1
|
Wu K, Ruan X, Li Q, Jiang Q, Ni S, Zhou Q. Phosphine-Catalyzed [3 + 4] Annulations of Salicylaldehyde Schiff Bases with α-Substituted Allenes: Construction of Functionalized Benzoxepine Fused Succinimide Derivatives. Org Lett 2024; 26:9425-9430. [PMID: 39475578 DOI: 10.1021/acs.orglett.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Herein we reported a novel strategy for constructing benzoxepine fused succinimide derivatives via a phosphine-catalyzed [3 + 4] cyclization of α-substituted allenes and salicylaldehyde Schiff bases. This methodology serves as a conduit for the construction of benzoxepine derivatives in good yields under mild conditions by an unprecedented mode involving the β'-carbon of allenes. Density functional theory calculations were conducted to study the possible mechanism. Moreover, this class of compounds exhibited the potential ability of cytotoxicity toward cancer cells.
Collapse
Affiliation(s)
- Ke Wu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiuqin Ruan
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Quanxin Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qihe Jiang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shaofei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Ma W, Wang Y, Zhao C, Yu X, Ma X, Zhang Y. Fused Seven-Membered Carbocycle Construction through Electrochemical Relay Cyclization. Org Lett 2024; 26:7393-7397. [PMID: 39189670 DOI: 10.1021/acs.orglett.4c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Seven-membered carbocycles, which are frequently associated with relevant biological activities, can be found in nature and drugs in ever-increasing numbers. Radical cascade addition of 1,n-enynes-like substrates is one of the most important and efficient strategies for the synthesis of this valuable skeleton with structural diversity and complexity. Herein, we describe an electrooxidative radical-mediated synthesis of dibenzocycloheptanes from ortho-ethynyl-substituted biaryls and tertiary C(sp3)-H containing reactants. The chemo- and regioselective addition of in situ generated carbon radical onto the alkynyl moieties triggers a desired reaction cascade, resulting in the formation of three new C-C bonds. This approach provides a step-economical regime for the facile assembly of a wide range of polycyclic products containing a 6-7-5 system. This green strategy features a good substrate scope, mild conditions, and high efficiency under ferrocene-mediated electrochemical oxidation conditions.
Collapse
Affiliation(s)
- Wenjing Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanwei Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Chunhang Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xiaokai Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Xiuya Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
3
|
Deswal S, Guin A, Biju AT. Lewis Acid-Catalyzed Unusual (4+3) Annulation of para-Quinone Methides with Bicyclobutanes: Access to Oxabicyclo[4.1.1]Octanes. Angew Chem Int Ed Engl 2024:e202408610. [PMID: 39171678 DOI: 10.1002/anie.202408610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Over the past few years, there has been a surge of interest in the chemistry of bicyclobutanes (BCBs). Although BCBs have been used to synthesize bicyclo[2.1.1]hexanes and bicyclo[3.1.1]heptanes, the synthesis of bicyclo[4.1.1]octanes has remained elusive. Herein, we report the first Lewis acid-catalyzed unexpected (4+3) annulation of para-quinonemethides (p-QMs) with BCBs allowing the synthesis of oxabicyclo[4.1.1]octanes proceeding under mild conditions. With 5 mol % of Bi(OTf)3, the reaction afforded the (4+3) annulated product in high regioselectivity and good functional group compatibility via a simultaneous Lewis acid activation of BCBs and p-QMs. The reaction is likely initiated by the 1,6-addition of Lewis acid activated BCBs to p-QMs followed by the C2-selective intramolecular addition of the phenol moiety to the generated cyclobutyl cation intermediate. Moreover, detailed mechanistic studies provided insight into the mechanism of the reaction.
Collapse
Affiliation(s)
- Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
4
|
Nachimuthu K, Nallasivam JL. Recent updates on vinyl cyclopropanes, aziridines and oxiranes: access to heterocyclic scaffolds. Org Biomol Chem 2024; 22:4212-4242. [PMID: 38738483 DOI: 10.1039/d4ob00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This present review delineates the repertoire of vinyl cyclopropanes and their stuctural analogues to accomplish a wide array of oxa-cycles, aza-cycles, and thia-cycles under transition metal catalysis and metal-free approaches from early 2019 to the present date. The generation of electrophilic π-allyl intermediates and 1-3/1-5-dipolarophile chemistry originating from VCPs are always green, step- and atom-economical and sustainable strategies in comparsion with prefunctionalized and/or C-H activation protocols. Here, the strained ring-system extends its applicability by relieving the strain to undergo a ring-expansion reaction to accomplish 5-9 membered carbo- and heterocyclic systems. The availability of chiral ligands in the ring-expansion reaction of VCPs and their analogues has paved the way to realizing asymmetric synthetic transformations.
Collapse
Affiliation(s)
- Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| |
Collapse
|
5
|
Xing S, Jin C, Zhang P, Yang J, Liang Y, Ao X, Pi W, Wang K, Zhu B. Rapid Synthesis of 3-Methyleneisoindolin-1-ones via Metal-Free Tandem Reactions of Ester-Functionalized Aziridines. J Org Chem 2024; 89:5153-5158. [PMID: 38485493 DOI: 10.1021/acs.joc.3c02974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
We have disclosed a novel metal-free tandem cyclization reaction for the synthesis of 3-methyleneisoindolin-1-ones starting from ester-functionalized aziridines. This strategy can be effectively promoted by DBU and carboxylic acids. Mechanistically, it involves sequential ring opening of aziridines with carboxylic acids, lactamization, and elimination of carboxylic acids.
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Changkun Jin
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Panpan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jingmeng Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuxia Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xinglian Ao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Wenyi Pi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
6
|
Singh B, Kashyap S, Singh S, Gupta S, Ghorai MK. Catalytic Aminium Radical-Cation Salt (Magic Blue)-Initiated S N2-Type Nucleophilic Ring-Opening Transformations of Aziridines. J Org Chem 2024; 89:2247-2263. [PMID: 38323416 DOI: 10.1021/acs.joc.3c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A simple and atom economic protocol for the construction of C-X/C-C bonds via catalytic aminium radical-cation salt (Magic Blue)-initiated SN2-type nucleophilic ring-opening transformations of racemic and nonracemic aziridines with different hetero and carbon nucleophiles to afford various amino ethers, thioethers, and amines in up to 99% yield, and with perfect enantiospecificity for some substrates but reduced ee with others (for nonracemic aziridines), is developed. This aminium radical-cation salt-initiated, SN2-type nucleophilic ring-opening strategy, along with various cyclization protocols, is employed to synthesize various biologically significant compounds.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Shishir Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Sikha Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
7
|
Xu B, Wang Q, Fang C, Zhang ZM, Zhang J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem Soc Rev 2024; 53:883-971. [PMID: 38108127 DOI: 10.1039/d3cs00489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Over the past few decades, there have been major developments in transition metal-catalyzed asymmetric cyclization reactions, enabling the convenient access to a wide spectrum of structurally diverse chiral carbo- and hetero-cycles, common skeletons found in fine chemicals, natural products, pharmaceuticals, agrochemicals, and materials. In particular, a plethora of enantioselective cyclization reactions have been promoted by chiral palladium catalysts owing to their outstanding features. This review aims to collect the latest advancements in enantioselective palladium-catalyzed cyclization reactions over the past eleven years, and it is organized into thirteen sections depending on the different types of transformations involved.
Collapse
Affiliation(s)
- Bing Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Zhuhai Fudan Innovation Institute, Zhuhai 519000, China
| | - Quanpu Wang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Chao Fang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
| | - Zhan-Ming Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Fudan Zhangjiang Institute, Shanghai 201203, China
- School of Chemisty and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
8
|
Kar S, Maharana PK, Punniyamurthy T, Trivedi V. Tandem (4 + 3)-Annulation of Aziridines: Stereoselective Access to Fused Azepinoindoles. Org Lett 2023. [PMID: 38051106 DOI: 10.1021/acs.orglett.3c03547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A stereoselective tandem (4 + 3)-coupling of aziridines with 4-alkylidene indole malonates has been disclosed under Cu-catalysis involving a base-promoted annulation. The methodology serves as a potential approach toward the facile construction of fused azepinoindoles with good yields and diastereoselectivities. Late-stage natural product and drug modification as well as preliminary investigations for the enantioselective (4 + 3)-annulation are important practical features.
Collapse
Affiliation(s)
- Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prabhat K Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
9
|
Stockhammer L, Radetzky M, Khatoon SS, Bechmann M, Waser M. Chiral Lewis Base-Catalysed Asymmetric Syntheses of Benzo-fused ϵ-Lactones. European J Org Chem 2023; 26:e202300704. [PMID: 38601860 PMCID: PMC11005097 DOI: 10.1002/ejoc.202300704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Indexed: 04/12/2024]
Abstract
We herein report a two-step protocol for the asymmetric synthesis of novel chiral benzofused ϵ-lactones starting from O-protected hydroxymethyl-para-quinone methides and activated aryl esters. By using chiral isothiourea Lewis base catalysts a broad variety of differently substituted products could be obtained in yields of around 50 % over both steps with high levels of enantioselectivities, albeit low diastereoselectivities only.
Collapse
Affiliation(s)
- Lotte Stockhammer
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Maximilian Radetzky
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Syeda Sadia Khatoon
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Matthias Bechmann
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstrasse 694040LinzAustria
| |
Collapse
|
10
|
Luo P, Li L, Mao X, Sun Z, Wang Y, Peng F, Shao Z. Chemodivergence in Pd-catalyzed desymmetrization of allenes: enantioselective [4+3] cycloaddition, desymmetric allenylic substitution and enynylation. Chem Sci 2023; 14:10812-10823. [PMID: 37829037 PMCID: PMC10566515 DOI: 10.1039/d3sc04581a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
A class of prochiral allenylic di-electrophiles have been introduced for the first time as three-atom synthons in cycloadditions, and a new type of [4+3] cycloaddition involving transition metal-catalyzed enantioselective sequential allenylic substitution has been successfully developed, enabling challenging seven-membered exocyclic axially chiral allenes to be accessed in good yields with good enantioselectivity. Through the addition of a catalytic amount of ortho-aminoanilines or ortho-aminophenols, the racemization of the [4+3] cycloaddition products is effectively suppressed. Mechanistic studies reveal that elusive Pd-catalyzed enantioselective intramolecular allenylic substitution rather than intermolecular allenylic substitution is the enantio-determining step in this cycloaddition. By tuning the ligands, a Pd-catalyzed enantioselective desymmetric allenylic substitution leading to linear axially chiral tri-substituted allenes or a Pd-catalyzed tandem desymmetric allenylic substitution/β-vinylic hydrogen elimination (formal enynylation) leading to multi-functionalized 1,3-enynes is achieved chemodivergently.
Collapse
Affiliation(s)
- Pengfei Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Long Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Xinfang Mao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University Kunming 650091 China
| |
Collapse
|
11
|
More DA, Ghotekar GS, Muthukrishnan M. BF 3 ⋅Et 2 O-Catalyzed Selective C-4 Alkylation of Isoquinolin-1(2H)-ones Employing p-Quinone Methides. Chem Asian J 2023; 18:e202300546. [PMID: 37449661 DOI: 10.1002/asia.202300546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The direct C-4 alkylation of isoquinolin-1(2H)-one moiety is a challenging transformation in organic synthesis. Here we present a practical and efficient synthesis of C-4 alkylated isoquinolin-1(2H)-ones through conjugate addition of isoquinolin-1(2H)-ones to p-quinone methides for the first time. The process is facilitated by Lewis acid catalysis and this operationally straightforward, mild, metal-free and one-pot transformation provides a wide range of C-4 alkylated isoquinolin-1(2H)-ones at ambient temperature in good to excellent yields.
Collapse
Affiliation(s)
- Devidas A More
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ganesh S Ghotekar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Deng YH, Xu WL, Wang L, Tang CY, Fu JY, Zhang CB. Regio- and diastereoselective synthesis of diverse spirocyclic indenes by cyclization with indene-dienes as two carbon building blocks. Org Biomol Chem 2023; 21:6681-6686. [PMID: 37540130 DOI: 10.1039/d3ob00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report a base-promoted cyclization with indene-dienes as two carbon building blocks toward diverse spirocyclic indene scaffolds including hexacyclic spiroindenes bearing benzo pyran motifs and pentacyclic spiroindenes containing oxindole units in high yields with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Yi-Hang Deng
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Wen-Li Xu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Lei Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Cheng-Yang Tang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Ji-Ya Fu
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Chuan-Bao Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China.
| |
Collapse
|
13
|
Shah BH, Khan S, Zhao C, Zhang YJ. Synthesis of Chiral 2,3-Dihydrofurans via One-Pot Pd-Catalyzed Asymmetric Allylic Cycloaddition and a Retro-Dieckmann Fragmentation Cascade. J Org Chem 2023; 88:12100-12104. [PMID: 37552623 DOI: 10.1021/acs.joc.3c00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An efficient method for the enantioselective synthesis of 2,3-dihydrofurans bearing a quaternary stereocenter has been developed via Pd-catalyzed asymmetric allylic cycloaddition and a retro-Dieckmann Fragmentation cascade. The asymmetric allylic cycloaddition of vinylethylene carbonates with 3-cyanochromone followed by base-assisted retro-Dieckmann fragmentation proceeded smoothly via a one-pot process to produce chiral 3,4-disubstituted 2,3-dihydrofurans in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Babar Hussain Shah
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Sardaraz Khan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Can Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yong Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu 610042, P. R. China
| |
Collapse
|
14
|
Gaikwad RA, Savekar AT, Waghmode SB. Metal-Free Approach for Oxa-spirocyclohexadienones through [3 + 2]/[4 + 2] ipso-Cyclization of para-Quinone Methides with Halo Alcohols. J Org Chem 2023. [PMID: 37406306 DOI: 10.1021/acs.joc.3c00784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
A facile one-pot metal-free, base-mediated formal [3 + 2] and [4 + 2] dearomative ipso-cycloaddition of para-quinone methides (p-QMs) with halo alcohols has been designed for the efficient construction of 2-oxa-spirocyclohexadienones in excellent yield under mild reaction conditions. The commercial availability of the bases, reagents, and convenient reaction procedure makes it an attractive method for ipso-cyclization.
Collapse
Affiliation(s)
- Ramesh A Gaikwad
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Ganeshkhind, Pune 411007, India
| |
Collapse
|
15
|
Wang Q, Fan T, Song J. Cooperative Isothiourea/Iridium-Catalyzed Asymmetric Annulation Reactions of Vinyl Aziridines with Pentafluorophenyl Esters. Org Lett 2023. [PMID: 36815719 DOI: 10.1021/acs.orglett.2c04124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chiral γ-lactam-containing skeletons are important motifs in bioactive natural products, pharmaceuticals, and bioactive molecules. Herein, we report a general and modular platform to access chiral γ-lactam compounds via an ITU/Ir cooperatively catalyzed [3 + 2] asymmetric annulation reaction of vinyl aziridines with pentafluorophenyl esters. Through the Lewis base and transition metal cooperative catalytic regime, a broad range of optically active γ-lactams were generated in good yields (up to 92%) with high asymmetric induction (up to 98% ee). Furthermore, the utility of this synthetic protocol was also demonstrated by the expedient preparation of diverse enantioenriched architectures.
Collapse
Affiliation(s)
- Qiannan Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Tao Fan
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
16
|
Du J, Li YF, Ding CH. Recent advances of Pd-p-allyl zwitterions in cycloaddition reactions. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Chen G, Li H, Liang G, Pu Q, Bai L, Zhang D, Ye Y, Li Y, Zhou J, Zhou H. Facile construction of dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones via domino [4 + 2] cycloaddition/C(sp 3)-H oxidative dehydrogenation coupling reactions. Org Biomol Chem 2022; 20:9392-9396. [PMID: 36398442 DOI: 10.1039/d2ob01860h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel palladium catalyzed homodimerization of ortho-hydroxyphenyl substituted p-QMs has been developed via [4 + 2] cycloaddition/oxidative dehydrogenation coupling domino reactions. An interesting palladium catalyzed intramolecular benzyl C-H oxidation dehydrogenation to form a transannular C(sp3)-O bond was found. This protocol provided an efficient method to construct various dibenzodioxo[3.3.1]nonanes bearing spirocyclohexadienones.
Collapse
Affiliation(s)
- Genhui Chen
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hongjiao Li
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Guojuan Liang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Qian Pu
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Lijuan Bai
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Dexin Zhang
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Ying Ye
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Jing Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hui Zhou
- Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Luo F, Dong H, Ren W, Wang Y. Organocatalytic Asymmetric Synthesis of Tetrahydroquinolines from ortho-Aminophenyl para-Quinone Methides. Org Lett 2022; 24:7727-7731. [PMID: 36250632 DOI: 10.1021/acs.orglett.2c02874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The asymmetric catalytic [4 + 2] cycloannulation of ortho-aminophenyl p-QMs with different types of alkenes for the construction of tetrahydroquinolines containing three contiguous stereogenic centers was developed. This is the first example of catalytic asymmetric cycloannulation of ortho-aminophenyl p-QMs. This reaction exhibits excellent functional group tolerance. Excellent yields, exclusive diastereoselectivities, and high enantioselectivities were obtained in this efficient organocatalytic reaction.
Collapse
Affiliation(s)
- Fengbiao Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hao Dong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
19
|
Zhang T, Wang S, Zuo D, Zhao J, Luo W, Wang C, Li P. Palladium-Catalyzed Carbonylative [5+1] Cycloaddition of N-Tosyl Vinylaziridines: Solvent-Controlled Divergent Synthesis of α,β- and β,γ-Unsaturated δ-Lactams. J Org Chem 2022; 87:10408-10415. [PMID: 35892153 DOI: 10.1021/acs.joc.2c00710] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed carbonylative [5+1] cycloaddition of N-tosyl vinylaziridines with CO has been developed. This protocol affords an efficient and practical approach for solvent-controlled divergent synthesis of α,β-unsaturated δ-lactams in dimethylformamide and β,γ-unsaturated δ-lactams in tetrahydrofuran in good to excellent yields. Significantly, the step- and atom-economical reactions are more regioselective toward [5+1] cycloaddition than toward [3+1] cycloaddition.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Dandan Zuo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
20
|
Wang W, Yang X, Dai R, Yan Z, Wei J, Dou X, Qiu X, Zhang H, Wang C, Liu Y, Song S, Jiao N. Catalytic Electrophilic Halogenation of Arenes with Electron-Withdrawing Substituents. J Am Chem Soc 2022; 144:13415-13425. [PMID: 35839515 DOI: 10.1021/jacs.2c06440] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The electrophilic halogenation of arenes is perhaps the simplest method to prepare aryl halides, which are important structural motifs in agrochemicals, materials, and pharmaceuticals. However, the nucleophilicity of arenes is weakened by the electron-withdrawing substituents, whose electrophilic halogenation reactions usually require harsh conditions and lead to limited substrate scopes and applications. Therefore, the halogenation of arenes containing electron-withdrawing groups (EWGs) and complex bioactive compounds under mild conditions has been a long-standing challenge. Herein, we describe Brønsted acid-catalyzed halogenation of arenes with electron-withdrawing substituents under mild conditions, providing an efficient protocol for aryl halides. The hydrogen bonding of Brønsted acid with the protic solvent 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) enables this transformation and thus solves this long-standing problem.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Rongheng Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Zixi Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Hongliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Chen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Yameng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China.,State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. High-order dipolar annulations with metal-containing reactive dipoles. Chem Soc Rev 2022; 51:4146-4174. [PMID: 35521739 DOI: 10.1039/d1cs00897h] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.
Collapse
Affiliation(s)
- Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bao-Le Qu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Diastereodivergent formal [4 + 1] cycloaddition of azoalkenes as one-carbon synthons. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
Xin J, Chen T, Tang P. Direct Trifluoromethylthiolation of Aziridines: Cation-Controlled Diverse Synthesis of Trifluoromethylthiolated Isothiocyanates and Amines. Org Lett 2022; 24:2035-2039. [PMID: 35261244 DOI: 10.1021/acs.orglett.2c00558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct trifluoromethylthiolation of aziridines with AgSCF3 and iodides is reported. The β-trifluoromethylthiolated isothiocyanates and amines were selectively obtained by the changed cation of iodide. This strategy is tolerant to a wide range of functional groups with good yields and regioselectivities. In addition, the isothiocyanates can be used for further synthetic manipulation, which offered a convenient approach for SCF3-containing compounds.
Collapse
Affiliation(s)
- Jingrui Xin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tengying Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
24
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Pang Q, Zhou J, Wu Y, Zhou WJ, Zuo WF, Zhan G, Han B. Construction of Oxo-Bridged Diazocines via Rhodium-Catalyzed (4+3) Cycloaddition of Carbonyl Ylides with Azoalkenes. Org Lett 2022; 24:1362-1366. [PMID: 35119868 DOI: 10.1021/acs.orglett.2c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Developing efficient strategies for synthesizing novel diazocine compounds is valuable because their use has been limited by their synthetic accessibility. This work describes the catalytic (4+3) cycloaddition reaction of carbonyl ylides with azoalkenes generated in situ. The rhodium-catalyzed cascade reaction features good atom and step economy, providing the first access to oxo-bridged diazocines. The product could be synthesized on a gram scale and converted into diversely substituted dihydroisobenzofurans.
Collapse
Affiliation(s)
- Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yuling Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wu-Jingyun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
26
|
Zhang J, Chen Y, Wang Q, Shen J, Liu Y, Deng W. Transition Metal-Catalyzed Asymmetric Cyclizations Involving Allyl or Propargyl Heteroatom-Dipole Precursors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Xing S, Wang C, Gao T, Wang Y, Wang H, Wang H, Wang K, Zhu B. Construction of 4-spiroannulated tetrahydroisoquinoline skeletons via a sequential ring opening of aziridines and Pictet–Spengler reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05031a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stepwise cyclization involving sequential ring opening of aziridines and Pictet–Spengler reaction has been developed for the synthesis of 4-spiroannulated tetrahydroisoquinoline compounds (22 examples).
Collapse
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Chenyu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Tingxuan Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Hongzheng Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Hanfei Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
28
|
Yang J, Ming S, Yao G, Yu H, Du Y, Gong J. Construction of chiral chroman skeletons via catalytic asymmetric [4 + 2] cyclization of ortho-hydroxyphenyl-substituted para-quinone methides catalyzed by a chiral-at-metal rhodium complex. Org Chem Front 2022. [DOI: 10.1039/d2qo00302c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Construction of chiral chroman skeletons via catalytic asymmetric [4 + 2] cyclization of ortho-hydroxyphenyl-substituted p-QMs catalyzed by a chiral-at-metal rhodium complex.
Collapse
Affiliation(s)
- Jian Yang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Siliang Ming
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Gang Yao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Haifeng Yu
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| | - Yu Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Jun Gong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China
| |
Collapse
|
29
|
Li YY, Li S, Fan T, Zhang ZJ, Song J, Gong LZ. Enantioselective Formal [4 + 3] Annulations to Access Benzodiazepinones and Benzoxazepinones via NHC/Ir/Urea Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yang-Yang Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Tao Fan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Jing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|
30
|
Dong T, Wei P, Li M, Gao F, Qin Y. Highly Diastereoselective Synthesis of Tetrahydroquinoline Derivatives via [4 + 2] Annulation of Ortho-Tosylaminophenyl-Substituted Para-Quinone Methides and Cyanoalkenes. Front Chem 2021; 9:764866. [PMID: 34805095 PMCID: PMC8595915 DOI: 10.3389/fchem.2021.764866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
As a privileged structural motif, tetrahydroquinoline skeletons widely exist in biologically active natural products and pharmaceuticals. In this protocol, a highly diastereoselective [4 + 2] annulation of ortho-tosylaminophenyl-substituted p-QMs and cyanoalkenes to construct tetrahydroquinoline derivatives has been successfully achieved. This strategy proceeds efficiently under mild condition, offering straightforward route to a variety of 4-aryl-substituted tetrahydroquinolines with high yields, excellent diastereoselectivities, broad functional group tolerance as well as gram-scale capacity. Moreover, a one-pot reaction sequence utilizing in situ generated p-QMs under the similar condition to build tetrahydroquinoline framework is smoothly conducted with good reaction performance as well as step and atom economy.
Collapse
Affiliation(s)
- Taiwei Dong
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Feng Gao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuan Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
31
|
Velasco-Rubio Á, Varela JA, Saá C. Pd-Catalyzed allylic C-H activation to seven-membered N, O-heterocycles. Chem Commun (Camb) 2021; 57:10915-10918. [PMID: 34590628 DOI: 10.1039/d1cc04056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pd-catalyzed allylic C-H activation of simple olefins allows an easy entry to seven-membered N,O-heterocycles such as 1,4-benzoxazepines (1,4-BZOs), 1,4-benzodiazepinones (1,4-BZDs) and 1,4-oxazepanes in good to excellent yields. Straightforward derivatization of the olefinated 1,4-BZO shows the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Jesús A Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
32
|
Yang Y, Zhu B, Zhu L, Jiang Y, Guo CL, Gu J, Ouyang Q, Du W, Chen YC. Combining palladium and ammonium halide catalysts for Morita-Baylis-Hillman carbonates of methyl vinyl ketone: from 1,4-carbodipoles to ion pairs. Chem Sci 2021; 12:11399-11405. [PMID: 34667548 PMCID: PMC8447884 DOI: 10.1039/d1sc03517g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/05/2023] Open
Abstract
Here we report that Morita-Baylis-Hillman carbonates from diverse aldehydes and methyl vinyl ketones can be directly utilised as palladium-trimethylenemethane 1,4-carbodipole-type precursors, and both reactivity and enantioselectivity are finely regulated by adding a chiral ammonium halide as the ion-pair catalyst. The newly assembled intermediates, proposed to contain an electronically neutral π-allylpalladium halide complex and a reactive compact ion pair, efficiently undergo asymmetric [4 + 2] annulations with diverse activated alkenes or isatins, generally with high regio-, diastereo- and enantio-selectivity, and even switchable regiodivergent or diastereodivergent annulations can be well realised by tuning the substrate or catalyst assemblies. An array of control experiments, including UV/Vis absorption study and density functional theory calculations, are conducted to rationalise this new double activation mode combining a palladium complex and an ammonium halide as an ion-pair catalyst.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Bo Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Lei Zhu
- College of Pharmacy, Third Military of Medical University Chongqing 400038 China
| | - Ying Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Chun-Ling Guo
- College of Pharmacy, Third Military of Medical University Chongqing 400038 China
| | - Jing Gu
- College of Pharmacy, Third Military of Medical University Chongqing 400038 China
| | - Qin Ouyang
- College of Pharmacy, Third Military of Medical University Chongqing 400038 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military of Medical University Chongqing 400038 China
| |
Collapse
|
33
|
Singh G, Pandey R, Pankhade YA, Fatma S, Anand RV. Construction of Oxygen- and Nitrogen-based Heterocycles from p-Quinone Methides. CHEM REC 2021; 21:4150-4173. [PMID: 34369640 DOI: 10.1002/tcr.202100137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
In the last few years, there has been an explosive growth in the area of para-quinone methide (p-QM) chemistry. This boom is actually due to the unique reactivity pattern of p-QMs, and also their remarkable synthetic applications. In fact, p-QMs serve as synthons for unsymmetrical diaryl- and triarylmethanes, and also for the construction of diverse range of carbocycles and heterocycles. In the last few years, a wide range of structurally complex heterocyclic frameworks could be accessed through the synthetic transformations of structurally modified stable p-QMs. Therefore, the main focus of this review article is to cover the recent advancements in the transition-metal, Lewis acid and base-catalyzed/mediated synthetic transformations of the stable p-quinone methides (p-QMs) to oxygen- and nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Gurdeep Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Rajat Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Yogesh A Pankhade
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Shaheen Fatma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| | - Ramasamy Vijaya Anand
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306
| |
Collapse
|
34
|
Wang J, Zhao L, Li C, Zhao L, Zhao K, Hu Y, Hu L. Iridium‐Catalyzed [4+3] Cyclization of
ortho
‐Tosylaminophenyl‐Substituted
para
‐Quinone Methides with Vinylic Oxiranes/Vinyl Aziridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Lin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Caihong Li
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Kun Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Yang Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine School of Pharmacy Nanjing University of Chinese Medicine Nanjing P. R. China
| |
Collapse
|
35
|
Visible light and base promoted O-H insertion/cyclization of para-quinone methides with aryl diazoacetates: An approach to 2,3-dihydrobenzofuran derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Lu Z, Zhang Q, Ke M, Hu S, Xiao X, Chen F. TfOH-Catalyzed [4 + 1] Annulation of p-Quinone Methides with α-Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. J Org Chem 2021; 86:7625-7635. [PMID: 33993694 DOI: 10.1021/acs.joc.1c00672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have developed a methodology for the greatly efficient construction of significant 2,3-dihydrobenzofuran scaffolds bearing a quaternary carbon center at the C2 position by means of [4 + 1] annulation reactions between p-quinone methides and α-aryl diazoacetates as C1 synthons through organocatalysis by readily accessible TfOH catalyst under mild and transition metal-free conditions. This metal-free protocol furnishes an operationally simple and swift process for the free assembly of diverse highly functionalized 2,3-dihydrobenzofurans and also features broad substrate scope, excellent functional group compatibility, and environmental friendliness. Mechanistic investigation suggested that the reaction undergoes a rapid cascade protonation/intermolecular Michael addition/intramolecular substitution process.
Collapse
Affiliation(s)
- Zuolin Lu
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qingchun Zhang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sha Hu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P.R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P.R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
37
|
Zhang Z, Han H, Wang L, Bu Z, Xie Y, Wang Q. Construction of bridged polycycles through dearomatization strategies. Org Biomol Chem 2021; 19:3960-3982. [PMID: 33978039 DOI: 10.1039/d1ob00096a] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bridged polycycles are privileged molecular skeletons with wide occurrence in bioactive natural products and pharmaceuticals. Therefore, they have been the pursing target molecules of numerous chemists. The rapid and convenient generation of sp3-rich complex three-dimensional molecular skeletons from simple and easily available aromatics has made dearomatization a highly valuable synthetic tool for the construction of rigid and challenging bridged rings. This review summarizes the-state-of-the-art advances of dearomatization strategies in the application of bridged ring formation, discusses their advantages and limitations and the in-depth mechanism, and highlights their synthetic value in the total synthesis of natural products. We wish this review will provide an important reference for medicinal and synthetic chemists and will inspire further development in this intriguing research area.
Collapse
Affiliation(s)
- Ziying Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Huabin Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Lele Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Zhanwei Bu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China.
| | - Qilin Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
38
|
Sarkar T, Talukdar K, Das BK, Shah TA, Debnath B, Punniyamurthy T. The transition-metal-catalyzed stereoselective ring-expansion of vinylaziridines and vinyloxiranes. Org Biomol Chem 2021; 19:3776-3790. [PMID: 33949586 DOI: 10.1039/d1ob00259g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transition-metal-aided stereoselective construction of sp3-carbon-rich heterocyclic scaffolds using strained-ring systems has received considerable attention in recent years due to the prominent presence of these scaffolds in myriad natural products, bioactive molecules, and pharmaceutical components. In this area, the catalytic ring-enlargement of vinylaziridines and vinyloxiranes plays a predominant role when synthesizing high sp3-content biorelevant heterocyclic compounds. This article aims to portray recent advancements in the ring-expansion of vinylaziridines and vinyloxiranes for accessing densely functionalized stereoselective heterocycles that have been developed over the past five years, with an emphasis on the substrate scopes and mechanistic insights into the key methodologies, and it is arranged based on the transition metals used and the ring sizes of the heterocyclic scaffolds.
Collapse
Affiliation(s)
- Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bijay Ketan Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tariq A Shah
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India. and Government Srinagar Women's College, Zakura Srinagar 190006, India
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
39
|
Xu C, Qiao J, Dong S, Zhou Y, Liu X, Feng X. Asymmetric synthesis of dihydro-1,3-dioxepines by Rh(ii)/Sm(iii) relay catalytic three-component tandem [4 + 3]-cycloaddition. Chem Sci 2021; 12:5458-5463. [PMID: 34168787 PMCID: PMC8179659 DOI: 10.1039/d1sc01019k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Heterocycles have been widely used in organic synthesis, agrochemical, pharmaceutical and materials science industries. Catalytic three-component ylide formation/cycloaddition enables the assembly of complex heterocycles from simple starting materials in a highly efficient manner. However, asymmetric versions remain a yet-unsolved task. Here, we present a new bimetallic catalytic system for tackling this challenge. A combined system of Rh(ii) salt and chiral N,N'-dioxide-Sm(iii) complex was established for promoting the unprecedented tandem carbonyl ylide formation/asymmetric [4 + 3]-cycloaddition of aldehydes and α-diazoacetates with β,γ-unsaturated α-ketoesters smoothly, affording various chiral 4,5-dihydro-1,3-dioxepines in up to 97% yield, with 99% ee. The utility of the current method was demonstrated by conversion of products to optically active multi-substituted tetrahydrofuran derivatives. A possible reaction mechanism was provided to elucidate the origin of chiral induction based on experimental studies and X-ray structures of catalysts and products.
Collapse
Affiliation(s)
- Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jianglin Qiao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
40
|
Yang C, Yang ZX, Ding CH, Xu B, Hou XL. Development of Dipolarophiles for Catalytic Asymmetric Cycloadditions through Pd-π-Allyl Zwitterions. CHEM REC 2021; 21:1442-1454. [PMID: 33570239 DOI: 10.1002/tcr.202000177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/22/2021] [Indexed: 02/03/2023]
Abstract
The development of new and efficient methodology for the construction of optically active molecules is of great interest in both synthetic organic and medicinal chemistry fields. To this end, the personal account summarizes our studies on the development of electron-deficient alkenes, allenes, and alkynes containing single activator as new dipolarophiles for Pd-catalyzed asymmetric cycloaddition reactions. These new dipolarophiles can participate in Pd-catalyzed asymmetric [3+2] and [4+2] cycloadditions through Pd-π-allyl 1,3- and 1,4-zwitterions in-situ generated by the reaction of Pd(0) catalyst with vinyl aziridines, vinyl epoxides, vinyl cyclopropanes, 4-vinyl-1,3-dioxan-2-ones, and vinyl benzoxazinanones. These [3+2] and [4+2] cycloadditions provide efficient approaches to a wide range of enantiomerically enriched five- and six-membered ring compounds containing contiguous chiral centers with high to excellent chemo-, diastereo-, and enantioselectivities. The utilities of these protocols are demonstrated by transformation of the cycloadducts into other useful chiral building blocks. DFT calculations reveal the dissimilar reactivity of different electron deficient alkenes and rationalize the mechanism and stereo-control of the reaction. A Pd-catalyzed inverse [3+2] cycloaddition is disclosed.
Collapse
Affiliation(s)
- Cun Yang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Zhi-Xiong Yang
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai, 200444, P. R. of China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences (CAS), 345 Lingling Road, Shanghai, 200032, P. R. of China
| |
Collapse
|
41
|
Pandey R, Singh G, Gour V, Anand RV. Base-mediated sequential one-pot approach for the synthesis of 2,3-disubstituted indoles from 2-(tosylamino)aryl-substituted para-quinone methides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Nan G, Zhan J, Yuan C, Wen L, Li M. NEt 3-Promoted Construction of Functionalized 4 H-Chromenes via [4+2] Cycloaddition Reaction of ortho-Quinone Methides with β-Ketothioamides. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Zuo HD, Ji XS, Guo C, Tu SJ, Hao WJ, Jiang B. Cu-Catalyzed radical-triggered spirotricyclization of enediynes and enyne-nitriles for the synthesis of pentacyclic spiroindenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01640c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new copper-catalyzed radical-triggered fluoromethylation-spirotricyclization of enediyne- and enyne-nitrile-containing para-quinone methides (p-QMs) was reported for the first time, and used to produce a series of hitherto unreported pentacyclic spiroindenes.
Collapse
Affiliation(s)
- Hang-Dong Zuo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- School of Chemistry & Materials Science
| | - Xiao-Shuang Ji
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Cheng Guo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
45
|
Zhu WQ, Zhang ZW, Han WY, Fang YC, Yang P, Li LQ, Chen YZ. Aziridine used as a vinylidene unit in palladium-catalyzed [2 + 2 + 1] domino annulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of chromone fused methylenecyclopentanes are efficiently constructed in moderate to good yields by Pd-catalyzed [2 + 2 + 1] annulation, in which aziridine is used as a vinylidene unit by cleavage of two C–N bonds for the first time.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Zi-Wei Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Ping Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Lin-Qiang Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| |
Collapse
|
46
|
Zhao M, Li F, Cheng Y, Wang Y, Zhou Z. Optically Active 3,4-Dihydrocoumarins via Organocatalyzed Asymmetric [4+2] Annulation of ortho-Hydroxyl Functionalized p-Quinone Methides with β-Keto Acylpyrazoles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q. Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01196g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective multicomponent dearomative multifunctionalization of N-alkyl activated azaarenes with 1,5-diazapentadienium salts has been developed to access structurally rigid and synthetically challenging cage-like and bridged azaheterocycles.
Collapse
Affiliation(s)
- Hongjie Miao
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Xuguan Bai
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Lele Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Junhui Yu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Zhanwei Bu
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| | - Qilin Wang
- Institute of Functional Organic Molecular Engineering
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- PR China
| |
Collapse
|
48
|
Xing S, Xia H, Wang C, Wang Y, Hao L, Wang K, Zhu B. A Stepwise Synthesis of Spiroindoline Compounds via Ring Opening of Aziridines and C−H Activation/Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Hanyu Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Chenyu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Lu Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
49
|
Liu Y, Luo W, Wang Z, Zhao Y, Zhao J, Xu X, Wang C, Li P. Visible-Light Photoredox-Catalyzed Formal [5 + 1] Cycloaddition of N-Tosyl Vinylaziridines with Difluoroalkyl Halides. Org Lett 2020; 22:9658-9664. [PMID: 33236913 DOI: 10.1021/acs.orglett.0c03718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A visible-light photoredox-catalyzed formal [5 + 1] cycloaddition of N-tosyl vinylaziridines with difluoroalkyl halides as unique C1 synthons was developed. The procedure provides an efficient and practical method to synthesize diverse pyridines in moderate to good yields. The reaction underwent a radical-initiated kinetically controlled ring-opening of vinylaziridines and involved a key α,β-unsaturated imine intermediate, followed by an E2 elimination, a 6π electrocyclization, and defluorinated aromatization.
Collapse
Affiliation(s)
- Yantao Liu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhenjie Wang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yuxin Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xuejun Xu
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
50
|
Trost BM, Zuo Z, Schultz JE. Transition-Metal-Catalyzed Cycloaddition Reactions to Access Seven-Membered Rings. Chemistry 2020; 26:15354-15377. [PMID: 32705722 DOI: 10.1002/chem.202002713] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Indexed: 02/06/2023]
Abstract
The efficient and selective synthesis of functionalized seven-membered rings remains an important pursuit within synthetic organic chemistry, as this motif appears in numerous drug-like molecules and natural products. Use of cycloaddition reactions remains an attractive approach for their construction within the perspective of atom and step economy. Additionally, the ability to combine multiple components in a single reaction has the potential to allow for efficient combinatorial strategies of diversity-oriented synthesis. The inherent entropic penalty associated with achieving these transformations has impressively been overcome with development of catalysis, whereby the reaction components can be pre-organized through activation by transition-metal-catalysis. The fine-tuning of metal/ligand combinations as well as reaction conditions allows for achieving chemo-, regio-, diastereo- and enantioselectivity in these transformations. Herein, we discuss recent advances in transition-metal-catalyzed construction of seven-membered rings via combination of 2-4 components mediated by a variety of metals. An emphasis is placed on the mechanistic aspects of these transformations to both illustrate the state of the science and to highlight the unique application of novel processes of transition-metals in these transformations.
Collapse
Affiliation(s)
- Barry M Trost
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Zhijun Zuo
- Department of Chemistry, Stanford University, Stanford, California, 94305-5080, USA
| | - Johnathan E Schultz
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, 08901, USA
| |
Collapse
|