1
|
Tang Y, Liu X, Qi P, Cai Y, Wang H, Qin Y, Gu W, Wang C, Sun Y, Zhu C. Single-Atom Ce-Doped Metal Hydrides with High Phosphatase-like Activity Amplify Oxidative Stress-Induced Tumor Apoptosis. ACS NANO 2024; 18:25685-25694. [PMID: 39223090 DOI: 10.1021/acsnano.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Phosphates within tumors function as key biomolecules, playing a significant role in sustaining the viability of tumors. To disturb the homeostasis of cancer cells, regulating phosphate within the organism proves to be an effective strategy. Herein, we report single-atom Ce-doped Pt hydrides (Ce/Pt-H) with high phosphatase-like activity for phosphate hydrolysis. The resultant Ce/Pt-H exhibits a 26.90- and 6.25-fold increase in phosphatase-like activity in comparison to Ce/Pt and Pt-H, respectively. Mechanism investigations elucidate that the Ce Lewis acid site facilitates the coordination with phosphate groups, while the surface hydrides enhance the electron density of Pt for promoting catalytic ability in H2O cleavage and subsequent nucleophilic attack of hydroxyl groups. Finally, by leveraging its phosphatase-like activity, Ce/Pt-H can effectively regulate intracellular phosphates to disrupt redox homeostasis and amplify oxidative stress within cancer cells, ultimately leading to tumor apoptosis. This work provides fresh insights into noble-metal-based phosphatase mimics for inducing tumor apoptosis.
Collapse
Affiliation(s)
- Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xupeng Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Pengcheng Qi
- Institute of Nano-Science and Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, P. R. China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
2
|
Zhai Q, Zheng S, Zhang C, Lu Z, Liang S, Li R, Zhang X, Pan H, Zhang H. Kj-mhpC Enzyme in Klebsiella jilinsis 2N3 Is Involved in the Degradation of Chlorimuron-Ethyl via De-Esterification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5176-5184. [PMID: 38417018 DOI: 10.1021/acs.jafc.3c08918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Microbial degradation is a highly efficient and reliable approach for mitigating the contamination of sulfonylurea herbicides, such as chlorimuron-ethyl, in soil and water. In this study, we aimed to assess whether Kj-mhpC plays a pivotal role in the degradation of chlorimuron-ethyl. Kj-mhpC enzyme purified via prokaryotic expression exhibited the highest catalytic activity for chlorimuron-ethyl at 35 °C and pH 7. Bioinformatic analysis and three-dimensional homologous modeling of Kj-mhpC were conducted. Additionally, the presence of Mg+ and Cu2+ ions partially inhibited but Pb2+ ions completely inhibited the enzymatic activity of Kj-mhpC. LC/MS revealed that Kj-mhpC hydrolyzes the ester bond of chlorimuron-ethyl, resulting in the formation of 2-(4-chloro-6-methoxypyrimidine-2-amidoformamidesulfonyl) benzoic acid. Furthermore, the point mutation of serine at position 67 (Ser67) confirmed that it is the key amino acid at the active site for degrading chlorimuron-ethyl. This study enhanced the understanding of how chlorimuron-ethyl is degraded by microorganisms and provided a reference for bioremediation of the environment polluted with chlorimuron-ethyl.
Collapse
Affiliation(s)
- Qianhang Zhai
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shuanglan Zheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Cheng Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Zhou Lu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Ranhong Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130118, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130118, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Xu W, Cai X, Wu Y, Wen Y, Su R, Zhang Y, Huang Y, Zheng Q, Hu L, Cui X, Zheng L, Zhang S, Gu W, Song W, Guo S, Zhu C. Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection. Nat Commun 2023; 14:6064. [PMID: 37770453 PMCID: PMC10539540 DOI: 10.1038/s41467-023-41765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Xiaoli Cai
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yu Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuteng Huang
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Qihui Zheng
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.
| |
Collapse
|
4
|
Yue J, Chen Y, Wang X, Xu B, Xu Z, Liu X, Chen Z, Zhang K, Jiang W. Artificial phosphatase upon premicellar nanoarchitectonics of lanthanum complexes with long-chained imidazole derivatives. J Colloid Interface Sci 2022; 627:459-468. [PMID: 35868041 DOI: 10.1016/j.jcis.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/17/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Four novel long chain-containing tridentate imidazole derivatives (Ln, n = 1, 2, 3, 4) were synthesized for in situ formation of mononuclear lanthanum(III) complexes as artificial phosphodiesterases. These in-situ formed La(III) complexes (named LaLn) were used to catalyze the transesterification of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP), a classic RNA model. Critical aggregation concentrations (CAC) were determined for the as-prepared tridentate imidazole derivatives as ligands and corresponding mixtures of equivalent ligand and La3+ ion with a mole rate of 1:1. It denotes that the introduction of La3+ ion increases the CAC values of imidazole derivatives by about 2 to 3 folds. Foaming test shows that the foam height is positively correlated with the length of hydrophobic chain. Transesterification of HPNP mediated by LaLn nanoarchitectonics indicates that the introducing of hydrophobic chain benefits rate enhancement, showing excess three orders of magnitude acceleration under physiological conditions (pH 7.0, 25 °C). Moreover, catalytic reactivities of these La(III) complexes increased along with the increase in chain length: LaL1 < LaL2 < LaL3 < LaL4, suggesting a positive correlation to hydrophobic chain length.
Collapse
Affiliation(s)
- Jian Yue
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Yu Chen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Xiuyang Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China.
| | - Zhigang Xu
- School of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160, PR China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Zhongzhu Chen
- School of Pharmacy, Chongqing University of Arts and Sciences, Chongqing, Yongchuan 402160, PR China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, PR China.
| |
Collapse
|
5
|
Zhang Q, Shu J, Zhang Y, Xu Z, Yue J, Liu X, Xu B, Chen Z, Jiang W. Structures and esterolytic reactivity of novel binuclear copper(ii) complexes with reduced l-serine Schiff bases as mimic carboxylesterases. Dalton Trans 2020; 49:10261-10269. [PMID: 32672259 DOI: 10.1039/d0dt01823f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel binuclear copper(ii) complexes with reduced l-serine Schiff bases were synthesized and their structures were analyzed with single-crystal X-ray diffraction and DFT calculations. The crystal data revealed that all of these binuclear complexes are chiral. Both 5-halogenated (bromo- and chloro-) binuclear complexes exhibit right-handed helix structural character. Interestingly, the 5-methyl-containing analogue has a two-dimensional pore structure. In this paper, the esterolysis reactivity of the as-prepared complexes shows that in the hydrolysis of p-nitrophenyl acetate (PNPA) these three complexes provide 26, 18, 40-fold rate acceleration as compared to the spontaneous hydrolysis of PNPA at pH 7.0, respectively. Under selected conditions, in excess buffered aqueous solution a rate enhancement by three orders of magnitude was observed for the catalytic hydrolysis of another carboxylic ester, p-nitrophenyl picolinate (PNPP). These complexes efficiently promoted PNPP hydrolysis in a micellar solution of cetyltrimethylammonium bromide (CTAB), giving rise to a rate enhancement in excess of four orders of magnitude, which is approximately 2.0-3.2 times higher than that in the buffer.
Collapse
Affiliation(s)
- Qin Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan Zigong 643000, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang J, Tang X, Zhang Y, Li Y, Zhu L, Zhang Q, Wang W. How to complete the tautomerization and substrate-assisted activation prior to C–C bond fission by meta-cleavage product hydrolase LigY? Catal Sci Technol 2020. [DOI: 10.1039/d0cy01102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two feasible binding modes could complete the C–C bond fission of the substrate. One is the bidentate mode and five-coordination, and the other is the monodentate mode and five-coordination.
Collapse
Affiliation(s)
- Junjie Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yixin Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Yanwei Li
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Ledong Zhu
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| |
Collapse
|