1
|
Liu H, Wang S, Xu M, Zhang K, Gao Q, Wang H, Wei D. Engineering an (R)-selective transaminase for asymmetric synthesis of (R)-3-aminobutanol. Bioorg Chem 2024; 146:107264. [PMID: 38492494 DOI: 10.1016/j.bioorg.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
(R)-selective transaminases show promise as catalysts for the asymmetric synthesis of chiral amines, which are building blocks of various small molecule drugs. However, their application is limited by poor substrate acceptance and low catalytic efficiency. Here, a potential (R)-selective transaminase from Fodinicurvata sediminis (FsTA) was identified through a substrate truncating strategy, and used as starting point for enzyme engineering toward catalysis of 4-hydroxy-2-butanone, a substrate that poses challenges in catalysis. Molecular docking and dynamics simulations revealed Y90 as the key residue responsible for poor substrate binding. Starting from the variant (Y90F, mut1) with initial activity, FsTA was systematically modified to improve substrate-binding through active site reshaping and consensus sequence strategy, yielding three variants (H30R, V152K, and Y156F) with improved activity. A quadruple mutation variant H30R/Y90F/V152K/Y156F (mut4) was also found to show a 7.95-fold greater catalytic efficiency (kcat/KM) than the initial variant mut1. Furthermore, mut4 also enhanced the thermostability of enzyme significantly, with the Tm value increasing by 10 °C. This variant also exhibited significantly improved activity toward a series of ketones that are either not accepted or poorly accepted by the wild-type. This study provides a basis for the rational design of an active to creating variants that can accommodate novel substrates.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Shixi Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Song Z, Zhang Q, Wu W, Pu Z, Yu H. Rational design of enzyme activity and enantioselectivity. Front Bioeng Biotechnol 2023; 11:1129149. [PMID: 36761300 PMCID: PMC9902596 DOI: 10.3389/fbioe.2023.1129149] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
The strategy of rational design to engineer enzymes is to predict the potential mutants based on the understanding of the relationships between protein structure and function, and subsequently introduce the mutations using the site-directed mutagenesis. Rational design methods are universal, relatively fast and have the potential to be developed into algorithms that can quantitatively predict the performance of the designed sequences. Compared to the protein stability, it was more challenging to design an enzyme with improved activity or selectivity, due to the complexity of enzyme molecular structure and inadequate understanding of the relationships between enzyme structures and functions. However, with the development of computational force, advanced algorithm and a deeper understanding of enzyme catalytic mechanisms, rational design could significantly simplify the process of engineering enzyme functions and the number of studies applying rational design strategy has been increasing. Here, we reviewed the recent advances of applying the rational design strategy to engineer enzyme functions including activity and enantioselectivity. Five strategies including multiple sequence alignment, strategy based on steric hindrance, strategy based on remodeling interaction network, strategy based on dynamics modification and computational protein design are discussed and the successful cases using these strategies are introduced.
Collapse
Affiliation(s)
- Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, China
| | - Qunfeng Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Yang L, Zhang K, Xu M, Xie Y, Meng X, Wang H, Wei D. Mechanism-Guided Computational Design of ω-Transaminase by Reprograming of High-Energy-Barrier Steps. Angew Chem Int Ed Engl 2022; 61:e202212555. [PMID: 36300723 DOI: 10.1002/anie.202212555] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
ω-Transaminases (ω-TAs) show considerable potential for the synthesis of chiral amines. However, their low catalytic efficiency towards bulky substrates limits their application, and complicated catalytic mechanisms prevent precise enzyme design. Herein, we address this challenge using a mechanism-guided computational enzyme design strategy by reprograming the transition and ground states in key reaction steps. The common features among the three high-energy-barrier steps responsible for the low catalytic efficiency were revealed using quantum mechanics (QM). Five key residues were simultaneously tailored to stabilize the rate-limiting transition state with the aid of the Rosetta design. The 14 top-ranked variants showed 16.9-143-fold improved catalytic activity. The catalytic efficiency of the best variant, M9 (Q25F/M60W/W64F/I266A), was significantly increased, with a 1660-fold increase in kcat /Km and a 1.5-26.8-fold increase in turnover number (TON) towards various indanone derivatives.
Collapse
Affiliation(s)
- Lin Yang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Kaiyue Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
4
|
Li F, Du Y, Liang Y, Wei Y, Zheng Y, Yu H. Redesigning an ( R)-Selective Transaminase for the Efficient Synthesis of Pharmaceutical N-Heterocyclic Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fulong Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Yukun Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
- Key Laboratory of Industrial Biocatalysis (Tsinghua University), The Ministry of Education, Beijing 100084, People’s Republic of China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
5
|
Actinomycetes-derived imine reductases with a preference towards bulky amine substrates. Commun Chem 2022; 5:123. [PMID: 36697820 PMCID: PMC9814587 DOI: 10.1038/s42004-022-00743-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Abstract
Since imine reductases (IREDs) were reported to catalyze the reductive amination reactions, they became particularly attractive for producing chiral amines. Though diverse ketones and aldehydes have been proved to be excellent substrates of IREDs, bulky amines have been rarely transformed. Here we report the usage of an Increasing-Molecule-Volume-Screening to identify a group of IREDs (IR-G02, 21, and 35) competent for accepting bulky amine substrates. IR-G02 shows an excellent substrate scope, which is applied to synthesize over 135 amine molecules as well as a range of APIs' substructures. The crystal structure of IR-G02 reveals the determinants for altering the substrate preference. Finally, we demonstrate a gram-scale synthesis of an analogue of the API sensipar via a kinetic resolution approach, which displays ee >99%, total turnover numbers of up to 2087, and space time yield up to 18.10 g L-1 d-1.
Collapse
|
6
|
Singh AV, Kayal A, Malik A, Maharjan RS, Dietrich P, Thissen A, Siewert K, Curato C, Pande K, Prahlad D, Kulkarni N, Laux P, Luch A. Interfacial Water in the SARS Spike Protein: Investigating the Interaction with Human ACE2 Receptor and In Vitro Uptake in A549 Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7976-7988. [PMID: 35736838 PMCID: PMC9260741 DOI: 10.1021/acs.langmuir.2c00671] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/02/2022] [Indexed: 05/09/2023]
Abstract
The severity of global pandemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has engaged the researchers and clinicians to find the key features triggering the viral infection to lung cells. By utilizing such crucial information, researchers and scientists try to combat the spread of the virus. Here, in this work, we performed in silico analysis of the protein-protein interactions between the receptor-binding domain (RBD) of the viral spike protein and the human angiotensin-converting enzyme 2 (hACE2) receptor to highlight the key alteration that happened from SARS-CoV to SARS-CoV-2. We analyzed and compared the molecular differences between spike proteins of the two viruses using various computational approaches such as binding affinity calculations, computational alanine, and molecular dynamics simulations. The binding affinity calculations showed that SARS-CoV-2 binds a little more firmly to the hACE2 receptor than SARS-CoV. The major finding obtained from molecular dynamics simulations was that the RBD-ACE2 interface is populated with water molecules and interacts strongly with both RBD and ACE2 interfacial residues during the simulation periods. The water-mediated hydrogen bond by the bridge water molecules is crucial for stabilizing the RBD and ACE2 domains. Near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) confirmed the presence of vapor and molecular water phases in the protein-protein interfacial domain, further validating the computationally predicted interfacial water molecules. In addition, we examined the role of interfacial water molecules in virus uptake by lung cell A549 by binding and maintaining the RBD/hACE2 complex at varying temperatures using nanourchins coated with spike proteins as pseudoviruses and fluorescence-activated cell sorting (FACS) as a quantitative approach. The structural and dynamical features presented here may serve as a guide for developing new drug molecules, vaccines, or antibodies to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | | | - Romi Singh Maharjan
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Paul Dietrich
- SPECS
Surface Nano Analysis GmbH, Voltastrasse 5, 13355 Berlin, Germany
| | - Andreas Thissen
- SPECS
Surface Nano Analysis GmbH, Voltastrasse 5, 13355 Berlin, Germany
| | - Katherina Siewert
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Caterina Curato
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | | | | | | | - Peter Laux
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
7
|
Computational enzyme redesign: large jumps in function. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Xie YY, Wang J, Yang L, Wang W, Liu QH, Wang H, Wei D. The identification and application of a robust ω-transaminase with high tolerance of substrate and isopropylamine from a directed soil metagenome. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ω-transaminase-mediated asymmetric amination of a ketone substrate has gained significant attention for its immense potential to synthesize chiral amine pharmaceuticals and precursors. However, few of these have been authentically...
Collapse
|
9
|
Ramírez-Palacios C, Wijma HJ, Thallmair S, Marrink SJ, Janssen DB. Computational Prediction of ω-Transaminase Specificity by a Combination of Docking and Molecular Dynamics Simulations. J Chem Inf Model 2021; 61:5569-5580. [PMID: 34653331 PMCID: PMC8611723 DOI: 10.1021/acs.jcim.1c00617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ω-Transaminases (ω-TAs) catalyze the conversion of ketones to chiral amines, often with high enantioselectivity and specificity, which makes them attractive for industrial production of chiral amines. Tailoring ω-TAs to accept non-natural substrates is necessary because of their limited substrate range. We present a computational protocol for predicting the enantioselectivity and catalytic selectivity of an ω-TA from Vibrio fluvialis with different substrates and benchmark it against 62 compounds gathered from the literature. Rosetta-generated complexes containing an external aldimine intermediate of the transamination reaction are used as starting conformations for multiple short independent molecular dynamics (MD) simulations. The combination of molecular docking and MD simulations ensures sufficient and accurate sampling of the relevant conformational space. Based on the frequency of near-attack conformations observed during the MD trajectories, enantioselectivities can be quantitatively predicted. The predicted enantioselectivities are in agreement with a benchmark dataset of experimentally determined ee% values. The substrate-range predictions can be based on the docking score of the external aldimine intermediate. The low computational cost required to run the presented framework makes it feasible for use in enzyme design to screen thousands of enzyme variants.
Collapse
Affiliation(s)
- Carlos Ramírez-Palacios
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
| | - Siewert J Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Yu J, Zong W, Ding Y, Liu J, Chen L, Zhang H, Jiao Q. Fabrication of ω‐Transaminase@Metal‐Organic Framework Biocomposites for Efficiently Synthesizing Benzylamines and Pyridylmethylamines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jinhai Yu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Weilu Zong
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Yingying Ding
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Junzhong Liu
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| | - Lina Chen
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Hongjuan Zhang
- School of Pharmacy Nanjing Medical University Nanjing 211166 People's Republic of China
| | - Qingcai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210093 People's Republic of China
| |
Collapse
|
11
|
Meng Q, Ramírez-Palacios C, Capra N, Hooghwinkel ME, Thallmair S, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Marrink SJ, Janssen DB. Computational Redesign of an ω-Transaminase from Pseudomonas jessenii for Asymmetric Synthesis of Enantiopure Bulky Amines. ACS Catal 2021; 11:10733-10747. [PMID: 34504735 PMCID: PMC8419838 DOI: 10.1021/acscatal.1c02053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Indexed: 01/19/2023]
Abstract
![]()
ω-Transaminases
(ω-TA) are attractive biocatalysts
for the production of chiral amines from prochiral ketones via asymmetric synthesis. However, the substrate scope of
ω-TAs is usually limited due to steric hindrance at the active
site pockets. We explored a protein engineering strategy using computational
design to expand the substrate scope of an (S)-selective
ω-TA from Pseudomonas jessenii (PjTA-R6) toward the production of bulky amines. PjTA-R6 is attractive for use in applied biocatalysis due
to its thermostability, tolerance to organic solvents, and acceptance
of high concentrations of isopropylamine as amino donor. PjTA-R6 showed no detectable activity for the synthesis of six bicyclic
or bulky amines targeted in this study. Six small libraries composed
of 7–18 variants each were separately designed via computational methods and tested in the laboratory for ketone to
amine conversion. In each library, the vast majority of the variants
displayed the desired activity, and of the 40 different designs, 38
produced the target amine in good yield with >99% enantiomeric
excess.
This shows that the substrate scope and enantioselectivity of PjTA mutants could be predicted in silico with high accuracy. The single mutant W58G showed the best performance
in the synthesis of five structurally similar bulky amines containing
the indan and tetralin moieties. The best variant for the other bulky
amine, 1-phenylbutylamine, was the triple mutant W58M + F86L + R417L,
indicating that Trp58 is a key residue in the large binding pocket
for PjTA-R6 redesign. Crystal structures of the two
best variants confirmed the computationally predicted structures.
The results show that computational design can be an efficient approach
to rapidly expand the substrate scope of ω-TAs to produce enantiopure
bulky amines.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Mattijs E. Hooghwinkel
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Sebastian Thallmair
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
- Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, Frankfurt am Main 60438, Germany
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| | - Siewert J. Marrink
- Molecular Dynamics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, AG Groningen 9747, Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, AG Groningen 9747, Groningen, The Netherlands
| |
Collapse
|
12
|
Xiang C, Wu S, Bornscheuer UT. Directed evolution of an amine transaminase for the synthesis of an Apremilast intermediate via kinetic resolution. Bioorg Med Chem 2021; 43:116271. [PMID: 34171757 DOI: 10.1016/j.bmc.2021.116271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023]
Abstract
Apremilast is an important active pharmaceutical ingredient that relies on a resolution to produce the key chiral amine intermediate. To provide a new catalytic and enzymatic process for Apremilast, we performed the directed evolution of the amine transaminase fromVibriofluvialis. Six rounds of evolution resulted in the VF-8M-E variant with > 400-fold increase specific activity over the wildtype enzyme. A homology model of VF-8M-E was built and a molecular docking study was performed to explain the increase in activity. The purified VF-8M-E was successfully applied to produce the key chiral amine intermediate in enantiopure form and 49% conversion via a kinetic resolution, representing a new enzymatic access towards Apremilast.
Collapse
Affiliation(s)
- Chao Xiang
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany
| | - Shuke Wu
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany; State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| |
Collapse
|
13
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Liu Q, Xie X, Tang M, Tao W, Shi T, Zhang Y, Huang T, Zhao Y, Deng Z, Lin S. One-Pot Asymmetric Synthesis of an Aminodiol Intermediate of Florfenicol Using Engineered Transketolase and Transaminase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qi Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinyue Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mancheng Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuanzhen Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Novick SJ, Dellas N, Garcia R, Ching C, Bautista A, Homan D, Alvizo O, Entwistle D, Kleinbeck F, Schlama T, Ruch T. Engineering an Amine Transaminase for the Efficient Production of a Chiral Sacubitril Precursor. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Scott J. Novick
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - Nikki Dellas
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - Ravi Garcia
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - Charlene Ching
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - Abigail Bautista
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - David Homan
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - Oscar Alvizo
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - David Entwistle
- Codexis, Inc, 200 Penobscot Dr, Redwood City, California 94063, United States
| | - Florian Kleinbeck
- Chemical & Analytical Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Thierry Schlama
- Chemical & Analytical Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Thomas Ruch
- Chemical & Analytical Development, Novartis Pharma AG, Basel 4056, Switzerland
| |
Collapse
|
16
|
Marjanovic A, Ramírez-Palacios CJ, Masman MF, Drenth J, Otzen M, Marrink SJ, Janssen DB. Thermostable D-amino acid decarboxylases derived from Thermotoga maritima diaminopimelate decarboxylase. Protein Eng Des Sel 2021; 34:gzab016. [PMID: 34258615 PMCID: PMC8277567 DOI: 10.1093/protein/gzab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Diaminopimelate decarboxylases (DAPDCs) are highly selective enzymes that catalyze the common final step in different lysine biosynthetic pathways, i.e. the conversion of meso-diaminopimelate (DAP) to L-lysine. We examined the modification of the substrate specificity of the thermostable decarboxylase from Thermotoga maritima with the aim to introduce activity with 2-aminopimelic acid (2-APA) since its decarboxylation leads to 6-aminocaproic acid (6-ACA), a building block for the synthesis of nylon-6. Structure-based mutagenesis of the distal carboxylate binding site resulted in a set of enzyme variants with new activities toward different D-amino acids. One of the mutants (E315T) had lost most of its activity toward DAP and primarily acted as a 2-APA decarboxylase. We next used computational modeling to explain the observed shift in catalytic activities of the mutants. The results suggest that predictive computational protocols can support the redesign of the catalytic properties of this class of decarboxylating PLP-dependent enzymes.
Collapse
Affiliation(s)
- Antonija Marjanovic
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Carlos J Ramírez-Palacios
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marcelo F Masman
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Van’t Hoff Institute for Molecular Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jeroen Drenth
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert-Jan Marrink
- Molecular Dynamics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Dick B Janssen
- Biotechnology and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Xie Y, Xu F, Yang L, Liu H, Xu X, Wang H, Wei D. Engineering the large pocket of an ( S)-selective transaminase for asymmetric synthesis of ( S)-1-amino-1-phenylpropane. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02426k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Amine transaminases offer an environmentally benign chiral amine asymmetric synthesis route.
Collapse
Affiliation(s)
- Youyu Xie
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - He Liu
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | | | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering
- New World Institute of Biotechnology
- East China University of Science and Technology
- Shanghai 200237
- People's Republic of China
| |
Collapse
|
18
|
Ji H, Shi T, Liu L, Zhang F, Tao W, Min Q, Deng Z, Bai L, Zhao Y, Zheng J. Computational studies on the substrate specificity of an acyltransferase domain from salinomycin polyketide synthase. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00284h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complex of SalAT14 and its cognate substrate EMCoA is apt to stay in a conformation suitable for the reaction. Computational investigations reveal the structural basis of AT specificity and could potentially help the engineering of modular PKSs.
Collapse
Affiliation(s)
- Huining Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Liu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fa Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wentao Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Min
- Pharmacy School, Hubei University of Science and Technology, Hubei, Xianning 437100, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Asymmetric Synthesis of Optically Pure Aliphatic Amines with an Engineered Robust ω-Transaminase. Catalysts 2020. [DOI: 10.3390/catal10111310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The production of chiral amines by transaminase-catalyzed amination of ketones is an important application of biocatalysis in synthetic chemistry. It requires transaminases that show high enantioselectivity in asymmetric conversion of the ketone precursors. A robust derivative of ω-transaminase from Pseudomonasjessenii (PjTA-R6) that naturally acts on aliphatic substrates was constructed previously by our group. Here, we explore the catalytic potential of this thermostable enzyme for the synthesis of optically pure aliphatic amines and compare it to the well-studied transaminases from Vibrio fluvialis (VfTA) and Chromobacterium violaceum (CvTA). The product yields indicated improved performance of PjTA-R6 over the other transaminases, and in most cases, the optical purity of the produced amine was above 99% enantiomeric excess (e.e.). Structural analysis revealed that the substrate binding poses were influenced and restricted by the switching arginine and that this accounted for differences in substrate specificities. Rosetta docking calculations with external aldimine structures showed a correlation between docking scores and synthetic yields. The results show that PjTA-R6 is a promising biocatalyst for the asymmetric synthesis of aliphatic amines with a product spectrum that can be explained by its structural features.
Collapse
|
20
|
Kelly SA, Mix S, Moody TS, Gilmore BF. Transaminases for industrial biocatalysis: novel enzyme discovery. Appl Microbiol Biotechnol 2020; 104:4781-4794. [PMID: 32300853 PMCID: PMC7228992 DOI: 10.1007/s00253-020-10585-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/04/2022]
Abstract
Transaminases (TAms) are important enzymes for the production of chiral amines for the pharmaceutical and fine chemical industries. Novel TAms for use in these industries have been discovered using a range of approaches, including activity-guided methods and homologous sequence searches from cultured microorganisms to searches using key motifs and metagenomic mining of environmental DNA libraries. This mini-review focuses on the methods used for TAm discovery over the past two decades, analyzing the changing trends in the field and highlighting the advantages and drawbacks of the respective approaches used. This review will also discuss the role of protein engineering in the development of novel TAms and explore possible directions for future TAm discovery for application in industrial biocatalysis. KEY POINTS: • The past two decades of TAm enzyme discovery approaches are explored. • TAm sequences are phylogenetically analyzed and compared to other discovery methods. • Benefits and drawbacks of discovery approaches for novel biocatalysts are discussed. • The role of protein engineering and future discovery directions is highlighted.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Stefan Mix
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
| | - Thomas S Moody
- Department of Biocatalysis & Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon, UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland.
| |
Collapse
|
21
|
Markel U, Essani KD, Besirlioglu V, Schiffels J, Streit WR, Schwaneberg U. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem Soc Rev 2020; 49:233-262. [PMID: 31815263 DOI: 10.1039/c8cs00981c] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymes are versatile catalysts and their synthetic potential has been recognized for a long time. In order to exploit their full potential, enzymes often need to be re-engineered or optimized for a given application. (Semi-) rational design has emerged as a powerful means to engineer proteins, but requires detailed knowledge about structure function relationships. In turn, directed evolution methodologies, which consist of iterative rounds of diversity generation and screening, can improve an enzyme's properties with virtually no structural knowledge. Current diversity generation methods grant us access to a vast sequence space (libraries of >1012 enzyme variants) that may hide yet unexplored catalytic activities and selectivity. However, the time investment for conventional agar plate or microtiter plate-based screening assays represents a major bottleneck in directed evolution and limits the improvements that are obtainable in reasonable time. Ultrahigh-throughput screening (uHTS) methods dramatically increase the number of screening events per time, which is crucial to speed up biocatalyst design, and to widen our knowledge about sequence function relationships. In this review, we summarize recent advances in uHTS for directed enzyme evolution. We shed light on the importance of compartmentalization to preserve the essential link between genotype and phenotype and discuss how cells and biomimetic compartments can be applied to serve this function. Finally, we discuss how uHTS can inspire novel functional metagenomics approaches to identify natural biocatalysts for novel chemical transformations.
Collapse
Affiliation(s)
- Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Screening and Comparative Characterization of Microorganisms from Iranian Soil Samples Showing ω-Transaminase Activity toward a Plethora of Substrates. Catalysts 2019. [DOI: 10.3390/catal9100874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, soil microorganisms from Iran were screened for ω-transaminase (ω-TA) activity based on growth on minimal media containing (rac)-α-methylbenzylamine (rac-α-MBA) as a sole nitrogen source. Then, for the selection of strains with high enzyme activity, a colorimetric o-xylylendiamine assay was conducted. The most promising strains were identified by 16S rDNA sequencing. Five microorganisms showing high ω-TA activity were subjected to determine optimal conditions for ω-TA activity, including pH, temperature, co-solvent, and the specificity of the ω-TA toward different amine donors and acceptors. Among the five screened microorganisms, Bacillus halotolerans turned out to be the most promising strain: Its cell-free extract showed a highly versatile amino donor spectrum toward aliphatic, aromatic chiral amines and a broad range of pH activity. Transaminase activity also exhibited excellent solvent tolerance, with maximum turnover in the presence of 30% (v/v) DMSO.
Collapse
|
23
|
Hu Y, Xu J, Cen Y, Li D, Zhang Y, Huang M, Lin X, Wu Q. Customizing the Enantioselectivity of a Cyclohexanone Monooxygenase by a Strategy Combining “Size‐Probes” with
in silico
Study. ChemCatChem 2019. [DOI: 10.1002/cctc.201901200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yujing Hu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jian Xu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yixin Cen
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yu Zhang
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering Queen's University Belfast BT9 5AG UK
| | - Xianfu Lin
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| |
Collapse
|
24
|
Cairns R, Gomm A, Peel C, Sharkey M, O'Reilly E. A Comprehensive Quantitative Assay for Amine Transaminases. ChemCatChem 2019. [DOI: 10.1002/cctc.201901430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ryan Cairns
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Andrew Gomm
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Christopher Peel
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Michael Sharkey
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
| | - Elaine O'Reilly
- School of ChemistryUniversity of Nottingham University Park Nottingham NG7 2RD UK
- Current address: School of ChemistryUniversity College Dublin Belfield Dublin 4 Ireland
| |
Collapse
|
25
|
Kim H, Han S, Shin J. Combinatorial Mutation Analysis of ω‐Transaminase to Create an Engineered Variant Capable of Asymmetric Amination of Isobutyrophenone. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hong‐Gon Kim
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Sang‐Woo Han
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| | - Jong‐Shik Shin
- Department of BiotechnologyYonsei University Yonsei-Ro 50, Seodaemun-Gu Seoul 03722 South Korea
| |
Collapse
|