1
|
Liu J, Ralphs K, Murnaghan CWJ, Skillen N, Sheldrake GN, McCarron P, Robertson PKJ. Exploring the Photocatalytic Cleavage Pathway of the β-5 Linkage Lignin Model Compound on Carbon Nitride. CHEMSUSCHEM 2024:e202400955. [PMID: 39255046 DOI: 10.1002/cssc.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As a globally abundant source of biomass, lignocellulosic biomass has been the centre of attention as a potential resource for green energy generation and value-added chemical production. A key component of lignocellulosic biomass, lignin, which is comprised of aromatic monomers, is a potential feedstock for value added chemical production. The cleavage processes of the linkages between monomers to obtain high value products, however, requires significant investigation as it is a complex, non-facile process. This study focuses on the photocatalytic valorization of a β-5 lignin model compound, a key linkage in the lignin structure. It was found that greater yields of aromatic products were obtained from the photocatalytic conversion of β-5 lignin model compound using carbon nitride (CN) when compared to Evonik P25 titanium dioxide (TiO2). Products of the β-5 model compound photocatalytic conversion were determined and C-C bond cleavage was observed. It was also determined that the solvent participated in the reactions with the introduction of a cyano group to one of the products. Radical quenching experiments revealed that superoxide radicals participated in the CN photocatalytic conversion. These results reveal for the first time the products and possible mechanism of the photocatalytic transformation of β-5 model compounds using CN photocatalysis.
Collapse
Affiliation(s)
- Junhong Liu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom of Great Britain and Northern Ireland
| | - Kathryn Ralphs
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom of Great Britain and Northern Ireland
| | - Christopher W J Murnaghan
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom of Great Britain and Northern Ireland
| | - Nathan Skillen
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom of Great Britain and Northern Ireland
| | - Gary N Sheldrake
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom of Great Britain and Northern Ireland
| | - Philip McCarron
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Chlorine Gardens, Belfast, BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Peter K J Robertson
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
2
|
Rojas SD, Rafaela G, Espinoza-Villalobos N, Diaz-Droguett DE, Salazar-González R, Caceres-Jensen L, Escalona N, Barrientos L. Role of Nb 2O 5 Crystal Phases on the Photocatalytic Conversion of Lignin Model Molecules and Selectivity for Value-Added Products. CHEMSUSCHEM 2024; 17:e202301594. [PMID: 38452280 DOI: 10.1002/cssc.202301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
The photocatalytic conversion in aqueous media of phenol and guaiacol as a lignin model compound using Nb2O5 with different crystal phases was studied. Nb2O5 particles were synthesized using hydrothermal methods, where it was observed that changes in the solvent control their morphology and crystal phase. Different photocatalytic behavior of Nb2O5 was observed with the selected model compounds, indicating that its selection directly impacts the resulting conversion and selectivity rates as well as the reaction pathway, highlighting the relevance of model molecule selection. Photocatalytic conversion of phenol showed conversion rate (C%) up to 25 % after 2 h irradiation and high selectivity (S%) to pyrogallol (up to 50 %). Orthorhombic Nb2O5 spheres favored conversion through free hydroxyl radicals while monoclinic rods did not convert phenol. Guaiacol photocatalytic oxidation showed high conversion rate but lower selectivity. Orthorhombic and monoclinic Nb2O5 favored the formation of resorcinol with S % ~0.43 % (C % ~33 %) and ~13 % (C % ~27 %) respectively. The mixture of both phases enhanced the guaiacol conversion rate to ~55 % with ~17 % of selectivity to salicylaldehyde. The use of radical scavengers provided information to elucidate the reaction pathway for these model compounds, showing that different reaction pathways may be obtained for the same photocatalyst if the model compound is changed.
Collapse
Affiliation(s)
- Susana D Rojas
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Current Address: Escuela de Ingeniería Industrial, Facultad de Ingeniería, Universidad de Valparaíso, Avenida Brasil 1786, Valparaíso, Chile
- Gran Avenida 4160, San Miguel, Santiago, Chile
| | - Gabriela Rafaela
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nicole Espinoza-Villalobos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Donovan E Diaz-Droguett
- Instituto de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
- Centro de investigación en Nanotecnología y Materiales CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de Energía UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Ricardo Salazar-González
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Lizethly Caceres-Jensen
- Laboratorio de Fisicoquímica & Analítica (PachemLab), Nucleus of Computational Thinking and Education for Sustainable Development (NuCES), Center for Research in Education (CIE-UMCE), Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Avenida José Pedro Alessandri 774, Ñuñoa, Santiago, 776019, Chile
| | - Néstor Escalona
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de investigación en Nanotecnología y Materiales CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Lorena Barrientos
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Centro de investigación en Nanotecnología y Materiales CIEN-UC, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile
| |
Collapse
|
3
|
Li M, Ke S, Yang X, Shen L, Yang MQ. S-scheme homojunction of 0D cubic/2D hexagonal ZnIn 2S 4 for efficient photocatalytic reduction of nitroarenes. J Colloid Interface Sci 2024; 674:547-559. [PMID: 38943915 DOI: 10.1016/j.jcis.2024.06.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
The targeted conversion of toxic nitroarenes to corresponding aminoarenes presents significant promise in simultaneously addressing environmental pollution concerns and producing value-added fine chemicals. In this study, we synthesize a 0D/2D ZnIn2S4 homojunction (CH-ZnIn2S4) by in situ growth of cubic ZnIn2S4 (C-ZnIn2S4) quantum dots onto the surface of ultrathin hexagonal ZnIn2S4 (H-ZnIn2S4) nanosheets for photocatalytic reduction of nitroarenes to aminoarenes using water as a hydrogen donor. The optimal performance of photocatalytic nitro reduction over the 0D/2D CH-ZnIn2S4 homojunction reaches 96.1% within 20 min of visible light irradiation, which is 2.45 and 1.52 times than that of C-ZnIn2S4 (39.3%) and H-ZnIn2S4 (63.3%), respectively. The improved photocatalytic performance can be attributed to the formation of a step-type S-scheme homojunction, characterized by identity chemical composition and natural lattice matching. The configuration enables continuous band bending and a low energy barrier of charge transportation, benefiting the charge transfer across the interface while maximizing their redox capabilities. Furthermore, the 2D structure of H-ZnIn2S4 nanosheets offers abundant surface sites to immobilize the 0D C-ZnIn2S4 that provides ample exposed active sites with low overpotential for HER, thereby ensuring high hydrogenation reduction activity of nitroarenes. The study is expected to inspire further interest in the reasonable design of homojunction structures for efficient and sustainable photocatalytic redox reactions.
Collapse
Affiliation(s)
- Mengqing Li
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China
| | - Suzai Ke
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China
| | - Xuhui Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China
| | - Lijuan Shen
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| | - Min-Quan Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China.
| |
Collapse
|
4
|
He J, Han B, Xian C, Hu Z, Fang T, Zhang Z. Hydrogen-Bond-Mediated Formation of C-N or C=N Bond during Photocatalytic Reductive Coupling Reaction over CdS Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202404515. [PMID: 38637293 DOI: 10.1002/anie.202404515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.
Collapse
Affiliation(s)
- Jie He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Bo Han
- Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chensheng Xian
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Zhao Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Tingfeng Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Umair M, Pecoraro CM, Di Franco F, Santamaria M, Palmisano L, Loddo V, Bellardita M. Efficient Photocatalytic Partial Oxidation of Aromatic Alcohols by Using ZnIn 2S 4 under Green Conditions. CHEMSUSCHEM 2024:e202400404. [PMID: 38863441 DOI: 10.1002/cssc.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
The ternary chalcogenide ZnIn2S4 (ZIS) has been synthesized by a simple hydrothermal method in which the carcinogen thiacetamide, universally used as a precursor, has been, for the first time, replaced successfully with the harmless thiourea. ZIS has been used as photocatalyst for the partial oxidation of different aromatic alcohols to their corresponding aldehyde in water solution, under ambient conditions and simulated solar light irradiation. The photocatalytic performance of ZnIn2S4 was better than TiO2 P25. In the presence of ZIS for 4-methoxybenzyl alcohol, piperonyl alcohol, and benzyl alcohol, a selectivity towards the corresponding aldehyde of 99 % for a conversion of 46 %, 75 % for a conversion of 81 %, and 87 % for a conversion of 25 %, respectively, was obtained. For the same alcohols a selectivity of 19 % for a conversion of 41 %, 19 % for a conversion of 13 %, and 16 % for a conversion of 26 %, was observed in the presence of TiO2 P25.
Collapse
Affiliation(s)
- Muhammad Umair
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Claudio Maria Pecoraro
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Francesco Di Franco
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Monica Santamaria
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Leonardo Palmisano
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Vittorio Loddo
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| | - Marianna Bellardita
- Engineering Department, University of Palermo, Viale delle Scienze Ed. 6, 90128, Palermo, Italy
| |
Collapse
|
6
|
Feng B, Liu Y, Wan K, Zu S, Pei Y, Zhang X, Qiao M, Li H, Zong B. Tailored Exfoliation of Polymeric Carbon Nitride for Photocatalytic H 2O 2 Production and CH 4 Valorization Mediated by O 2 Activation. Angew Chem Int Ed Engl 2024; 63:e202401884. [PMID: 38376362 DOI: 10.1002/anie.202401884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/21/2024]
Abstract
The exfoliation of bulk C3N4 (BCN) into ultrathin layered structure is an effective strategy to boost photocatalytic efficiency by exposing interior active sites and accelerating charge separation and transportation. Herein, we report a novel nitrate anion intercalation-decomposition (NID) strategy that is effective in peeling off BCN into few-layer C3N4 (fl-CN) with tailored thickness down to bi-layer. This strategy only involves hydrothermal treatment of BCN in diluted HNO3 aqueous solution, followed by pyrolysis at various temperatures. The decomposition of the nitrate anions not only exfoliates BCN and changes the band structure, but also incorporates oxygen species onto fl-CN, which is conducive to O2 adsorption and hence relevant chemical processes. In photocatalytic O2 reduction under visible light irradiation, the H2O2 production rate over the optimal fl-CN-530 catalyst is 952 μmol g-1 h-1, which is 8.8 times that over BCN. More importantly, under full arc irradiation and in the absence of hole scavenger, CH4 can be photocatalytically oxidized by on-site formed H2O2 and active oxygen species to generate value-added C1 oxygenates with high selectivity of 99.2 % and record-high production rate of 1893 μmol g-1 h-1 among the metal-free C3N4-based photocatalysts.
Collapse
Affiliation(s)
- Bo Feng
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yanan Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Kun Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Sijie Zu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yan Pei
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoxin Zhang
- State Key Laboratory of Catalytic Materials and Chemical Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, P. R. China
| | - Minghua Qiao
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Hexing Li
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Baoning Zong
- State Key Laboratory of Catalytic Materials and Chemical Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing, 100083, P. R. China
| |
Collapse
|
7
|
Valero R, Morales-García Á, Illas F. Estimating Nonradiative Excited-State Lifetimes in Photoactive Semiconducting Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2713-2721. [PMID: 38379918 PMCID: PMC10875665 DOI: 10.1021/acs.jpcc.3c08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The time evolution of the exciton generated by light adsorption in a photocatalyst is an important feature that can be approached from full nonadiabatic molecular dynamics simulations. Here, a crucial parameter is the nonradiative recombination rate between the hole and the electron that form the exciton. In the present work, we explore the performance of a Fermi's golden rule-based approach on predicting the recombination rate in a set of photoactive titania nanostructures, relying solely on the coupling of the ground and first excited state. In this scheme the analysis of the first excited state is carried out by invoking Kasha's rule thus avoiding computationally expensive nonadiabatic molecular dynamics simulations and resulting in an affordable estimate of the recombination rate. Our results show that, compared to previous ones from nonadiabatic molecular dynamics simulations, semiquantitative recombination rates can be predicted for the smaller titania nanostructures, and qualitative values are obtained from the larger ones. The present scheme is expected to be useful in the field of computational heterogeneous photocatalysis whenever a complex and computationally expensive full nonadiabatic molecular dynamics cannot be carried out.
Collapse
Affiliation(s)
- Rosendo Valero
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
- Headquarters
Research Institute, Zhejiang Huayou Cobalt, 018 Wuzhen East Rd, 314599 Jiaxing, Zhejiang, China
| | - Ángel Morales-García
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Chen S, Zhou Y, Ma X. Homogeneous-like photocatalysis: covalent immobilization of an iridium(III) complex onto polystyrene brushes grafted on SiO 2 nanoparticles as a mass/charge transfer-enhanced platform. Dalton Trans 2024; 53:2731-2740. [PMID: 38226726 DOI: 10.1039/d3dt03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Current heterogeneous photocatalysis faces the major bottlenecks of limited mass transfer, charge recombination and tedious immobilization of expensive photocatalysts. In this work, fac-Ir(ppy)3 is directly anchored at a low cost via covalent linkage to poly(4-vinyl benzyl chloride) (PVBC) brushes grafted on SiO2 nanoparticles (PVBC@SiO2 NPs) via Friedel-Crafts alkylation, affording PVBC@SiO2 NP-supported fac-Ir(ppy)3 with high luminous efficacies such as emission lifetime and quantum yield. In the reductive cross-coupling of benzaldehydes/acetophenones with 1,4-dicyanobenzene (1,4-DCB), the as-fabricated photocatalyst affords benzhydrols in the same yields as homogeneous fac-Ir(ppy)3, except for o-substituted benzaldehydes/acetophenones. In terms of the same yields as homogeneous fac-Ir(ppy)3, a new catalytic model, named homogeneous-like photocatalysis, is proposed. In this catalytic model, the open stretching of PVBC brushes in DMSO enables the anchored fac-Ir(ppy)3 to catalyse the reaction in a similar manner as homogeneous fac-Ir(ppy)3, effectively avoiding charge recombination and mass transfer limitation. Furthermore, no significant decrease in yield (<5%) is observed over eight catalytic cycles, due to the good chemical and mechanical stabilities of PVBC@SiO2 NP-supported fac-Ir(ppy)3. Overall, the immobilization of fac-Ir(ppy)3 onto the PVBC brushes grafted on SiO2 NPs provides a mass/charge transfer-enhanced platform for supported photocatalysts.
Collapse
Affiliation(s)
- Shaoqi Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yang Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Willis D, Sheets EC, Worbington MR, Kamat M, Glass SK, Caso MJ, Ofoegbuna T, Diaz LM, Osei-Appau C, Snow SD, McPeak KM. Efficient Chemical-Free Degradation of Waterborne Micropollutants with an Immobilized Dual-Porous TiO 2 Photocatalyst. ACS ES&T ENGINEERING 2023; 3:1694-1705. [PMID: 37969427 PMCID: PMC10644339 DOI: 10.1021/acsestengg.3c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 11/17/2023]
Abstract
Photocatalytic advanced oxidation processes (AOPs) promise a chemical-free route to energy-efficient degradation of waterborne micropollutants if long-standing mass transfer and light management issues can be overcome. Herein, we developed a dual-porous photocatalytic system consisting of a mesoporous (i.e., 2-50 nm pores) TiO2 (P25) photocatalyst supported on macroporous (i.e., >50 nm pores) fused quartz fibers (P25/QF). Our reusable photocatalytic AOP reduces chemical consumption and exhibits excellent energy efficiency, demonstrated by degrading various pharmaceutical compounds (acetaminophen, sulfamethoxazole, and carbamazepine) in natural waters with electrical energy per order (EEO) values of 4.07, 0.96, and 1.35 kWh/m3, respectively. Compared to the conventional H2O2/UVC AOP, our photocatalytic AOP can treat water without chemical additives while reducing energy consumption by over 2800%. We examine these improvements based on mass transport and optical (UVA and UVC) transmittance and demonstrate that the enhancements scale with increasing flow rate.
Collapse
Affiliation(s)
- Daniel
E. Willis
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ella C. Sheets
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mary R. Worbington
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Madhusudan Kamat
- Department
of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sarah K. Glass
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - MaCayla J. Caso
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tochukwu Ofoegbuna
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Liz M. Diaz
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Caleb Osei-Appau
- Department
of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Samuel D. Snow
- Department
of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kevin M. McPeak
- Gordon
and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Nguyen HT, Bui HM. Bandgap tuning of TiO 2 by Cu nanoparticles applied in photocatalytic antifouling-coated PES membranes through PAA-plasma grafted adhesive layer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2390-2405. [PMID: 37186638 PMCID: wst_2023_129 DOI: 10.2166/wst.2023.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study developed an antifouling coating for polyethersulfone (PES) membranes by tuning the bandgap of TiO2 with Cu nanoparticles (NPs) via a polyacrylic acid (PAA)-plasma-grafted intermediate layer. Cu NPs were synthesized at different molar ratios and precipitated onto TiO2 using the sol-gel method. The resulting Cu@TiO2 photocatalysts were characterized using various techniques, showing reduced bandgap, particle size range of 100-200 nm, and generation of reactive free radicals under light irradiation. The 25% Cu@TiO2 photocatalyst displayed the highest catalytic efficiency for Acid Blue 260 (AB260) degradation, achieving 73% and 96% with and without H2O2, respectively. Photocatalytic membranes based on this catalyst achieved an AB260 degradation efficiency of 91% and remained stable over five cycles. Additionally, sodium alginate-fouled photocatalytic membranes fully recovered water permeability after undergoing photocatalytic degradation of foulants. The modified membrane displayed a higher surface roughness due to the presence of photocatalyst particles. This study demonstrates the potential application of Cu@TiO2/PAA/PES photocatalytic membranes for mitigating membrane fouling in practice.
Collapse
Affiliation(s)
- Hieu Trung Nguyen
- Institute of Applied Technology, Thu Dau Mot University, 06 Tran Van On Street, Phu Hoa Ward, Thu Dau Mot City 750000, Binh Duong Province, Vietnam
| | - Ha Manh Bui
- Faculty of Environment, Saigon University, 273 An Duong Vuong Street, District 5, Ho Chi Minh City 700000, Vietnam E-mail:
| |
Collapse
|
11
|
Yu Y, Zeng Q, Tao S, Xia C, Liu C, Liu P, Yang B. Carbon Dots Based Photoinduced Reactions: Advances and Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207621. [PMID: 36737845 PMCID: PMC10131860 DOI: 10.1002/advs.202207621] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Seeking clean energy as an alternative to traditional fossil fuels is the inevitable choice to realize the sustainable development of the society. Photocatalytic technique is considered a promising energy conversion approach to store the abundant solar energy into other wieldy energy carriers like chemical energy. Carbon dots, as a class of fascinating carbon nanomaterials, have already become the hotspots in numerous photoelectric researching fields and particularly drawn keen interests as metal-free photocatalysts owing to strong UV-vis optical absorption, tunable energy-level configuration, superior charge transfer ability, excellent physicochemical stability, facile fabrication, low toxicity, and high solubility. In this review, the classification, microstructures, general synthetic methods, optical and photoelectrical properties of carbon dots are systematically summarized. In addition, recent advances of carbon dots based photoinduced reactions including photodegradation, photocatalytic hydrogen generation, CO2 conversion, N2 fixation, and photochemical synthesis are highlighted in detail, deep insights into the roles of carbon dots in various systems combining with the photocatalytic mechanisms are provided. Finally, several critical issues remaining in photocatalysis field are also proposed.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qingsen Zeng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Pengyuan Liu
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| |
Collapse
|
12
|
Wang S, Li S, Feng H, Yang W, Feng YS. Visible-Light-Driven Porphyrin-Based Bimetallic Metal-Organic Frameworks for Selective Photoreduction of Nitro Compounds under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4845-4856. [PMID: 36629327 DOI: 10.1021/acsami.2c22686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Selective reduction of nitroaromatics to the corresponding amines generally requires complex conditions, involving pressurized hydrogen, higher temperatures, or organic acids. In this work, we successfully prepared a series of porphyrin-based MOF photocatalysts (Pd-PMOFs, In-PMOFs, and In/Pd-PMOFs) via a facile solvothermal method for the efficient selective reduction of nitroaromatics to corresponding anilines with deionized water as the hydrogen donor. Being a new structured material (monoclinic, C52H40InN6O8Pd), on account of the abundant pore channels, strong light absorption capability, well-matched bandgap, as well as the coordination of indium ions and palladium ions, In/Pd-MOFs have excellent migration efficiency of photo-induced electrons and holes. Specifically, the In/Pd-PMOF photocatalyst manifested superior conversion (100%) and selectivity (≥80%) toward the screened nitro compounds under mild conditions. This work avoids the use of strong reductants, organic acids, and pressurized hydrogen gas as hydrogen sources, providing a promising concept for developing green catalytic systems.
Collapse
Affiliation(s)
- Sheng Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Shihao Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Huiyi Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Wenqing Yang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui230009, China
- Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, Hefei230009, P. R. China
| |
Collapse
|
13
|
Bellardita M, Feilizadeh M, Fiorenza R, Scirè S, Palmisano L, Loddo V. Selective aqueous oxidation of aromatic alcohols under solar light in the presence of TiO 2 modified with different metal species. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2139-2151. [PMID: 35988108 DOI: 10.1007/s43630-022-00284-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/31/2022] [Indexed: 12/13/2022]
Abstract
A set of metals modified TiO2 photocatalysts were prepared starting from titanium tetraisopropoxyde and different metal precursors to study the influence of the addition of the various foreign agents on the physico-chemical and photocatalytic properties of the catalysts. The powders were characterized by X-ray diffraction, Raman spectroscopy, specific surface area measurements, scanning electron microscopy, energy dispersive X-ray spectroscopy, UV-Vis diffuse reflectance spectroscopy, photoluminescence, temperature programmed desorption after CO2 adsorption. The photocatalytic activity was evaluated using as probe reactions the partial oxidation of three aromatic alcohols: benzyl alcohol (BA), 4-methoxy benzyl alcohol (4-MBA), and 4-hydroxy benzyl alcohol (4-HBA) under simulated solar light irradiation. Different oxidation and selectivity values were obtained for the three substrates depending not only on the type of metals but also on the nature and position of the substituent in the phenyl ring of benzyl alcohol. As a general behaviour, the doped samples allowed the achievement of a greater selectivity especially for 4-MBA even if sometimes with minor conversions. The presence of W or Nb was beneficial for both conversion and selectivity for all the substrates with respect to bare TiO2.
Collapse
Affiliation(s)
| | | | - Roberto Fiorenza
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Salvatore Scirè
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | - Vittorio Loddo
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Sustainable organic synthesis promoted on titanium dioxide using coordinated water and renewable energies/resources. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Tratrat C, Alomair NA, Kochkar H, Jubran al Malih R, Haroun M, Abubshait S, Younas M, Berhault G, Venugopala KN, Nagaraja S, Emeka PM, Elsewedy HS, Nair AB, Kammoun M. Visible-Light-Driven Selective Esterification of Benzaldehyde Derivatives using Strontium-Modified 1D Titanium Dioxide Nanotubes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Photocatalytic Selective Oxidation of Toluene into Benzaldehyde on Mixed-Valence Vanadium Oxide V6O13 Catalyst with Density Functional Theory. Catal Letters 2022. [DOI: 10.1007/s10562-022-04184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Towards the Sustainable Production of Ultra-Low-Sulfur Fuels through Photocatalytic Oxidation. Catalysts 2022. [DOI: 10.3390/catal12091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the sulfur-containing compounds are removed from motor fuels through the traditional hydrodesulfurization technology, which takes place under harsh reaction conditions (temperature of 350–450 °C and pressure of 30–60 atm) in the presence of catalysts based on alumina with impregnated cobalt and molybdenum. According to the principles of green chemistry, energy requirements should be recognized for their environmental and economic impacts and should be minimized, i.e., the chemical processes should be carried out at ambient temperature and atmospheric pressure. This approach could be implemented using photocatalysts that are sensitive to visible light. The creation of highly active photocatalytic systems for the deep purification of fuels from sulfur compounds becomes an important task of modern catalysis science. The present critical review reports recent progress over the last 5 years in heterogeneous photocatalytic desulfurization under visible light irradiation. Specific attention is paid to the methods for boosting the photocatalytic activity of materials, with a focus on the creation of heterojunctions as the most promising approach. This review also discusses the influence of operating parameters (nature of oxidant, molar ratio of oxidant/sulfur-containing compounds, photocatalyst loading, etc.) on the reaction efficiency. Some perspectives and future research directions on photocatalytic desulfurization are also provided.
Collapse
|
18
|
Sheng W, Wang X, Wang Y, Chen S, Lang X. Integrating TEMPO into a Metal–Organic Framework for Cooperative Photocatalysis: Selective Aerobic Oxidation of Sulfides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Wenlong Sheng
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxiao Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Chen
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
19
|
Wang Y, Li X, Dong X, Zhang F, Lang X. Triazine-based two dimensional porous materials for visible light-mediated oxidation of sulfides to sulfoxides with O 2. J Colloid Interface Sci 2022; 616:846-857. [PMID: 35257934 DOI: 10.1016/j.jcis.2022.02.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023]
Abstract
Recently, triazine-based two dimensional (2D) porous materials have received increasing attention in photocatalysis. Herein, CTF-1, a covalent triazine framework, was adopted as the blueprint for designing a 2D bespoke photocatalyst. The thiazolo[5,4-d]thiazole (TzTz) linkage was inserted into the framework of CTF-1, affording TzTz-TA, which belongs to conjugated microporous polymers (CMPs). Rather than the direct insertion via the challenging CH activation, TzTz-TA was assembled from 2,4,6-tris(4-formylphenyl)-1,3,5-triazine and dithiooxamide, in which TzTz was formed in situ by a process of catalyst-free solvothermal condensation. Both CTF-1 and TzTz-TA had similar energy gaps (Eg), photocurrents, and charge carrier lifetimes, in line with the similar molecular underpinnings. However, the reduction potential of TzTz-TA is less negative than that of CTF-1 due to the insertion of TzTz linkage, in a more appropriate position for activating O2 to superoxide (O2•-). In return, blue light-mediated oxidation of sulfides to sulfoxides with O2 over TzTz-TA was accomplished with significantly superior conversions to those over CTF-1. Intriguingly, extensive sulfides could be oxidized to corresponding sulfoxides with outstanding recycling stability of TzTz-TA. Notably, attendance of an induction period was observed during TzTz-TA photocatalysis. This work highlights the vast potential of designing triazine-based porous materials to meet the tailor-made demands, such as the oxidative transformation of organic molecules with O2.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
20
|
Chen Y, Sun D, Du L, Jiao Y, Han W, Tian G. Sandwich-Structured Hybrid of NiCo Nanoparticles-Embedded Carbon Nanotubes Grafted on C 3N 4 Nanosheets for Efficient Photodehydrogenative Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24425-24434. [PMID: 35603740 DOI: 10.1021/acsami.2c04826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring cheap and efficient hybrid catalysts offers exciting opportunities for enhancing the performance of photocatalysts in the green organic synthesis field. Herein, a facile and effective approach is designed for the synthesis of a sandwich-structured hybrid in which NiCo bimetallic nanoparticles are embedded in the tip of nitrogen-doped carbon nanotubes (N-CNTs) grafted on both sides of a nitrogen deficient C3N4 (Nv-C3N4) nanosheet for photodehydrogenative coupling reactions. Such a brand-new type of sandwich-structured hybrid comprises Nv-C3N4 nanosheets and surrounding N-CNTs embedded with NiCo nanoparticles at their tips. Remarkably, the resultant hybrid exhibits integrated functionalities, abundant active sites, enhanced visible light absorption, and excellent interfacial charge transfer ability. As a result, the optimized NiCo@N-CNTs@Nv-C3N4 photocatalyst shows significantly improved photodehydrogenative coupling performance of amines to imines compared to the control single-metal-based catalysts (Ni@N-CNTs@Nv-C3N4 and Co@N-CNTs@Nv-C3N4). The mechanistic investigation through experimental and computational study demonstrates that, compared with single-metal-based hybrids, the NiCo bimetallic hybrid exhibits stronger amine adsorption and weaker photogenerated hydrogen atom adsorption, thus promoting the dehydrogenative activation of primary amines and fast generation of imines. This work presents a promising insight for designing and preparing efficient photocatalysts to trigger organic synthesis in high yields.
Collapse
Affiliation(s)
- Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Dan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Lizhi Du
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Yuzhen Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Wei Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| |
Collapse
|
21
|
Enhanced Photogenerated Hole Oxidation Capability of Li2SnO3 by Sb Incorporation in Photocatalysis Through Band Structure Modification. Catal Letters 2022. [DOI: 10.1007/s10562-022-04046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Reza MS, Ahmad NBH, Afroze S, Taweekun J, Sharifpur M, Azad AK. Hydrogen Production from Water Splitting Through Photocatalytic Activity of Carbon‐Based Materials, A Review. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Md Sumon Reza
- Faculty of Integrated Technologies Universiti Brunei Darussalam Jalan Tungku Link Gadong 1410 Brunei Darussalam
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering Prince of Songkla University Hatyai Songkhla 90112 Thailand
| | - Nurnazurah Binti Haji Ahmad
- Faculty of Integrated Technologies Universiti Brunei Darussalam Jalan Tungku Link Gadong 1410 Brunei Darussalam
| | - Shammya Afroze
- Faculty of Integrated Technologies Universiti Brunei Darussalam Jalan Tungku Link Gadong 1410 Brunei Darussalam
| | - Juntakan Taweekun
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering Prince of Songkla University Hatyai Songkhla 90112 Thailand
| | - Mohsen Sharifpur
- Department of Mechanical and Aeronautical Engineering University of Pretoria Pretoria 0002 South Africa
- Department of Medical Research, China Medical University Hospital China Medical University Taichung 406040 Taiwan
| | - Abul Kalam Azad
- Faculty of Integrated Technologies Universiti Brunei Darussalam Jalan Tungku Link Gadong 1410 Brunei Darussalam
| |
Collapse
|
23
|
Attia YA, Mohamed YMA. Nano Ag/AgCl wires-photocatalyzed hydrogen production and transfer hydrogenation of Knoevenagel-type products. NEW J CHEM 2022. [DOI: 10.1039/d1nj04985b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An investigation of the relationship between the morphology of Ag/AgCl nanostructured composites with their catalytic performance has been reported.
Collapse
Affiliation(s)
- Yasser A. Attia
- National Institute of Laser Enhanced Sciences, Cairo University, 12613, Egypt
| | | |
Collapse
|
24
|
Ai L, Shi R, Yang J, Zhang K, Zhang T, Lu S. Efficient Combination of G-C 3 N 4 and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007523. [PMID: 33683817 DOI: 10.1002/smll.202007523] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/01/2021] [Indexed: 05/14/2023]
Abstract
Recently, heterogeneous photocatalysts have achieved much interest on account of their great potential applications in resolving many tough energy and environmental troubles around the world through an ecologically sustainable way. Heterogeneous nanocomposites composed of graphitic carbon nitride (g-C3 N4 ) and carbon dots (CDs) possess broad spectrum absorption, appropriate electronic band structures, rapid carrier mobility, abundant reserves, excellent chemical stability, and facile synthesis methods, which make them promising composite photocatalysts for suitable applications such as photocatalytic solar fuels production and contaminant decomposition. With the rapid development in photocatalysis by hybridization of g-C3 N4 and CDs, a systematic summary and prospection of performance improvement are urgent and meaningful. This review first focuses on various kinds of effectively synthetic methods of composites. Following, the strategies available for enhanced performance, including morphology optimization, spectral absorption improvement, ternary or quaternary composition hybrid, lateral or vertical heterostructures construction, heteroatom doping, and so forth, are fully discussed. Then, the applications mainly in efficient photocatalytic hydrogen generation, photocatalytic carbon dioxide reduction, and organic pollutants degradation are systematically demonstrated. Finally, the remaining issues and prospect of further development are proposed as some kind of guidance for powerful combination of g-C3 N4 and CDs with high efficiency to photocatalysis.
Collapse
Affiliation(s)
- Lin Ai
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Yang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kan Zhang
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
25
|
Zhang T, Wang Y, Xie X, Shao Y, Zeng Y, Zhang S, Yan Q, Li Z. Dual Z-scheme 2D/3D carbon-bridging modified g-C3N4/BiOI-Bi2O3 composite photocatalysts for effective boosting visible-light-driven photocatalytic performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119443] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Rojas S, Espinoza-Villalobos N, Salazar R, Escalona N, Contreras D, Melin V, Laguna-Bercero M, Sánchez-Arenillas M, Vergara E, Caceres-Jensen L, Rodriguez-Becerra J, Barrientos L. Selective photocatalytic conversion of guaiacol using g-C3N4 metal free nanosheets photocatalyst to add-value products. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Zhu H, Cai S, Liao G, Gao ZF, Min X, Huang Y, Jin S, Xia F. Recent Advances in Photocatalysis Based on Bioinspired Superwettabilities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04049] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hai Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Si Cai
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Zhong Feng Gao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, People’s Republic of China
| | - Xuehong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Yu Huang
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China
| | - Fan Xia
- China State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| |
Collapse
|
28
|
Kuchmiy SY. Photocatalytic Air Decontamination from Volatile Organic Pollutants Using Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Yurdakal S, Bellardita M, Pibiri I, Palmisano L, Loddo V. Aqueous selective photocatalytic oxidation of salicyl alcohol by TiO2 catalysts: Influence of some physico-chemical features. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Chen X, Wang Y, Zhang L. Recent Progress in the Chemical Upcycling of Plastic Wastes. CHEMSUSCHEM 2021; 14:4137-4151. [PMID: 34003585 DOI: 10.1002/cssc.202100868] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Indexed: 06/12/2023]
Abstract
The massive generation of plastic wastes without satisfactory treatment has induced severe environmental problems and gained increasing attentions. In this Minireview, recent progresses in the chemical upcycling of plastic wastes by using various methods (mainly in the past three to five years) is summarized. The chemical upcycling of plastic wastes points out a "plastic-based refinery" concept, which is to use the plastic wastes as platform feedstocks to produce highly valuable monomeric or oligomeric compounds, putting the plastic wastes back into a circular economy. The different chemical methods to upcycle plastic wastes, including hydrogenolysis, photocatalysis, pyrolysis, solvolysis, and others, are introduced in each section to valorize diverse plastic feedstocks into value-added chemicals, materials, or fuels. In addition, other emerging technologies as well as the new generation of plastic thermosets are covered.
Collapse
Affiliation(s)
- Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, Pudong District, Shanghai, 201306, P. R. China
| | - Yudi Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, Pudong District, Shanghai, 201306, P. R. China
| | - Lei Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, Pudong District, Shanghai, 201306, P. R. China
| |
Collapse
|
31
|
Wang Y, Zhou J, Ma X, Li X, Lang X. Cooperative Photocatalysis with 4-Amino-TEMPO for Selective Aerobic Oxidation of Amines over TiO 2 Nanotubes. Chem Asian J 2021; 16:2659-2668. [PMID: 34302305 DOI: 10.1002/asia.202100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Attaching π-conjugated molecules onto TiO2 can form surface complexes that could capture visible light. However, to make these TiO2 surface complexes durable, integrating 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or its analogues as a redox mediator with photocatalysis is the key to constructing selective chemical transformations. Herein, sodium 6,7-dihydroxynaphthalene-2-sulfonate (DHNS) was obtained by extending the π-conjugated system of catechol by adding a benzene ring and a substituent sodium sulfonate (-SO3 - Na+ ). The DHNS-TiO2 showed the best photocatalytic activity towards the blue light-induced selective aerobic oxidation of benzylamine. Compared to TEMPO, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) could rise above 70% in conversion of benzylamine over the DHNS-TiO2 photocatalyst. Eventually, a wide range of amines could be selectively oxidized into imines with atmospheric O2 by cooperative photocatalysis of DHNS-TiO2 with 4-amino-TEMPO. Notably, superoxide (O2 •- ) is crucial in coupling the photocatalytic cycle of DHNS-TiO2 and the redox cycle of 4-amino-TEMPO. This work underscores the design of surface ligands for semiconductors and the selection of a redox mediator in visible light photocatalysis for selective chemical transformations.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Zhou
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoming Ma
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
32
|
Li Q, Wang J, Zhang Y, Ricardez-Sandoval L, Bai G, Lan X. Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39291-39303. [PMID: 34392679 DOI: 10.1021/acsami.1c08951] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are appealing platforms for photocatalysts because of their structural diversity and adjustable optical band gaps. The construction of efficient COFs for heterogeneous photocatalysis of organic transformations is highly desirable. Herein, we constructed a photoactive COF containing benzothiadiazole and triazine (BTDA-TAPT), for which the morphology and crystallinity might be easily tuned by slight synthetic variation. To unveil the relationship of photocatalytic properties between the structure and morphology, analogous COFs were synthesized by precisely tailoring building blocks. Systematic investigations indicated that tuning the structure and morphology might greatly impact photoelectric properties. The BTDA-TAPT featuring ordered alignment and perfect crystalline nature was more beneficial for promoting charge transfer and separation, which exhibited superior photocatalytic activity for visible light-driven oxidative coupling of amines. Outcomes from this study reveal the intrinsic synergy effects between the structure and morphology of COFs for photocatalysis.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Luis Ricardez-Sandoval
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
33
|
Zheng Z, Wang T, Han F, Yang Q, Li B. Synthesis of Ni modified Au@CdS core-shell nanostructures for enhancing photocatalytic coproduction of hydrogen and benzaldehyde under visible light. J Colloid Interface Sci 2021; 606:47-56. [PMID: 34388572 DOI: 10.1016/j.jcis.2021.07.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The development of visible light responsive photocatalysts for simultaneous production of hydrogen (H2) fuel and value-added chemicals is greatly promising to solve the energy and environmental issues by improving the utilization efficiency of solar energy. Herein, the three-component Ni/(Au@CdS) core-shell nanostructures were constructed by the hydrothermal synthesis followed with photodeposition. The intimate integration of plasmonic Au nanospheres and visible-light responsive CdS shells modified with Ni cocatalyst facilitated the generation and separation of electron-hole pairs as well as reduced the overpotential of hydrogen evolution. The Ni/(Au@CdS) photocatalyst exhibited excellent performance toward the selective transformation of benzyl alcohol under anaerobic conditions, and the yields of H2 and benzaldehyde reached up to 3882 and 4242 μmol·g-1·h-1, respectively. The apparent quantum efficiency (AQE) was determined to be 4.09% under the irradiation of 420 nm. The systematic studies have verified the synergy of plasmonic effect and metal cocatalyst on enhancing the photocatalysis. This work highlights the desirable design and potential application of plasmonic photocatalysts for solar-driven coproduction of H2 fuel and high-value chemicals.
Collapse
Affiliation(s)
- Ziqiang Zheng
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fang Han
- Anhui Entry-Exit Inspection and Quarantine Technical Center, 329 Tunxi Road, Hefei, Anhui 230029, China
| | - Qing Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
34
|
Shamsi T, Amoozadeh A. Glucose‐assisted preparation of n‐TiO
2
‐P25/Ag: An efficient and robust photocatalyst for enhancing visible‐light photo‐oxidation of benzyl alcohol. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Taiebeh Shamsi
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| | - Ali Amoozadeh
- Department of Organic Chemistry, Faculty of Chemistry Semnan University Semnan Iran
| |
Collapse
|
35
|
Photocatalytic Fixation of Molecular Nitrogen in Systems Based on Graphite-Like Carbon Nitride: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09678-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Wu F, Yu S, Zhong Y, Chen W, Dan M, Zou Y, Yuan C, Zhou Y. Homogeneous Photocatalytic Hydrogen Evolution System with Assembly of CdSe Quantum Dots and Graphene Oxide. Top Catal 2021. [DOI: 10.1007/s11244-021-01439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Abstract
AbstractDynamic irradiation is a potent option to influence the interaction between photochemical reactions and mass transport to design high performant and efficient photochemical processes. To systematically investigate the impact of this parameter, the photocatalytic reduction of nitrobenzene was conducted as a test reaction. Dynamic irradiation was realized through provoked secondary flow patterns, multiple spatially distributed light emitting diodes (LEDs) and electrical pulsation of LEDs. A combined experimental and theoretical approach revealed significant potential to enhance photochemical processes. The reaction rate was accelerated by more than 70% and even more important the photonic efficiency was increased by more than a factor of 4. This renders imposed dynamic irradiation an innovative and powerful tool to intensify photoreactions on the avenue to large scale sustainable photochemical processes.
Collapse
|
38
|
The Evolution of Photocatalytic Membrane Reactors over the Last 20 Years: A State of the Art Perspective. Catalysts 2021. [DOI: 10.3390/catal11070775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The research on photocatalytic membrane reactors (PMRs) started around the year 2000 with the study of wastewater treatment by degradation reactions of recalcitrant organic pollutants, and since then the evolution of our scientific knowledge has increased significantly, broadening interest in reactions such as the synthesis of organic chemicals. In this paper, we focus on some initial problems and how they have been solved/reduced over time to improve the performance of processes in PMRs. Some know-how gained during these last two decades of research concerns decreasing/avoiding the degradation of the polymeric membranes, improving photocatalyst reuse, decreasing membrane fouling, enhancing visible light photocatalysts, and improving selectivity towards the reaction product(s) in synthesis reactions (partial oxidation and reduction). All these aspects are discussed in detail in this review. This technology seems quite mature in the case of water and wastewater treatment using submerged photocatalytic membrane reactors (SPMRs), while for applications concerning synthesis reactions, additional knowledge is required.
Collapse
|
39
|
Li B, Hu Y, Shen Z, Ji Z, Yao L, Zhang S, Zou Y, Tang D, Qing Y, Wang S, Zhao G, Wang X. Photocatalysis Driven by Near-Infrared Light: Materials Design and Engineering for Environmentally Friendly Photoreactions. ACS ES&T ENGINEERING 2021; 1:947-964. [DOI: doi.org/10.1021/acsestengg.1c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Bingfeng Li
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Yezi Hu
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Zewen Shen
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Zhuoyu Ji
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Ling Yao
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Sai Zhang
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Yingtong Zou
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Duoyue Tang
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Yujia Qing
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Guixia Zhao
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
| | - Xiangke Wang
- College of Environment Science & Engineering, North China Electric Power University, 102206 Beijing, China
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
40
|
Bellardita M, Loddo V, Parrino F, Palmisano L. (Photo)electrocatalytic Versus Heterogeneous Photocatalytic Carbon Dioxide Reduction. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Vittorio Loddo
- Engineering Department University of Palermo Palermo Italy
| | - Francesco Parrino
- Department of Industrial Engineering University of Trento Trento Italy
| | | |
Collapse
|
41
|
Chen L, Yang S, Zhang Q, Zhu J, Zhao P. Rational design of {0 0 1}-faceted TiO2 nanosheet arrays/graphene foam with superior charge transfer interfaces for efficient photocatalytic degradation of toxic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118444] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Yuan L, Qi MY, Tang ZR, Xu YJ. Coupling Strategy for CO 2 Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angew Chem Int Ed Engl 2021; 60:21150-21172. [PMID: 33908154 DOI: 10.1002/anie.202101667] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 11/10/2022]
Abstract
Photocatalytic reduction of CO2 to solar fuels and/or fine chemicals is a promising way to increase the energy supply and reduce greenhouse gas emissions. However, the conventional reaction system for CO2 photoreduction with pure H2 O or sacrificial agents usually suffers from low catalytic efficiency, poor stability, or cost-ineffective atom economy. A recent surge of developments, in which photocatalytic CO2 valorization is integrated with selective organic synthesis into one reaction system, indicates an efficient modus operandi that enables sufficient utilization of photogenerated electrons and holes to achieve the goals for sustainable economic and social development. In this Review we discuss current advances in cooperative photoredox reaction systems that integrate CO2 valorization with organics upgrading based on heterogeneous photocatalysis. The applications and virtues of this strategy and the underlying reaction mechanisms are discussed. The ongoing challenges and prospects in this area are critically discussed.
Collapse
Affiliation(s)
- Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.,College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
43
|
Yuan L, Qi M, Tang Z, Xu Y. Coupling Strategy for CO
2
Valorization Integrated with Organic Synthesis by Heterogeneous Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lan Yuan
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 China
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| | - Ming‐Yu Qi
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| | - Zi‐Rong Tang
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| | - Yi‐Jun Xu
- College of Chemistry State Key Laboratory of Photocatalysis on Energy and Environment Fuzhou University Fuzhou 350116 China
| |
Collapse
|
44
|
Photocatalytic Degradation of Sulfolane Using a LED-Based Photocatalytic Treatment System. Catalysts 2021. [DOI: 10.3390/catal11050624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sulfolane is an emerging industrial pollutant detected in the environments near many oil and gas plants in North America. So far, numerous advanced oxidation processes have been investigated to treat sulfolane in aqueous media. However, there is only a few papers that discuss the degradation of sulfolane using photocatalysis. In this study, photocatalytic degradation of sulfolane using titanium dioxide (TiO2) and reduced graphene oxide TiO2 composite (RGO-TiO2) in a light-emitting diode (LED) photoreactor was investigated. The impact of different waters (ultrapure water, tap water, and groundwater) and type of irradiation (UVA-LED and mercury lamp) on photocatalytic degradation of sulfolane were also studied. In addition, a reusability test was conducted for the photocatalyst to examine the degradation of sulfolane in three consecutive cycles with new batches of sulfolane-contaminated water. The results show that LED-based photocatalysis was effective in degrading sulfolane in waters even after three photocatalytic cycles. UVA-LEDs displayed more efficient use of photon energy when compared with the mercury lamps as they have a narrow emission spectrum coinciding with the absorption of TiO2. The combination of UVA-LED and TiO2 yielded better performance than UVA-LED and RGO-TiO2 for the degradation of sulfolane. Much lower sulfolane degradation rates were observed in tap water and groundwater than ultrapure water.
Collapse
|
45
|
Abstract
The rapid separation and efficient recycling of catalysts after a catalytic reaction are considered important requirements along with the high catalytic performances. In this view, although heterogeneous catalysis is generally less efficient if compared to the homogeneous type, it is generally preferred since it benefits from the easy recovery of the catalyst. Recycling of heterogeneous catalysts using traditional methods of separation such as extraction, filtration, vacuum distillation, or centrifugation is tedious and time-consuming. They are uneconomic processes and, hence, they cannot be carried out in the industrial scale. For these limitations, today, the research is devoted to the development of new methods that allow a good separation and recycling of catalysts. The separation process should follow a procedure economically and technically feasible with a minimal loss of the solid catalyst. The aim of this work is to provide an overview about the current trends in the methods of separation/recycling used in the heterogeneous catalysis.
Collapse
|
46
|
Navakoteswara Rao V, Malu TJ, Cheralathan KK, Sakar M, Pitchaimuthu S, Rodríguez-González V, Mamatha Kumari M, Shankar MV. Light-driven transformation of biomass into chemicals using photocatalysts - Vistas and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:111983. [PMID: 33529884 DOI: 10.1016/j.jenvman.2021.111983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass has become an important sustainable resource for fuels, chemicals and energy. It is an attractive source for alternative fuels and green chemicals because it is non-edible and widely available in the planet in huge volumes. The use of biomass as starting material to produce fuels and chemicals leads to closed carbon cycle and promotes circular economy. Although there are many thermo-chemical methods such as pyrolysis, liquefaction and gasification close at hand for processing lignocellulosic biomass and transforming the derived compounds into valuable chemicals and fuels, the photocatalytic method is more advantageous as it utilizes light and ambient conditions for reforming the said compounds. Appraisal of recent literature indicates a variety of photocatalytic systems involving different catalysts, reactors and conditions studied for this purpose. This article reviews the recent developments on the photocatalytic oxidation of biomass and its derivatives into value-added chemicals. The nature of the biomass and derived molecules, nature of the photocatalysts, efficiency of the photocatalysts in terms of conversion and selectivity, influence of reaction conditions and light sources, effect of additives and mechanistic pathways are discussed. Importance has been given also to discuss the complementary technologies that could be coupled with photocatalysis for better conversion of biomass and biomass-derived molecules to value-added chemicals. A summary of these aspects, conclusions and future prospects are given in the end.
Collapse
Affiliation(s)
- Vempuluru Navakoteswara Rao
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Thayil Jayakumari Malu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | | | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, Karnataka, India
| | - Sudhagar Pitchaimuthu
- Multifunctional Photocatalyst and Coatings Group, SPECIFIC, Materials Research Centre, College of Engineering, Swansea University (Bay Campus), Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, Wales, United Kingdom
| | - Vicente Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - Murikinati Mamatha Kumari
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Muthukonda Venkatakrishnan Shankar
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
47
|
Rieth AJ, Qin Y, Martindale BCM, Nocera DG. Long-Lived Triplet Excited State in a Heterogeneous Modified Carbon Nitride Photocatalyst. J Am Chem Soc 2021; 143:4646-4652. [PMID: 33733760 DOI: 10.1021/jacs.0c12958] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterogeneous carbon nitrides have numerous advantages as photocatalysts, including strong light absorption, tunable band edges, and scalability, but their performance and continued development are limited by fast charge recombination and an under-developed mechanistic understanding of photodriven interfacial electron transfer. These shortcomings are a result of complex photophysics, leading to rate asynchrony between oxidation and reduction, as well as redox processes driven out of electronic trap states rather than excited states. We show that a well-defined triplet excited state in cyanamide-modified carbon nitride is realized with appropriately sized particles. The utility of this long-lived excited state is demonstrated by its ability to drive a hydroamidation photoredox cycle. By the tuning of the particle size of CNx, the oxidation-reduction photochemistry of carbon nitride may be balanced to achieve a redox-neutral closed photocatalytic cycle. These results uncover a triplet excited state chemistry for appropriately sized CNx particles that preludes a rich energy and electron transfer photochemistry for these materials.
Collapse
Affiliation(s)
- Adam J Rieth
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St. Cambridge, Massachusetts 02138, United States
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St. Cambridge, Massachusetts 02138, United States
| | - Benjamin C M Martindale
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St. Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St. Cambridge, Massachusetts 02138, United States
| |
Collapse
|
48
|
Li Y, Wang S, Wu J, Wang Q, Ma C, Jiang D, Hu W, Zhu L, Xu X. Metal-free porous phosphorus-doped g-C 3N 4 photocatalyst achieving efficient synthesis of benzoin. RSC Adv 2021; 11:12682-12686. [PMID: 35423808 PMCID: PMC8696882 DOI: 10.1039/d1ra00701g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 12/28/2022] Open
Abstract
Photocatalytic organic synthesis is mostly limited by the shortcomings of insufficient light absorption, high photogenerated electron–hole recombination rate and inadequate reactive sites of photocatalysts. To solve these problems, phosphorus-doped g-C3N4 with a porous structure was constructed. Benefiting from enhanced light absorption and electron–hole separation efficiency, PCNT has intensive oxygen activation ability to generate superoxide radicals, and is highly active in organic synthesis. In addition, PCNT has enhanced surface nucleophilicity, which is conducive to the carbon–carbon coupling process of the intermediate product benzaldehyde molecules and benzyl alcohol molecules in the benzoin condensation reaction. Metal-free PCNT is expected to replace the previously used highly toxic cyanide catalysts and provide a new way for the low-cost and efficient photocatalytic synthesis of benzoin. Porous phosphorus-doped g-C3N4 (PCNT) has intensive oxygen activation ability to generate superoxide radicals, and can efficiently catalyze synthesis of benzoin from benzyl alcohol, with conversion rate and selectivity near to 100%.![]()
Collapse
Affiliation(s)
- Yuanjin Li
- School of Physical Sciences, University of Science and Technology of China Hefei Anhui 230026 PR China
| | - Shuhui Wang
- School of Physical Sciences, University of Science and Technology of China Hefei Anhui 230026 PR China
| | - Jin Wu
- Department of General Surgery & Central Laboratory, The First Affiliated Hospital of Anhui Medical University Hefei Anhui 230022 PR China
| | - Qiuyan Wang
- School of Physical Sciences, University of Science and Technology of China Hefei Anhui 230026 PR China
| | - Changqiu Ma
- School of Physical Sciences, University of Science and Technology of China Hefei Anhui 230026 PR China
| | - Daheng Jiang
- School of Physical Sciences, University of Science and Technology of China Hefei Anhui 230026 PR China
| | - Wanglai Hu
- Translational Research Institute of Henan Provincial People's Hospital, Molecular Pathology Center of Academy of Medical Science, Zhengzhou University Zhengzhou Henan 450003 PR China
| | - Lixin Zhu
- Department of General Surgery & Central Laboratory, The First Affiliated Hospital of Anhui Medical University Hefei Anhui 230022 PR China
| | - Xiaoliang Xu
- School of Physical Sciences, University of Science and Technology of China Hefei Anhui 230026 PR China
| |
Collapse
|
49
|
Liu A, Ma D, Qian Y, Li J, Zhai S, Wang Y, Chen C. A powerful azomethine ylide route mediated by TiO 2 photocatalysis for the preparation of polysubstituted imidazolidines. Org Biomol Chem 2021; 19:2192-2197. [PMID: 33625413 DOI: 10.1039/d0ob02277b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis- and Brønsted-acid catalyzed 1,3-dipolar cycloaddition between azomethine ylides and unsaturated compounds is an important strategy to construct five-membered N-heterocycles. However, such a catalytic route usually demands substrates with an electron-withdrawing group (EWG) to facilitate the reactivity. Herein, we report a TiO2 photocatalysis strategy that can conveniently prepare five-membered N-heterocyclic imidazolidines from a common imine (N-benzylidenebenzylamine) and alcohols along the route of 1,3-dipolaron azomethine ylide but without pre-installed EWG substituents on the substrates. Our EPR results uncovered the previously unknown mutual interdependence between an azomethine ylide and TiO2 photo-induced hvb+/ecb- pair. This transformation exhibited a broad scope with 21 successful examples and could be scaled up to the gram level.
Collapse
Affiliation(s)
- Anan Liu
- Basic Experimental Centre for Natural Science, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China and School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Beijing, 100048, China.
| | - Yuhang Qian
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Beijing, 100048, China.
| | - Jundan Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Beijing, 100048, China.
| | - Shan Zhai
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Beijing, 100048, China.
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road 11, Beijing, 100048, China.
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| |
Collapse
|
50
|
Niu P, Pan Z, Wang S, Wang X. Tuning Crystallinity and Surface Hydrophobicity of a Cobalt Phosphide Cocatalyst to Boost CO 2 Photoreduction Performance. CHEMSUSCHEM 2021; 14:1302-1307. [PMID: 33491914 DOI: 10.1002/cssc.202002755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/16/2021] [Indexed: 06/12/2023]
Abstract
Photocatalytic CO2 conversion is a promising method to yield carbon fuels, but it remains challenging to regulate catalytic materials for enhanced reaction efficiency and tunable product selectivity. This study concerns the development of a facile and efficient thermal post-treatment method to improve the crystallinity and surface hydrophobicity of a cobalt phosphide (CoP) cocatalyst, which promotes the separation and transfer of photoexcited charge carriers, reinforces CO2 chemisorption, and weakens the H2 O affinity. Compared with pristine CoP, the optimal CoP-600 cocatalyst displays a 3.5-fold enhancement in activity and a 2.3-fold increase in selectivity for the reduction of CO2 to CO with a high rate of 68.1 μmol h-1 .
Collapse
Affiliation(s)
- Pingping Niu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|