1
|
Boyes ED, Gai PL. Visualizing Dynamic Single Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314121. [PMID: 38757873 DOI: 10.1002/adma.202314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Many industrial chemical processes, including for producing fuels, foods, pharmaceuticals, chemicals and environmental controls, employ heterogeneous solid state catalysts at elevated temperatures in gas or liquid environments. Dynamic reactions at the atomic level play a critical role in catalyst stability and functionality. In situ visualization and analysis of atomic-scale processes in real time under controlled reaction environments can provide important insights into practical frameworks to improve catalytic processes and materials. This review focuses on innovative real time in situ electron microscopy (EM) methods, including recent progress in analytical in situ environmental (scanning) transmission EM (E(STEM), incorporating environmental scanning TEM (ESTEM) and environmental transmission EM (ETEM), with single atom resolution for visualizing and analysing dynamic single atom catalysis under controlled flowing gas reaction environments. ESTEM studies of single atom dynamics of reactions, and of sintering deactivation, contribute to a better-informed understanding of the yield and stability of catalyst operations. Advances in in situ technologies, including gas and liquid sample holders, nanotomography, and higher voltages, as well as challenges and opportunities in tracking reacting atoms, are highlighted. The findings show that the understanding and application of fundamental processes in catalysis can be improved, with valuable economic, environmental, and societal benefits.
Collapse
Affiliation(s)
- Edward D Boyes
- The York Nanocentre, Department of Physics, University of York, York, YO10 5DD, UK
| | - Pratibha L Gai
- The York Nanocentre, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
2
|
Tang M, de Jongh PE, de Jong KP. In Situ Transmission Electron Microscopy to Study the Location and Distribution Effect of Pt on the Reduction of Co 3 O 4 -SiO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304683. [PMID: 37649200 DOI: 10.1002/smll.202304683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Indexed: 09/01/2023]
Abstract
The addition of Pt generally promotes the reduction of Co3 O4 in supported catalysts, which further improves their activity and selectivity. However, due to the limited spatial resolution, how Pt and its location and distribution affect the reduction of Co3 O4 remains unclear. Using ex situ and in situ ambient pressure scanning transmission electron microscopy, combined with temperature-programmed reduction, the reduction of silica-supported Co3 O4 without Pt and with different location and distribution of Pt is studied. Shrinkage of Co3 O4 nanoparticles is directly observed during their reduction, and Pt greatly lowers the reduction temperature. For the first time, the initial reduction of Co3 O4 with and without Pt is studied at the nanoscale. The initial reduction of Co3 O4 changes from surface to interface between Co3 O4 and SiO2 . Small Pt nanoparticles located at the interface between Co3 O4 and SiO2 promote the reduction of Co3 O4 by the detachment of Co3 O4 /CoO from SiO2 . After reduction, the Pt and part of the Co form an alloy with Pt well dispersed. This study for the first time unravels the effects of Pt location and distribution on the reduction of Co3 O4 nanoparticles, and helps to design cobalt-based catalysts with efficient use of Pt as a reduction promoter.
Collapse
Affiliation(s)
- Min Tang
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Krijn P de Jong
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
3
|
Suo Y, Yao Y, Zhang Y, Xing S, Yuan ZY. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Qi P, Wang J, Djitcheu X, He D, Liu H, Zhang Q. Techniques for the characterization of single atom catalysts. RSC Adv 2021; 12:1216-1227. [PMID: 35425093 PMCID: PMC8978979 DOI: 10.1039/d1ra07799f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Single atom catalysts (SACs) are a hot research area recently. Over most of the SACs, the singly dispersed atoms are the active sites, which contribute to the catalytic activities significantly compared with a catalyst with continuously packed active sites. It is essential to determine whether SACs have been successfully synthesized. Several techniques have been applied for the characterization of the dispersion states of the active sites over SACs, such as Energy Dispersive X-ray spectroscopy (EDX), Electron Energy Loss Spectroscopy (EELS), etc. In this review, the techniques for the identification of the singly dispersed sites over SACs are introduced, the advantages and limitations of each technique are pointed out, and the future research directions have been discussed. It is hoped that this review will be helpful for a more comprehensive understanding of the characterization and detection methods involved in SACs, and stimulate and promote the further development of this emerging research field.
Collapse
Affiliation(s)
- Ping Qi
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Jian Wang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Xavier Djitcheu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Dehua He
- Innovative Catalysis Program, Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| | - Qijian Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 P. R. China
| |
Collapse
|
5
|
Shi K, Guo L, Zhang W, Jiang Y, Li D, Liu K, Li M, Xue Z, Sun S, Mao C. Tunable CO Dissociation Assisted by H
2
over Cobalt Species: A Mechanistic Study by In‐situ DRIFTS. ChemCatChem 2021. [DOI: 10.1002/cctc.202101359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kangzhong Shi
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
| | - Lisheng Guo
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
| | - Wei Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
- National Synchrotron Radiation Laboratory Collaborative Innovation Center of Chemistry for Energy Materials University of Science & Technology of China Hefei Anhui 230029 P. R. China
| | - Yong Jiang
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201204 P. R. China
| | - Da Li
- Linhuan Coking Company Limited Huaibei Anhui 235141 P. R. China
| | - Kai Liu
- Linhuan Coking Company Limited Huaibei Anhui 235141 P. R. China
| | - Mengmeng Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
| | - Zhaoming Xue
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
| | - Song Sun
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
| | - Changjie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education) School of Chemistry and Chemical Engineering Anhui University Hefei Anhui 230601 P. R. China
| |
Collapse
|
6
|
Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Li J, Wang S, Zhuang Z, Liu Z, Guo Z, Huang X. In-situ synthesis of Cu/Cu2+1O/carbon spheres for the electrochemical sensing of glucose in serum. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Ma C, Yun Y, Zhang T, Suo H, Yan L, Shen X, Li Y, Yang Y. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An
In Situ
Transmission Electron Microscopy Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenwei Ma
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yifeng Yun
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Tianfu Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Haiyun Suo
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Lai Yan
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Xianfeng Shen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Yong Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| |
Collapse
|
9
|
Mu Y, Wang T, Zhang J, Meng C, Zhang Y, Kou Z. Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00124-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Gao X, Zhu S, Dong M, Fan W. MOF-derived hcp-Co nanoparticles encapsulated in ultrathin graphene for carboxylic acids hydrogenation to alcohols. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Rajkumar T, Sápi A, Ábel M, Kiss J, Szenti I, Baán K, Gómez-Pérez JF, Kukovecz Á, Kónya Z. Surface Engineering of CeO2 Catalysts: Differences Between Solid Solution Based and Interfacially Designed Ce1−xMxO2 and MO/CeO2 (M = Zn, Mn) in CO2 Hydrogenation Reaction. Catal Letters 2021. [DOI: 10.1007/s10562-021-03591-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Straß‐Eifert A, Sheppard TL, Damsgaard CD, Grunwaldt J, Güttel R. Stability of Cobalt Particles In and Outside HZSM‐5 under CO Hydrogenation Conditions Studied by
ex situ
and
in situ
Electron Microscopy. ChemCatChem 2021. [DOI: 10.1002/cctc.202001533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Straß‐Eifert
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian D. Damsgaard
- DTU Nanolab and DTU Physics Technical University of Denmark Fysikvej – Building 307 2800 Kongens Lyngby Denmark
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
13
|
van der Wal LI, Turner SJ, Zečević J. Developments and advances in in situ transmission electron microscopy for catalysis research. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00258a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent developments and advances in in situ TEM have raised the possibility to study every step during the catalysts' lifecycle. This review discusses the current state, opportunities and challenges of in situ TEM in the realm of catalysis.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Savannah J. Turner
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| | - Jovana Zečević
- Materials Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- Utrecht
- The Netherlands
| |
Collapse
|
14
|
Martin TE, Mitchell RW, Boyes ED, Gai PL. Atom-by-atom analysis of sintering dynamics and stability of Pt nanoparticle catalysts in chemical reactions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190597. [PMID: 33100157 PMCID: PMC7661282 DOI: 10.1098/rsta.2019.0597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Supported Pt nanoparticles are used extensively in chemical processes, including for fuel cells, fuels, pollution control and hydrogenation reactions. Atomic-level deactivation mechanisms play a critical role in the loss of performance. In this original research paper, we introduce real-time in-situ visualization and quantitative analysis of dynamic atom-by-atom sintering and stability of model Pt nanoparticles on a carbon support, under controlled chemical reaction conditions of temperature and continuously flowing gas. We use a novel environmental scanning transmission electron microscope with single-atom resolution, to understand the mechanisms. Our results track the areal density of dynamic single atoms on the support between nanoparticles and attached to them; both as migrating species in performance degradation and as potential new independent active species. We demonstrate that the decay of smaller nanoparticles is initiated by a local lack of single atoms; while a post decay increase in single-atom density suggests anchoring sites on the substrate before aggregation to larger particles. The analyses reveal a relationship between the density and mobility of single atoms, particle sizes and their nature in the immediate neighbourhood. The results are combined with practical catalysts important in technological processes. The findings illustrate the complex nature of sintering and deactivation. They are used to generate new fundamental insights into nanoparticle sintering dynamics at the single-atom level, important in the development of efficient supported nanoparticle systems for improved chemical processes and novel single-atom catalysis. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Thomas E. Martin
- Department of Physics, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| | - Robert W. Mitchell
- Department of Physics, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| | - Edward D. Boyes
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| | - Pratibha L. Gai
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Chemistry, University of York, York YO10 5DD, UK
- York Nanocentre, University of York, York YO10 5DD, UK
| |
Collapse
|
15
|
Boyes ED, LaGrow AP, Ward MR, Martin TE, Gai PL. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190605. [PMID: 33100164 PMCID: PMC7661277 DOI: 10.1098/rsta.2019.0605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Progress is reported in analytical in situ environmental scanning transmission electron microscopy (ESTEM) for visualizing and analysing in real-time dynamic gas-solid catalyst reactions at the single-atom level under controlled reaction conditions of gas environment and temperature. The recent development of the ESTEM advances the capability of the established ETEM with the detection of fundamental single atoms, and the associated atomic structure of selected solid-state heterogeneous catalysts, in catalytic reactions in their working state. The new data provide improved understanding of dynamic atomic processes and reaction mechanisms, in activity and deactivation, at the fundamental level; and in the chemistry underpinning important technological processes. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes, reductions in energy requirements and better management of environmental waste. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Edward D. Boyes
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
- e-mail:
| | - Alec P. LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Michael R. Ward
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Thomas E. Martin
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Pratibha L. Gai
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Chemistry, University of York, York YO10 5DD, UK
- e-mail:
| |
Collapse
|
16
|
In situ XRD and Raman Investigation of the Activation Process over K–Cu–Fe/SiO2 Catalyst for Fischer–Tropsch Synthesis Reaction. Catal Letters 2020. [DOI: 10.1007/s10562-020-03147-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Abstract
Many heterogeneous chemical reactions involve gases catalyzed over solid surfaces at elevated temperatures and play a critical role in the production of energy, healthcare, pollution control, industrial products, and food. These catalytic reactions take place at the atomic level, with active structures forming under reaction conditions. A fundamental understanding of catalysis at the single atom resolution is therefore a major advance in a rational framework upon which future catalytic processes can be built. Visualization and analysis of gas-catalyst chemical reactions at the atomic level under controlled reaction conditions are key to understanding the catalyst structural evolution and atomic scale reaction mechanisms crucial to the performance and the development of improved catalysts and chemical processes. Increasingly, dynamic single atoms and atom clusters are believed to lead to enhanced catalyst performance, but despite considerable efforts, reaction mechanisms at the single atom level under reaction conditions of gas and temperature are not well understood. The development of the atomic lattice resolution environmental transmission electron microscope (ETEM) by the authors is widely used to visualize gas-solid catalyst reactions at this atomic level. It has recently been advanced to the environmental scanning TEM (ESTEM) with single atom resolution and full analytical capabilities. The ESTEM employs high-angle annular dark-field imaging where intensity is approximately proportional to the square of the atomic number (Z). In this Account, we highlight the ESTEM development also introduced by the authors for real time in situ studies to reliably discern metal atoms on lighter supports in gas and high temperature environments, evolving oxide/metal interfaces, and atomic level reaction mechanisms in heterogeneous catalysts more generally and informatively, with utilizing the wider body of literature. The highlights include platinum/carbon systems of interest in fuel cells to meet energy demands and reduce environmental pollution, in reduction/oxidation (redox) mechanisms of copper and nickel nanoparticles extensively employed in catalysis, electronics, and sensors, and in the activation of supported cobalt catalysts in Fischer-Tropsch (FT) synthesis to produce fuels. By following the dynamic reduction process at operating temperature, we investigate Pt atom migrations from irregular nanoparticles in a carbon supported platinum catalyst and the resulting faceting. We outline the factors that govern the mechanism involved, with the discovery of single atom interactions which indicate that a primary role of the nanoparticles is to act as reservoirs of low coordination atoms and clusters. This has important implications in supported nanoparticle catalysis and nanoparticle science. In copper and nickel systems, we track the oxidation front at the atomic level as it proceeds across a nanoparticle, by directly monitoring Z-contrast changes with time and temperature. Regeneration of deactivated catalysts is key to prolong catalyst life. We discuss and review analyses of dynamic redox cycles for the redispersion of nickel nanoparticles with single atom resolution. In the FT process, pretreatment of practical cobalt/silica catalysts reveals higher low-coordination Co0 active sites for CO adsorption. Collectively, the ESTEM findings generate structural insights into catalyst dynamics important in the development of efficient catalysts and processes.
Collapse
|
18
|
Liu B, Li W, Xu Y, Lin Q, Jiang F, Liu X. Insight into the Intrinsic Active Site for Selective Production of Light Olefins in Cobalt-Catalyzed Fischer–Tropsch Synthesis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00352] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Wenping Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Qiang Lin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| |
Collapse
|
19
|
Nickel catalyst with atomically-thin meshed cobalt coating for improved durability in dry reforming of methane. J Catal 2019. [DOI: 10.1016/j.jcat.2019.04.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Highly Dispersed Ni Nanocatalysts Derived from NiMnAl-Hydrotalcites as High-Performing Catalyst for Low-Temperature Syngas Methanation. Catalysts 2019. [DOI: 10.3390/catal9030282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increasing the low-temperature performance of nickel-based catalysts in syngas methanation is critical but very challenging, because at low temperatures there is high concentration of CO on the catalyst surface, causing formation of nickel carbonyl with metallic Ni and further catalyst deactivation. Herein, we have prepared highly dispersed Ni nanocatalysts by in situ reduction of NiMnAl-layered double hydroxides (NiMnAl-LDHs) and applied them to syngas methanation. The synthesized Ni nanocatalysts maintained the nanosheet structure of the LDHs, in which Ni particles were decorated with MnOy species and embedded in the AlOx nanosheets. It was observed that the Ni nanocatalysts exhibited markedly better low-temperature performance than commercial catalysts in the syngas methanation. At 250 °C, 3.0 MPa and a high weight hourly space velocity (WHSV) of 30,000 mL·g−1·h−1, both the CO conversion and the CH4 selectivity reached 100% over the former, while those over the commercial catalyst were only 14% and 76%, respectively. Furthermore, this NiMnAl catalyst exhibited strong anti-carbon and anti-sintering properties at high temperatures. The enhanced low-temperature performance and high-temperature stability originated from the promotion effect of MnOy and the embedding effect of AlOx in the catalyst.
Collapse
|