The reactants are readily accessible, and the method is endowed with broad substrate scope and good functional group tolerance. The practicality of the approach is also shown by a gram-scale reaction.
Collapse
Affiliation(s)
- Kaushal Kishor
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Sharma Prabhakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
9
|
Neerathilingam N, Prabhu S, Anandhan R. A facile synthesis of phthalimides from o-phthalaldehyde and amines via tandem cyclocondensation and α-C-H oxidation by an electrochemical oxygen reduction reaction. Org Biomol Chem 2023; 21:7707-7711. [PMID: 37702002 DOI: 10.1039/d3ob01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Electrochemical synthesis of phthalimides from o-phthalaldehyde and amines via tandem cyclocondensation and α-C-H oxygenation of isoindolinone was achieved. The α-C-H oxidation proceeded with molecular oxygen via an oxygen reduction reaction (ORR) on the cathode under electrochemical conditions. The synthetic utility of this protocol was successfully demonstrated by employing gram-scale synthesis and obtaining bioactive molecules such as thalidomide and 2-(2,6-diisopropylphenyl)-5-hydroxyisoindoline-1,3-dione. Mechanistic studies and control experiments indicate that molecular oxygen provides oxygen atoms for the reaction.
Collapse
Affiliation(s)
| | - Sakthivel Prabhu
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India.
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India.
| |
Collapse
|
10
|
Tian J, Li W, Deng X, Lakshminarayanan R, Srinivasan R. Chemoselective N-Acylation of Amines with Acylsilanes under Aqueous Acidic Conditions. Org Lett 2023; 25:5740-5744. [PMID: 37515781 DOI: 10.1021/acs.orglett.3c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
We report a facile method for forming amide bonds between acylsilanes and a wide range of amines in the presence of a mild chlorinating agent under aqueous acidic conditions. The reaction is highly chemoselective, as exemplified by the late-stage modification of a panel of approved drugs and natural products containing reactive functionalities.
Collapse
Affiliation(s)
- Jing Tian
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007, P. R. China
| | - Wei Li
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
| | - Xingwang Deng
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
| | | | - Rajavel Srinivasan
- School of Pharmaceutical Science and Technology (SPST), Tianjin University, Tianjin 300072, P.R. China
- Singapore Eye Research Institute (SERI), The Academia, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
11
|
Pandey RP, Maheshwari M, Hussain N. Synthesis of chiral azides from C-2 substituted glycals and their transformation to C3-glycoconjugates and α-triazolo-naphthalene polyol. Chem Commun (Camb) 2023; 59:9900-9903. [PMID: 37498546 DOI: 10.1039/d3cc02423g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A Lewis-acid-mediated highly regio- and stereoselective chiral azidation of C2-substituted glycals is reported. This strategy provides excellent, scalable, and mild reaction conditions for the stereoselective introduction of the azido group at the C3-position of various C2-substituted glycals. The reactivity of the various glycals reveals that the electron-withdrawing behavior of the C2-group is crucial for C3-selectivity. The newly installed azido group was used as a handle for the synthesis of various C3-glycoconjugates and α-chiral azido naphthalene polyols.
Collapse
Affiliation(s)
- Ram Pratap Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Mittali Maheshwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Luo MJ, Zhou W, Yang R, Ding H, Song XR, Xiao Q. Electrochemically enabled decyanative C(sp 3)-H oxygenation of N-cyanomethylamines to formamides. Org Biomol Chem 2023; 21:2917-2921. [PMID: 36942930 DOI: 10.1039/d3ob00313b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Selective oxygenation of C(sp3)-H bonds adjacent to nitrogen atoms is a highly attractive strategy for synthesizing various formamide derivatives while preserving the substrate skeletons. Herein, an environmentally benign electrochemically enabled decyanative C(sp3)-H oxygenation of N-cyanomethylamines using H2O as a carbonyl oxygen atom source is described, leading to the synthesis of a large class of formamides in good to excellent yields with a broad substrate scope under metal- and oxidant-free conditions. This electrochemical technology highlights the facile incorporation of N-formyl into some important bioactive molecules.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
13
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
14
|
Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Green, versatile, and scale-up synthesis of amides by aerobic oxidative amination over Ag2O/P-C3N4 photocatalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Sau S, Mal P. Visible-Light Promoted Regioselective Oxygenation of Quinoxalin-2(1 H)-ones Using O 2 as an Oxidant. J Org Chem 2022; 87:14565-14579. [PMID: 36214497 DOI: 10.1021/acs.joc.2c01960] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-mediated sustainable approach for metal-free oxygenation of quinoxalin-2(1H)-one by employing Mes-Acr-MeClO4 as a photocatalyst without using any additive or cocatalyst is reported here. O2 served as the eco-friendly and green oxidant source for this conversion. In addition, the protocol exhibited high regioselectivity and tolerance toward a broad spectrum of functional groups to furnish quinoxaline-2,3-diones in good to excellent yields.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhaba National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
17
|
Zhang Y, Sahoo PK, Ren P, Qin Y, Cauwenbergh R, Nimmegeers P, SivaRaman G, Van Passel S, Guidetti A, Das S. Transition metal-free approach for late-stage benzylic C(sp 3)-H etherifications and esterifications. Chem Commun (Camb) 2022; 58:11454-11457. [PMID: 36148867 DOI: 10.1039/d2cc02661a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a transition metal-free approach for the regioselective functionalization of benzylic C(sp3)-H bonds using alcohols and carboxylic acids as the nucleophiles. This straightforward and general route has provided various benzylic ethers and esters, including twelve pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Yu Zhang
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Prakash Kumar Sahoo
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Peng Ren
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Yuman Qin
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Robin Cauwenbergh
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Philippe Nimmegeers
- Department of Engineering Management, Universiteit Antwerpen, Prinsstraat 13, 2000, Antwerpen, Belgium.,Intelligence in Processes, Advanced Catalysts and Solvents (iPRACS), Faculty of Applied Engineering, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Gandhi SivaRaman
- Department of Chemistry, Gandhigram Rural Institute, Gandhigram, 624032, Tamilnadu, India
| | - Steven Van Passel
- Department of Engineering Management, Universiteit Antwerpen, Prinsstraat 13, 2000, Antwerpen, Belgium.,Nanolab Centre of Excellence, Prinsstraat 13, 2000, Antwerpen, Belgium
| | - Andrea Guidetti
- Biophysics and Biomedical Physics (BIMEF), Department of Chemistry, University of Antwerp, B2610 Antwerp, Belgium
| | - Shoubhik Das
- ORSY Division, Department of Chemistry, Universiteit Antwerpen, Campus Groenenborger, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
18
|
Elavarasan S, Preety J, Abinaya R, Saravanan T, Balasunramaniam KK, Venkatramaiah N, Baskar B. Visible Light Driven Metal-Free Photoredox Catalyzed α-benzylation and α-oxygenation of N-substituted tetrahydroisoquinolines: Applications to Synthesis of Natural Products. Chem Asian J 2022; 17:e202200878. [PMID: 36073541 DOI: 10.1002/asia.202200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/06/2022] [Indexed: 11/07/2022]
Abstract
Herein, visible light mediated organophoto redox catalysed simple and convenient method for the a-benzylation and a-oxygenation of tertiary amines is demonstrated. Synthesis of novel thiophenol based donor acceptor organophotoredox catalysts 4a - 4d were investigated along with commercial catalyst 4-CzIPN ( 4e ). A diverse biologically active a-benzylated tetrahydroisoquinolines and natural products such as (±)-Norlaudanosine, (±)-laudanosine and (±)-xylopinine have been synthesized under the optimized conditions in yields ranging from from 62-91%. Exploitation of synthesized a-benzylated compound using present phtoredox catalyzed conditions gave rise to dehydyrogenative benzylic oxidation product under oxygen atmosphere which is known to display biologically and structurally important properties. Also, various N-protected tertiary amines were found to be suitable for the a-oxygenation reactions using catalyst 4e and resulted in good yields (61-85%).
Collapse
Affiliation(s)
- S Elavarasan
- SRM Institute of Science and Technology, Chemistry, INDIA
| | - J Preety
- SRM Institute of Science and Technology, Chemistry, INDIA
| | - R Abinaya
- SRM Institute of Science and Technology, Chemistry, INDIA
| | - T Saravanan
- University of Hyderabad, School of Chemistry, INDIA
| | | | | | - Baburaj Baskar
- SRM University, Chemistry, Kattankulathur, 603203, India, 603203, Chennai, INDIA
| |
Collapse
|
19
|
Xu F, Zhang F, Wang W, Yao M, Lin X, Yang F, Qian Y, Chen Z. Iron(III)-catalyzed α-cyanation and carbonylation with 2-pyridylacetonitrile: divergent synthesis of α-amino nitriles and tetrahydroisoquinolinones. Org Biomol Chem 2022; 20:7031-7035. [PMID: 36018561 DOI: 10.1039/d2ob01199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-catalyzed oxidative synthesis of N-aryl-substituted tetrahydroisoquinolines (THIQs) toward tetrahydroisoquinoline-based derivatives is reported. A wide range of α-amino nitriles and tetrahydroisoquinolinones are synthesized in moderate to good yields. This approach involves a new organic nitrile source, a cheap iron catalyst under an oxygen atmosphere, and temperature-controlled divergent synthesis and features complete selectivity and operational simplicity.
Collapse
Affiliation(s)
- Fan Xu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fanglian Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Wenjia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Mingxu Yao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Xing Lin
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Fang Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Yiping Qian
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
20
|
Li MN, Wan B, Yang S, Tang Y, Zhang H, Zhang SQ, Liu HY, Ye Y. Aerobic Baeyer−Villiger oxidation catalyzed by metal corroles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng-Ni Li
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Bei Wan
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Shuang Yang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yan Tang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hao Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Si-Quan Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hai-Yang Liu
- South China University of Technology Department of Chemistry 381# Wushan Road 510641 Guangzhou CHINA
| | - Yong Ye
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
21
|
Zhang T, Wang Y, Wang B, Jin W, Xia Y, Liu C, Zhang Y. Visible‐Light‐Induced Oxidation of Diazenyl‐Protected Tetrahydroisoquinolines and Isoindolines for the Synthesis of Functionalized Lactams. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tao Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yanhong Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
- College of Future Technology Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
22
|
León Sandoval A, Doherty KE, Wadey GP, Leadbeater NE. Solvent- and additive-free oxidative amidation of aldehydes using a recyclable oxoammonium salt. Org Biomol Chem 2022; 20:2249-2254. [PMID: 35230379 DOI: 10.1039/d2ob00307d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A range of acyl azoles have been prepared from aromatic, heteroaromatic, and aliphatic aldehydes by means of an oxidative amidation reaction. The methodology employs a substoichiometric quantity of an oxoammonium salt as the oxidant. It avoids the need for additives such as a base, is run solvent-free, and the oxoammonium salt is recyclable.
Collapse
Affiliation(s)
- Arturo León Sandoval
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | - Katrina E Doherty
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | - Geoffrey P Wadey
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| | - Nicholas E Leadbeater
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA.
| |
Collapse
|
23
|
Neerathilingam N, Anandhan R. Metal-free photoredox-catalyzed direct α-oxygenation of N, N-dibenzylanilines to imides under visible light. RSC Adv 2022; 12:8368-8373. [PMID: 35424823 PMCID: PMC8984950 DOI: 10.1039/d2ra00585a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient synthesis of imides using metal-free photoredox-catalyzed direct α-oxygenation of N,N'-disubstituted anilines in the presence of 9-mesityl-10-methylacridinium [Acr+-Mes]BF4 as a photoredox catalyst and molecular oxygen as a green oxidant under visible light was developed. This photochemical approach offered operational simplicity, high atom economy with a low E-factor, and functional group tolerance under mild reaction conditions. Control and quenching experiments confirmed the occurrence of a radical pathway and superoxide radical anion α-oxygenation reactions, and also provided strong evidence for the reductive quenching of [Acr+-Mes]BF4 based on a Stern-Volmer plot, which led to the proposed mechanism of this reaction.
Collapse
Affiliation(s)
| | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras Chennai 600025 India
| |
Collapse
|
24
|
He P, Chen B, Huang L, Liu X, Qin J, Zhang Z, Dai W. Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Mandigma MJP, Žurauskas J, MacGregor CI, Edwards LJ, Shahin A, d'Heureuse L, Yip P, Birch DJS, Gruber T, Heilmann J, John MP, Barham JP. An organophotocatalytic late-stage N-CH 3 oxidation of trialkylamines to N-formamides with O 2 in continuous flow. Chem Sci 2022; 13:1912-1924. [PMID: 35308839 PMCID: PMC8849051 DOI: 10.1039/d1sc05840a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022] Open
Abstract
We report an organophotocatalytic, N-CH3-selective oxidation of trialkylamines in continuous flow. Based on the 9,10-dicyanoanthracene (DCA) core, a new catalyst (DCAS) was designed with solubilizing groups for flow processing. This allowed O2 to be harnessed as a sustainable oxidant for late-stage photocatalytic N-CH3 oxidations of complex natural products and active pharmaceutical ingredients bearing functional groups not tolerated by previous methods. The organophotocatalytic gas-liquid flow process affords cleaner reactions than in batch mode, in short residence times of 13.5 min and productivities of up to 0.65 g per day. Spectroscopic and computational mechanistic studies showed that catalyst derivatization not only enhanced solubility of the new catalyst compared to poorly-soluble DCA, but profoundly diverted the photocatalytic mechanism from singlet electron transfer (SET) reductive quenching with amines toward energy transfer (EnT) with O2.
Collapse
Affiliation(s)
- Mark John P Mandigma
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Jonas Žurauskas
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Callum I MacGregor
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Lee J Edwards
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Ahmed Shahin
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
- Chemistry Department, Faculty of Science, Benha University 13518 Benha Egypt
| | - Ludwig d'Heureuse
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Philip Yip
- Department of Physics, SUPA, University of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - David J S Birch
- Department of Physics, SUPA, University of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - Thomas Gruber
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Jörg Heilmann
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| | - Matthew P John
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg 93040 Regensburg Germany
| |
Collapse
|
26
|
SINGH JITENDER, Sharma A. Green and Sustainable Visible Light-Mediated Formation of Amide Bonds: An Emerging Niche in Organic Chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj02406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide bond is one of the most fascinating functional groups in nature due to its stability, conformational diversity, high bond polarity, and abundance in numerous natural products and drug candidates,...
Collapse
|
27
|
Gan S, Zeng Y, Liu J, Nie J, Lu C, Ma C, Wang F, Yang G. Click-based conjugated microporous polymers as efficient heterogeneous photocatalysts for organic transformations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02076e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Click-based conjugated microporous polymers were found to be highly efficient photocatalysts for the Ugi reaction and α-oxidation of N-substituted tetrahydroisoquinolines.
Collapse
Affiliation(s)
- Shaolin Gan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Yan Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Jiaxin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
28
|
Gurung B, Pradhan S, Sharma D, Bhujel D, Basel S, Chettri S, Rasaily S, Pariyar A, Tamang S. CsPbBr 3 perovskite quantum dots as a visible light photocatalyst for cyclisation of diamines and amino alcohols: an efficient approach to synthesize imidazolidines, fused-imidazolidines and oxazolidines. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis of highly stable CsPbBr3QD based photocatalysts using dibromoisocyanuric acid (DBI) as a benign non-toxic bromide precursor.
Collapse
Affiliation(s)
- Bikram Gurung
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Sajan Pradhan
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Debesh Sharma
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Deshaj Bhujel
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Siddhant Basel
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Shivanand Chettri
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Sagarmani Rasaily
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Sikkim 737102, India
| |
Collapse
|
29
|
Qiao J, Song Z, Huang C, Ci R, Liu Z, Chen B, Tung C, Wu L. Direct, Site‐Selective and Redox‐Neutral α‐C−H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zi‐Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Rui‐Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
30
|
Zhu SS, Liu Y, Chen XL, Qu LB, Yu B. Polymerization-Enhanced Photocatalysis for the Functionalization of C(sp3)–H Bonds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shan-Shan Zhu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Neerathilingam N, Bhargava Reddy M, Anandhan R. Regioselective Synthesis of 2° Amides Using Visible-Light-Induced Photoredox-Catalyzed Nonaqueous Oxidative C-N Cleavage of N, N-Dibenzylanilines. J Org Chem 2021; 86:15117-15127. [PMID: 34619960 DOI: 10.1021/acs.joc.1c01792] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A visible-light-driven photoredox-catalyzed nonaqueous oxidative C-N cleavage of N,N-dibenzylanilines to 2° amides is reported. Further, we have applied this protocol on 2-(dibenzylamino)benzamide to afford quinazolinones with (NH4)2S2O8 as an additive. Mechanistic studies imply that the reaction might undergo in situ generation of α-amino radical to imine by C-N bond cleavage followed by the addition of superoxide ion to form amides.
Collapse
Affiliation(s)
| | | | - Ramasamy Anandhan
- Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| |
Collapse
|
32
|
Yip WM, Yu Q, Tantipanjaporn A, Chan WC, Deng JR, Ko BCB, Wong MK. Synthesis of new quinolizinium-based fluorescent compounds and studies on their applications in photocatalysis. Org Biomol Chem 2021; 19:8507-8515. [PMID: 34542126 DOI: 10.1039/d1ob00716e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quinoliziniums, cationic aromatic heterocycles bearing a quaternary bridgehead nitrogen, have been widely used as fluorescent dyes, DNA intercalators, ionic liquids etc. A library of new quinolizinium compounds was synthesized from quinolines and internal alkyne substrates in up to 65% isolated yields. Systematic studies of their photophysical properties were conducted. The quinoliziniums have been used in three visible-light-induced photocatalysis reactions with good yields.
Collapse
Affiliation(s)
- Wai-Ming Yip
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Qiong Yu
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
| | - Ajcharapan Tantipanjaporn
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Wing-Cheung Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Jie-Ren Deng
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Ben Chi-Bun Ko
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| | - Man-Kin Wong
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum, Hong Kong.
| |
Collapse
|
33
|
Krylov IB, Lopat’eva ER, Subbotina IR, Nikishin GI, Yu B, Terent’ev AO. Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63831-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Qiao J, Song ZQ, Huang C, Ci RN, Liu Z, Chen B, Tung CH, Wu LZ. Direct, Site-Selective and Redox-Neutral α-C-H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angew Chem Int Ed Engl 2021; 60:27201-27205. [PMID: 34536248 DOI: 10.1002/anie.202109849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Indexed: 11/06/2022]
Abstract
As one of the most ubiquitous bulk reagents available, the intrinsic chemical inertness of tetrahydrofuran (THF) makes direct and site-selective C(sp3 )-H bond activation difficult, especially under redox neutral condition. Here, we demonstrate that semiconductor quantum dots (QDs) can activate α-C-H bond of THF via forming QDs/THF conjugates. Under visible light irradiation, the resultant alkoxyalkyl radical directly engages in radical cross-coupling with α-amino radical from amino C-H bonds or radical addition with alkene or phenylacetylene, respectively. In contrast to stoichiometric oxidant or hydrogen atom transfer reagents required in previous studies, the scalable benchtop approach can execute α-C-H bond activation of THF only by a QD photocatalyst under redox-neutral condition, thus providing a broad of value added chemicals starting from bulk THFs reagent.
Collapse
Affiliation(s)
- Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zi-Qi Song
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui-Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zan Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
35
|
Budnyak TM, Onwumere J, Pylypchuk IV, Jaworski A, Chen J, Rokicińska A, Lindström ME, Kuśtrowski P, Sevastyanova O, Slabon A. LignoPhot: Conversion of hydrolysis lignin into the photoactive hybrid lignin/Bi 4O 5Br 2/BiOBr composite for simultaneous dyes oxidation and Co 2+ and Ni 2+ recycling. CHEMOSPHERE 2021; 279:130538. [PMID: 33894514 DOI: 10.1016/j.chemosphere.2021.130538] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Valorization of lignin is still an open question and lignin has therefore remained an underutilized biomaterial. This situation is even more pronounced for hydrolysis lignin, which is characterized by a highly condensed and excessively cross-linked structure. We demonstrate the synthesis of photoactive lignin/Bi4O5Br2/BiOBr bio-inorganic composites consisting of a lignin substrate that is coated by semiconducting nanosheets. The XPS analysis reveals that growing these nanosheets on lignin instead on cellulose prevents the formation of Bi5+ ions at the surface region, yielding thus a modified heterojunction Bi4O5Br2/BiOBr. The material contains 18.9% of Bi4O5Br2/BiOBr and is effective for the photocatalytic degradation of cationic methylene blue (MB) and zwitterionic rhodamine B (RhB) dyes under light irradiation. Lignin/Bi4O5Br2/BiOBr decreases the dye concentration from 80 mg L-1 to 12.3 mg L-1 for RhB (85%) and from 80 mg L-1 to 4.4 mg L-1 for MB (95%). Complementary to the dye degradation, the lignin as a main component of the composite, was found to be efficient and rapid biosorbent for nickel, lead, and cobalt ions. The low cost, stability and ability to simultaneously photo-oxidize organic dyes and adsorb metal ions, make the photoactive lignin/Bi4O5Br2/BiOBr composite a prospective material for textile wastewaters remediation and metal ions recycling.
Collapse
Affiliation(s)
- Tetyana M Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Joy Onwumere
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Ievgen V Pylypchuk
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Aleksander Jaworski
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Jianhong Chen
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Anna Rokicińska
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden
| | - Mikael E Lindström
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Olena Sevastyanova
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland; Wallenberg Wood Science Center (WWSC), Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44, Stockholm, Sweden
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91, Stockholm, Sweden.
| |
Collapse
|
36
|
Zhang Y, Yue X, Liang C, Zhao J, Yu W, Zhang P. Photo-induced oxidative cleavage of C-C double bonds of olefins in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Xie P, Xue C, Du D, Shi S. Photo-induced oxidative cleavage of C-C double bonds for the synthesis of biaryl methanone via CeCl 3 catalysis. Org Biomol Chem 2021; 19:6781-6785. [PMID: 34312650 DOI: 10.1039/d1ob01002f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ce-catalyzed strategy is developed to produce biaryl methanones via photooxidative cleavage of C-C double bonds at room temperature. This reaction is performed under air and demonstrates high activity as well as functional group tolerance. A synergistic Ce/ROH catalytic mechanism is also proposed based on the experimental observations. This protocol should be the first successful Ce-catalyzed photooxidation reaction of olefins with air as the oxidant, which would provide inspiration for the development of novel Ce-catalyzed photochemical synthesis processes.
Collapse
Affiliation(s)
- Pan Xie
- College of Chemistry and Chemistry Engineering, Shaanxi Key Laboratory of Chemistry Additives for Industry, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | | | | | | |
Collapse
|
38
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
39
|
Xu Z, Yang T, Tang N, Ou Y, Yin SF, Kambe N, Qiu R. UV-Light-Induced N-Acylation of Amines with α-Diketones. Org Lett 2021; 23:5329-5333. [PMID: 34181430 DOI: 10.1021/acs.orglett.1c01599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we develop a mild method for N-acylation of primary and secondary amines with α-diketones induced by ultraviolet (UV) light. Forty-six examples with various functional groups are explored at room temperature with irradiation by three 26 W UV lamps (350-380 nm). The yield reaches 97%. The gram scale experiment product yield is 76%. Moreover, this system can be applied to the synthesis of several amino acid derivatives. Mechanistic studies show that benzoin is generated in situ from benzil under UV irradiation.
Collapse
Affiliation(s)
- Zhihui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
40
|
Abstract
AbstractReduction-and-oxidation (redox) reactions are one of the most utilized approaches for the synthesis of value-added compounds. With the growing awareness of green chemistry, researchers have searched for new and sustainable pathways for performing redox reactions. From this, a new field has gained tremendous attention, namely photoredox catalysis. Here, molecules can be easily oxidized or reduced with the use of one of Nature’s biggest resources: visible light. This tutorial paper gives the basics of photoredox catalysis along with limited examples to encourage further research in this blooming research area.1 Introduction2 Redox Chemistry3 Photochemistry3.1 Laws of Photochemistry3.2 Principles3.3 Examples4 Photoredox Catalysis4.1 General Principles4.2 Classification of Redox Processes4.3 Other Mechanistic Considerations4.4 Stern–Volmer Plots4.5 Photophysical Properties4.6 Redox Potentials5 Photocatalysts5.1 Metal-Based Photocatalysts5.2 Organic Dyes5.3 Semiconductors6 Dual Catalysis7 Conclusions
Collapse
|
41
|
Mishra AK, Parvari G, Santra SK, Bazylevich A, Dorfman O, Rahamim J, Eichen Y, Szpilman AM. Solar and Visible Light Assisted Peptide Coupling. Angew Chem Int Ed Engl 2021; 60:12406-12412. [PMID: 33621382 DOI: 10.1002/anie.202011510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 01/06/2023]
Abstract
Amino acid and peptide couplings are widely used in fields related to pharma and materials. Still, current peptide synthesis continues to rely on the use of expensive, water sensitive, and waste-generating coupling reagents, which are often prepared in multi-step sequences and used in excess. Herein is described a peptide coupling reaction design that relies mechanistically on sun-light activation of a 4-dimethylamino-pyridine-alkyl halide charge-transfer complex to generate a novel coupling reagent in situ. The resulting coupling method is rapid, does not require dry solvents or inert atmosphere, and is compatible with all the most common amino acids and protecting groups. Peptide couplings can be run on gram-scale, without the use of special equipment. This method has a significantly reduced environmental and financial footprint compared to standard peptide coupling reactions. Experimental and computational studies support the proposed mechanism.
Collapse
Affiliation(s)
- Abhaya K Mishra
- Department of Chemical Sciences, Ariel University, 4070000, Ariel, Israel.,Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 3200008, Haifa, Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 3200008, Haifa, Israel
| | - Sourav K Santra
- Department of Chemical Sciences, Ariel University, 4070000, Ariel, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, 4070000, Ariel, Israel
| | - Ortal Dorfman
- Department of Chemical Sciences, Ariel University, 4070000, Ariel, Israel
| | - Jonatan Rahamim
- Department of Chemical Sciences, Ariel University, 4070000, Ariel, Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, 3200008, Haifa, Israel
| | - Alex M Szpilman
- Department of Chemical Sciences, Ariel University, 4070000, Ariel, Israel
| |
Collapse
|
42
|
Liu S, Tian M, Bu X, Tian H, Yang X. Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry 2021; 27:7738-7744. [PMID: 33788327 DOI: 10.1002/chem.202100398] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/18/2022]
Abstract
Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.
Collapse
Affiliation(s)
- Shuyang Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Miao Tian
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, 110034, Shenyang, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, P. R. China
| |
Collapse
|
43
|
Mishra AK, Parvari G, Santra SK, Bazylevich A, Dorfman O, Rahamim J, Eichen Y, Szpilman AM. Solar and Visible Light Assisted Peptide Coupling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Abhaya K. Mishra
- Department of Chemical Sciences Ariel University 4070000 Ariel Israel
- Schulich Faculty of Chemistry Technion – Israel Institute of Technology 3200008 Haifa Israel
| | - Galit Parvari
- Schulich Faculty of Chemistry Technion – Israel Institute of Technology 3200008 Haifa Israel
| | - Sourav K. Santra
- Department of Chemical Sciences Ariel University 4070000 Ariel Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences Ariel University 4070000 Ariel Israel
| | - Ortal Dorfman
- Department of Chemical Sciences Ariel University 4070000 Ariel Israel
| | - Jonatan Rahamim
- Department of Chemical Sciences Ariel University 4070000 Ariel Israel
| | - Yoav Eichen
- Schulich Faculty of Chemistry Technion – Israel Institute of Technology 3200008 Haifa Israel
| | - Alex M. Szpilman
- Department of Chemical Sciences Ariel University 4070000 Ariel Israel
| |
Collapse
|
44
|
Fu Y, Wu Q, Du Z. Debenzylative Sulfonylation of Tertiary Benzylamines Promoted by Visible Light. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Qing‐Kui Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 China
| |
Collapse
|
45
|
Ren C, Wang T, Zhang Y, Peng D, Liu X, Wu Q, Liu X, Luo S. Photoinduced Activation of Unactivated C(
sp
3
)‐H Bonds and Acylation Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chen‐Chao Ren
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Tian‐Qi Wang
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Yu Zhang
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Dao Peng
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Xiao‐Qing Liu
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Qing‐An Wu
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| | - Xue‐Fen Liu
- Hangzhou Normal University Qianjiang College Hangzhou 310006 P.R. China
| | - Shu‐Ping Luo
- Zhejiang University of Technology State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Hangzhou 310014 P.R. China
| |
Collapse
|
46
|
Sahoo PK, Zhang Y, Das S. CO 2-Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Yu Zhang
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
47
|
Zhou J, Li M, Li T, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Kurouchi H. Enhancement of the carbamate activation rate enabled syntheses of tetracyclic benzolactams: 8-oxoberbines and their 5- and 7-membered C-ring homologues. Org Biomol Chem 2021; 19:653-658. [PMID: 33393540 DOI: 10.1039/d0ob02096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A route to the direct amidation of aromatic-ring-tethered N-carbamoyl tetrahydroisoquinoline substrates was developed. This route enabled general access to 8-oxoberberines and their 5- and 7- membered C-ring homologues. It overcomes the undesired tandem side-reactions that result in the destruction of the isoquinoline backbone, which inevitably occurred under our previously reported superacidic carbamate activation method.
Collapse
Affiliation(s)
- Hiroaki Kurouchi
- Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R & D Building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan.
| |
Collapse
|
49
|
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Tong Zhang
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Shoubhik Das
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| |
Collapse
|
50
|
Bansode AH, Suryavanshi G. Visible‐Light‐Induced Controlled Oxidation of
N
‐Substituted 1,2,3,4‐Tetrahydroisoquinolines for the Synthesis of 3,4‐Dihydroisoquinolin‐1(2
H
)‐ones and Isoquinolin‐1(2
H
)‐ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ajay H. Bansode
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|