1
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
2
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
3
|
Sangster JJ, Ruscoe RE, Cosgrove SC, Mangas-Sánchez J, Turner NJ. One-Pot Chemoenzymatic Cascade for the Enantioselective C(1)-Allylation of Tetrahydroisoquinolines. J Am Chem Soc 2023; 145:4431-4437. [PMID: 36790859 PMCID: PMC9983016 DOI: 10.1021/jacs.2c09176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, we report a one-pot, chemoenzymatic process for the synthesis of enantioenriched C(1)-allylated tetrahydroisoquinolines. This transformation couples a monoamine oxidase (MAO-N)-catalyzed oxidation with a metal catalyzed allylboration, followed by a biocatalytic deracemization to afford allylic amine derivatives in both high yields and good to high enantiomeric excess. The cascade is operationally simple, with all components added at the start of the reaction and can be used to generate key building blocks for further elaboration.
Collapse
|
4
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
5
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
6
|
Abstract
Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.
Collapse
Affiliation(s)
- Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056Basel, Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
7
|
Ding H, Zhang S, Sun Z, Ma Q, Li Y, Yuan Y, Jia X. Tris(4-bromophenyl)aminium Hexachloroantimonate as a "Waste-Utilized"-Type Initiator-Promoted C-H Chlorination via C-H Activation Relay: Synthesis of Chlorinated Pyrroles. J Org Chem 2022; 87:15139-15151. [PMID: 36398528 DOI: 10.1021/acs.joc.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using tris(4-bromophenyl)aminium hexachloroantimonate as a "waste-utilized"-type initiator, the aerobic oxidation of the sp3 C-H bond of proline esters was realized via C-H activation relay, giving a series of halogenated pyrroles in high yields. The mechanistic study revealed that the counterion, SbCl6-, was involved in the radical chlorination process, which provides a new way to understand the role of the counterions.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yuemei Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
8
|
Regiospecific α-methylene functionalisation of tertiary amines with alkynes via Au-catalysed concerted one-proton/two-electron transfer to O 2. Nat Commun 2022; 13:6505. [PMID: 36351920 PMCID: PMC9646731 DOI: 10.1038/s41467-022-34176-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Regioselective transformations of tertiary amines, which are ubiquitously present in natural products and drugs, are important for the development of novel medicines. In particular, the oxidative α-C-H functionalisation of tertiary amines with nucleophiles via iminium cations is a promising approach because, theoretically, there is almost no limit to the type of amine and functionalisation. However, most of the reports on oxidative α-C-H functionalisations are limited to α-methyl-selective or non-selective reactions, despite the frequent appearance of α-methylene-substituted amines in pharmaceutical fields. Herein, we develop an unusual oxidative regiospecific α-methylene functionalisation of structurally diverse tertiary amines with alkynes to synthesise various propargylic amines using a catalyst comprising Zn salts and hydroxyapatite-supported Au nanoparticles. Thorough experimental investigations suggest that the unusual α-methylene regiospecificity is probably due to a concerted one-proton/two-electron transfer from amines to O2 on the Au nanoparticle catalyst, which paves the way to other α-methylene-specific functionalisations.
Collapse
|
9
|
Ascaso-Alegre C, MANGAS JUAN. Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - JUAN MANGAS
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
10
|
Wang Z, Zhao L, Mou X, Chen Y. Enzymatic approaches to site-selective oxidation of quinoline and derivatives. Org Biomol Chem 2022; 20:2580-2600. [PMID: 35290426 DOI: 10.1039/d2ob00200k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-mediated oxidation has been a green and efficient strategy for preparation of derivative chemicals from quinoline and its structural analogues. Herein, we report the progress made to date in enzymatic methods to oxidation of the pyridine moieties of quinoline and its structural analogues 1,2,3,4-tetrahydroquinoline, isoquinoline and 1,2,3,4-tetrahydroisoquinoline, including whole cell- and isolated enzyme-based transformations. In addition, methods to tune the site selectivity of the course of enzymatic transformation are also addressed, in particular the protein engineering approaches.
Collapse
Affiliation(s)
- Zhongqiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| | - Ling Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| | - Xueqing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, 563000 Zunyi, People's Republic of China. .,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 563000 Zunyi, People's Republic of China
| |
Collapse
|
11
|
Bering L, Thompson J, Micklefield J. New reaction pathways by integrating chemo- and biocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
12
|
González-Granda S, Escot L, Lavandera I, Gotor-Fernández V. Unmasking the Hidden Carbonyl Group Using Gold(I) Catalysts and Alcohol Dehydrogenases: Design of a Thermodynamically-Driven Cascade toward Optically Active Halohydrins. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| | - Lorena Escot
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| |
Collapse
|
13
|
Barna B, Gáti T, Kotschy A, Tasnádi G. Chemo‐enzymatic One‐Pot Two‐Step Functionalization of 1,2,3,4‐Tetrahydroisoquinolines by Monoamine Oxidase‐Ugi‐Joullié‐reaction Sequence. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bence Barna
- Servier Research Institute of Medicinal Chemistry Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 HUNGARY
| | - Tamás Gáti
- Servier Research Institute of Medicinal Chemistry Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 HUNGARY
| | - András Kotschy
- Servier Research Institute of Medicinal Chemistry Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 HUNGARY
| | - Gábor Tasnádi
- Servier Research Institute of Medicinal Chemistry Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 Budapest HUNGARY
| |
Collapse
|
14
|
Liang L, Zhou S, Zhang W, Tong R. Catalytic Asymmetric Alkynylation of 3,4-Dihydro-β-carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl 2021; 60:25135-25142. [PMID: 34581483 DOI: 10.1002/anie.202112383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 12/21/2022]
Abstract
Chiral tetrahydro-β-carboline (THβC) is not only a prevailing structural feature of many natural alkaloids but also a versatile synthetic precursor for a vast array of monoterpenoid indole alkaloids. Asymmetric synthesis of C1-alkynyl THβCs remains rarely explored and challenging. Herein, we describe the development of two complementary approaches for the catalytic asymmetric alkynylation of 3,4-dihydro-β-carbolinium ions with up to 96 % yield and 99 % ee. The utility of chiral C1-alkynyl THβCs was demonstrated by the collective total syntheses of seven indole alkaloids: harmicine, eburnamonine, desethyleburnamonine, larutensine, geissoschizol, geissochizine, and akuammicine.
Collapse
Affiliation(s)
- Lixin Liang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shiqiang Zhou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Liang L, Zhou S, Zhang W, Tong R. Catalytic Asymmetric Alkynylation of 3,4‐Dihydro‐β‐carbolinium Ions Enables Collective Total Syntheses of Indole Alkaloids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lixin Liang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Shiqiang Zhou
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Wei Zhang
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| | - Rongbiao Tong
- Department of Chemistry The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou) The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
16
|
González‐Granda S, Lavandera I, Gotor‐Fernández V. Alcohol Dehydrogenases and N‐Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β‐Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio González‐Granda
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
17
|
González-Granda S, Lavandera I, Gotor-Fernández V. Alcohol Dehydrogenases and N-Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β-Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021; 60:13945-13951. [PMID: 33721361 DOI: 10.1002/anie.202015215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/22/2021] [Indexed: 12/14/2022]
Abstract
The combination of gold(I) and enzyme catalysis is used in a two-step approach, including Meyer-Schuster rearrangement of a series of readily available propargylic alcohols followed by stereoselective bioreduction of the corresponding allylic ketone intermediates, to provide optically pure β,β-disubstituted allylic alcohols. This cascade involves a gold N-heterocyclic carbene and an enzyme, demonstrating the compatibility of both catalyst types in aqueous medium under mild reaction conditions. The combination of [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene][bis(trifluoromethanesulfonyl)-imide]gold(I) (IPrAuNTf2 ) and a selective alcohol dehydrogenase (ADH-A from Rhodococcus ruber, KRED-P1-A12 or KRED-P3-G09) led to the synthesis of a series of optically active (E)-4-arylpent-3-en-2-ols in good yields (65-86 %). The approach was also extended to various 2-hetarylpent-3-yn-2-ol, hexynol, and butynol derivatives. The use of alcohol dehydrogenases of opposite selectivity led to the production of both allyl alcohol enantiomers (93->99 % ee) for a broad panel of substrates.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
18
|
Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Oxidation of the inert sp 3 C-H bonds of tetrahydroisoquinolines through C-H activation relay (CHAR): construction of functionalized isoquinolin-1-ones. Chem Commun (Camb) 2021; 57:3347-3350. [PMID: 33659968 DOI: 10.1039/d1cc00550b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A TBN/O2-initiated oxidation of the relatively inert 3,4-C-H bonds of THIQs was accomplished, in which the existence of an α-phosphoric ester group is crucial to enable dioxygen trapping and intramolecular HAT (C-H activation relay, CHAR), realizing the synthesis of a series of isoquinolin-1-ones in high yields. The mechanistic study confirmed that the formation of the 3,4-double bond is mediated by the CHAR process. This work provides a new strategy to achieve remote C-H bond activation.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou, Jiangsu 225002, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Peñafiel I, Dryfe RAW, Turner NJ, Greaney MF. Integrated Electro‐Biocatalysis for Amine Alkylation with Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202001757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Itziar Peñafiel
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Future Biomanufacturing Research Hub The University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Robert A. W. Dryfe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas J. Turner
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Future Biomanufacturing Research Hub The University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Michael F. Greaney
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
21
|
Zhang JS, Liu L, Chen T, Han LB. Cross-Dehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. CHEMSUSCHEM 2020; 13:4776-4794. [PMID: 32667732 DOI: 10.1002/cssc.202001165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Alkynes are among the most fundamentally important organic compounds and are widely used in synthetic chemistry, biochemistry, and materials science. Thus, the development of an efficient and sustainable method for the preparation of alkynes has been a central concern in organic synthesis. Cross-dehydrogenative coupling utilizing E-H and Z-H bonds in two different molecules can avoid the need for prefunctionalization of starting materials and has become one of the most straightforward methods for the construction of E-Z chemical bonds. This Review summarizes recent progress in the preparation of internal alkynes by cross-dehydrogenative coupling with terminal alkynes.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| |
Collapse
|
22
|
Integrating biocatalysis with chemocatalysis for selective transformations. Curr Opin Chem Biol 2020; 55:161-170. [PMID: 32179434 DOI: 10.1016/j.cbpa.2020.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/14/2023]
Abstract
The integration of biocatalysis with chemocatalysis combines the excellent selectivity of the former with the robust reactivity of the latter and offers many advantages, such as lower cost, higher yield, enhanced selectivity, as well as less waste generation. In spite of the challenge of incompatibilities between different classes of catalysts, recent advances in synthetic chemistry and biology provide ample opportunities for multistep cascade transformations that combine biocatalysis and chemocatalysis. Herein, we review recent progress in merging biocatalysis with chemocatalysis, highlighting selected examples of photo-/electricity-driven biotransformations and recently developed strategies for addressing the catalyst incompatibility issue.
Collapse
|
23
|
Gao L, Wang Z, Liu Y, Liu P, Gao S, Gao J, Jiang Y. Co-immobilization of metal and enzyme into hydrophobic nanopores for highly improved chemoenzymatic asymmetric synthesis. Chem Commun (Camb) 2020; 56:13547-13550. [DOI: 10.1039/d0cc06431a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A facile, general strategy to fabricate metal–enzyme catalysts with hydrophobic microenvironment for highly improved chemoenzymatic asymmetric synthesis.
Collapse
Affiliation(s)
- Liya Gao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
| | - Zihan Wang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
| | - Yunting Liu
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
| | - Pengbo Liu
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
| | - Shiqi Gao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
| | - Jing Gao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- China
- Tianjin Key Laboratory of Chemical Process Safety
| |
Collapse
|
24
|
Alonso F, Bosque I, Chinchilla R, Gonzalez-Gomez JC, Guijarro D. Synthesis of Propargylamines by Cross-Dehydrogenative Coupling. CURRENT GREEN CHEMISTRY 2019. [DOI: 10.2174/2213346106666190916104701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Propargylamines are versatile compounds for heterocyclic synthesis, some of which are current drugs prescribed to treat patients with Parkinson’s disease. There are different methods to synthesize propargylamines, however, modern chemistry has moved progressively to rely on new strategies that meet the principles of Green Chemistry. In this context, propargylamines are readily accessible by the cross-dehydrogenative coupling (CDC) of two C-H bonds (i.e., NCsp3-H and Csp-H bonds); surely, CDC can be considered the most atom-economic and efficient manner to form C-C bonds. The aim of this review is to provide a comprehensive survey on the synthesis of propargylamines by the CDC of amines and terminal alkynes from three fronts: (a) transition-metal homogeneous catalysis, (b) transition-metal heterogeneous catalysis and (c) photoredox catalysis. A section dealing with the asymmetric synthesis of chiral propargylamines is also included. Special attention is also devoted to the proposed reaction mechanisms.
Collapse
Affiliation(s)
- Francisco Alonso
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Irene Bosque
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Rafael Chinchilla
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - José Carlos Gonzalez-Gomez
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - David Guijarro
- Instituto de Síntesis Organica and Departamento de Quimica Organica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
25
|
Huang CY, Kang H, Li J, Li CJ. En Route to Intermolecular Cross-Dehydrogenative Coupling Reactions. J Org Chem 2019; 84:12705-12721. [DOI: 10.1021/acs.joc.9b01704] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Hyotaik Kang
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Jianbin Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
26
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as vlasoulamine A from Vladimiria souliei.
Collapse
|