1
|
Moxon S, Symington AR, Tse JS, Flitcroft JM, Skelton JM, Gillie LJ, Cooke DJ, Parker SC, Molinari M. Composition-dependent morphologies of CeO 2 nanoparticles in the presence of Co-adsorbed H 2O and CO 2: a density functional theory study. NANOSCALE 2024; 16:11232-11249. [PMID: 38779821 DOI: 10.1039/d4nr01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Catalytic activity is affected by surface morphology, and specific surfaces display greater activity than others. A key challenge is to define synthetic strategies to enhance the expression of more active surfaces and to maintain their stability during the lifespan of the catalyst. In this work, we outline an ab initio approach, based on density functional theory, to predict surface composition and particle morphology as a function of environmental conditions, and we apply this to CeO2 nanoparticles in the presence of co-adsorbed H2O and CO2 as an industrially relevant test case. We find that dissociative adsorption of both molecules is generally the most favourable, and that the presence of H2O can stabilise co-adsorbed CO2. We show that changes in adsorption strength with temperature and adsorbate partial pressure lead to significant changes in surface stability, and in particular that co-adsorption of H2O and CO2 stabilizes the {100} and {110} surfaces over the {111} surface. Based on the changes in surface free energy induced by the adsorbed species, we predict that cuboidal nanoparticles are favoured in the presence of co-adsorbed H2O and CO2, suggesting that cuboidal particles should experience a lower thermodynamic driving force to reconstruct and thus be more stable as catalysts for processes involving these species.
Collapse
Affiliation(s)
- Samuel Moxon
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Adam R Symington
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Joshua S Tse
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Joseph M Flitcroft
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan M Skelton
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa J Gillie
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - David J Cooke
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Stephen C Parker
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Marco Molinari
- Department of Physical and Life Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| |
Collapse
|
2
|
Yun SY, Lee S, Jin X, Soon A, Hwang S. Ammonolysis-Driven Exsolution of Ru Nanoparticle Embedded in Conductive Metal Nitride Matrix to Boost Electrocatalyst Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309819. [PMID: 38582505 PMCID: PMC11200002 DOI: 10.1002/advs.202309819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Indexed: 04/08/2024]
Abstract
Exsolution is an effective method for synthesizing robust nanostructured metal-based functional materials. However, no studies have investigated the exsolution of metal nanoparticles into metal nitride substrates. In this study, a versatile nitridation-driven exsolution method is developed for embedding catalytically active metal nanoparticles in conductive metal nitride substrates via the ammonolysis of multimetallic oxides. Using this approach, Ti1-xRuxO2 nanowires are phase-transformed into holey TiN nanotubes embedded with exsolved Ru nanoparticles. These Ru-exsolved holey TiN nanotubes exhibit outstanding electrocatalytic activity for the hydrogen evolution reaction with excellent durability, which is significantly higher than that of Ru-deposited TiN nanotubes. The enhanced stability of the Ru-exsolved TiN nanotubes can be attributed to the Ru nanoparticles embedded in the robust metal nitride matrix and the formation of interfacial Ti3+─N─Ru4+ bonds. Density functional theory calculations reveal that the exsolved Ru nanoparticles have a lower d-band center position and optimized hydrogen affinity than deposited Ru nanoparticles, indicating the superior electrocatalyst performance of the former. In situ Raman spectroscopic analysis reveals that the electron transfer from TiN to Ru nanoparticles is enhanced during the electrocatalytic process. The proposed approach opens a new avenue for stabilizing diverse metal nanostructures in many conductive matrices like metal phosphides and chalcogenides.
Collapse
Affiliation(s)
- So Yeon Yun
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangseob Lee
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Xiaoyan Jin
- Department of Applied ChemistryUniversity of SeoulSeoul02504Republic of Korea
| | - Aloysius Soon
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Seong‐Ju Hwang
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
3
|
Yang H, Ren P, Geng X, Guo W, Lewis JP, Yang Y, Li YW, Wen XD. Bird's-Eye View of the Activity Distribution on a Catalyst Surface via a Machine Learning-Driven Adequate Sampling Algorithm. J Phys Chem Lett 2024; 15:4384-4390. [PMID: 38659407 DOI: 10.1021/acs.jpclett.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rational design of catalysts relies on a deep understanding of the active centers. The structure and activity distribution of active centers on a surface are two of the central issues in catalysis and important targets of theoretical and experimental investigations. Herein, we report a machine learning-driven adequate sampling (MLAS) framework for obtaining a statistical understanding of the chemical environment near catalyst sites. Combined strategies were implemented to achieve highly efficient sampling, including the decomposition of degrees of freedom, stratified sampling, Gaussian process regression, and well-designed constraint optimization. The MLAS framework was applied to the rate-determining step in NH3 synthesis, namely the N2 activation process. We calculated the produced population function, PA, which provides a comprehensive and intuitive understanding of active centers. The MLAS framework can be broadly applied to other more complicated catalyst materials and reaction networks.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Pengju Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
| | - Xiaobin Geng
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
| | - James Patrick Lewis
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
- Hong Kong Quantum AI Laboratory, Ltd., Hong Kong Science Park, Hong Kong 999077, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Company, Ltd., Huairou District, Beijing 101400, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
4
|
He S, Tu Y, Zhang J, Zhang L, Ke J, Wang L, Du L, Cui Z, Song H. Ammonia-Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308053. [PMID: 38009478 DOI: 10.1002/smll.202308053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.
Collapse
Affiliation(s)
- Shunyi He
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanhua Tu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jun Ke
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liming Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
5
|
Luo D, Liu X, Chang T, Bai J, Guo W, Zheng W, Wen X. Towards understanding the lower CH 4 selectivity of HCP-Co than FCC-Co in Fischer-Tropsch synthesis. Phys Chem Chem Phys 2024; 26:5704-5712. [PMID: 38289691 DOI: 10.1039/d3cp06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
In Fischer-Tropsch synthesis (FTS), the cobalt catalyst has higher C5+ and lower CH4 selectivity in the hcp phase than in the fcc phase. However, a detailed explanation of the intrinsic mechanism is still missing. The underlying reason was explored combining density functional theory, Wulff construction, and a particle-level descriptor based on the slab model of surfaces that are prevalent in the Wulff shape to provide single-particle level understanding. Using a particle-level indicator of the reaction rates, we have shown that it is more difficult to form CH4 on hcp-Co than on fcc-Co, due to the larger effective barrier difference of CH4 formation and C-C coupling on hcp-Co particles, which leads to the lower CH4 selectivity of hcp-Co in FTS. Among the exposed facets of fcc-Co, the (311) surface plays a pivotal role in promoting CH4 formation. The reduction of CH4 selectivity in cobalt-based FTS is achievable through phase engineering of Co from fcc to hcp or by tuning the temperature and size of the particles.
Collapse
Affiliation(s)
- Dan Luo
- Shanxi Key Laboratory of Ecological Protection and Resources Utilization of Yuncheng Salt Lake, Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tong Chang
- Shanxi Key Laboratory of Ecological Protection and Resources Utilization of Yuncheng Salt Lake, Department of Applied Chemistry, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, China
| | - Jiawei Bai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Wentao Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| |
Collapse
|
6
|
Wang Y, Yu M, Zhang X, Gao Y, Liu J, Zhang X, Gong C, Cao X, Ju Z, Peng Y. Density Functional Theory Study of CO 2 Hydrogenation on Transition-Metal-Doped Cu(211) Surfaces. Molecules 2023; 28:molecules28062852. [PMID: 36985824 PMCID: PMC10055092 DOI: 10.3390/molecules28062852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The massive emission of CO2 has caused a series of environmental problems, including global warming, which exacerbates natural disasters and human health. Cu-based catalysts have shown great activity in the reduction of CO2, but the mechanism of CO2 activation remains ambiguous. In this work, we performed density functional theory (DFT) calculations to investigate the hydrogenation of CO2 on Cu(211)-Rh, Cu(211)-Ni, Cu(211)-Co, and Cu(211)-Ru surfaces. The doping of Rh, Ni, Co, and Ru was found to enhance CO2 hydrogenation to produce COOH. For CO2 hydrogenation to produce HCOO, Ru plays a positive role in promoting CO dissociation, while Rh, Ni, and Co increase the barriers. These results indicate that Ru is the most effective additive for CO2 reduction in Cu-based catalysts. In addition, the doping of Rh, Ni, Co, and Ru alters the electronic properties of Cu, and the activity of Cu-based catalysts was subsequently affected according to differential charge analysis. The analysis of Bader charge shows good predictions for CO2 reduction over Cu-based catalysts. This study provides some fundamental aids for the rational design of efficient and stable CO2-reducing agents to mitigate CO2 emission.
Collapse
Affiliation(s)
- Yushan Wang
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Mengting Yu
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Xinyi Zhang
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yujie Gao
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Jia Liu
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chunxiao Gong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyong Cao
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhaoyang Ju
- College of Chemical & Material Engineering, Quzhou University, Quzhou 324000, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
7
|
Liu R, El Berch JN, House S, Meil SW, Mpourmpakis G, Porosoff MD. Reactive Separations of CO/CO 2 mixtures over Ru–Co Single Atom Alloys. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Renjie Liu
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - John N. El Berch
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Stephen House
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
- Environmental TEM Catalysis Consortium (ECC), University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico87123, United States
| | - Samuel W. Meil
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania15261, United States
| | - Marc D. Porosoff
- Department of Chemical Engineering, University of Rochester, Rochester, New York14627, United States
| |
Collapse
|
8
|
Ma H, Shi Q, Li X, Ren J, Wang Y, Li Z, Ning L. Molecular and thermodynamic insights into interfacial interactions between collagen and cellulose investigated by molecular dynamics simulation and umbrella sampling. J Comput Aided Mol Des 2023; 37:39-51. [PMID: 36427107 DOI: 10.1007/s10822-022-00489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Cellulose/collagen composites have been widely used in biomedicine and tissue engineering. Interfacial interactions are crucial in determining the final properties of cellulose/collagen composite. Molecular dynamics simulations were carried out to gain insights into the interactions between cellulose and collagen. It has been found that the structure of collagen remained intact during adsorption. The results derived from umbrella sampling showed that (110) and ([Formula: see text]) faces exhibited the strongest affinity with collagen (100) face came the second and (010) the last, which could be attributed to the surface roughness and hydrogen-bonding linkers involved water molecules. Cellulose planes with flat surfaces and the capability to form hydrogen-bonding linkers produce stronger affinity with collagen. The occupancy of hydrogen bonds formed between cellulose and collagen was low and not significantly contributive to the binding affinity. These findings provided insights into the interactions between cellulose and collagen at the molecular level, which may guide the design and fabrication of cellulose/collagen composites.
Collapse
Affiliation(s)
- Huaiqin Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Qingwen Shi
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Junli Ren
- Information Center, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yuhan Wang
- Xi'an Qujiang NO.1 High School, Xi'an, 710061, China
| | - Zhijian Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
9
|
Yang J, Lv L, Cui S, Sun C, Sun L, Shi B, Sharman E, Jiang J, Jia C. Catalytic Descriptor Exploration for Ru-Based Fischer-Tropsch Catalysts: Effect of Chlorine and Sulfur Addition. J Phys Chem Lett 2022; 13:8851-8857. [PMID: 36121330 DOI: 10.1021/acs.jpclett.2c02678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As an important factor in the design of catalysts, catalytic descriptor exploration has emerged as a novel frontier in heterogeneous catalysis. Here, the underlying structure-activity relationships of Ru-based catalysts are theoretically studied to shed light on this area. Calculations of different competing reaction paths suggest that the HCO*-mediated path─because of two synergistic active sites─is more favorable than others. In addition, compared to unadulterated Ru catalysts, the presence of Cl enhances the hydrocarbon production, whereas the presence of S decreases it. After a systematic examination of a series of structure-activity relationships (42 in total), we found that both charge transfer and average charge difference of active Ru atoms are good descriptors for the binding stability of reactants. However, for reactivity the Gibbs free energy of the reactants performs better. More interestingly, due to the quite different catalytic processes of the dissociation and hydrogenation steps, their correlations have opposite slopes.
Collapse
Affiliation(s)
- Jing Yang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Liqiang Lv
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Shuo Cui
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Cuihong Sun
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Li Sun
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Boxuan Shi
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| | - Edward Sharman
- Department of Neurology, University of California, Irvine, California 92697, United States
| | - Jun Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou 550018, China
| |
Collapse
|
10
|
Zhang Q, Kusada K, Wu D, Yamamoto T, Toriyama T, Matsumura S, Kawaguchi S, Kubota Y, Kitagawa H. Crystal Structure Control of Binary and Ternary Solid-Solution Alloy Nanoparticles with a Face-Centered Cubic or Hexagonal Close-Packed Phase. J Am Chem Soc 2022; 144:4224-4232. [PMID: 35196005 DOI: 10.1021/jacs.2c00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The crystal structure significantly affects the physical and chemical properties of solids. However, the crystal structure-dependent properties of alloys are rarely studied because controlling the crystal structure of an alloy at the same composition is extremely difficult. Here, for the first time, we successfully demonstrate the synthesis of binary Ru-Pt (Ru/Pt = 7:3) and Ru-Ir (Ru/Ir = 7:3) and ternary Ru-Ir-Pt (Ru/Ir/Pt = 7:1.5:1.5) solid-solution alloy nanoparticles (NPs) with well-controlled hexagonal close-packed (hcp) and face-centered cubic (fcc) phases, through the chemical reduction method. The crystal structure control is realized by precisely tunning the reduction speeds of the metal precursors. The effect of the crystal structure on the catalytic performance of solid-solution alloy NPs is systematically investigated. Impressively, all the hcp alloy NPs show superior electrocatalytic activities for the hydrogen evolution reaction in alkaline solution compared with the fcc alloy NPs. In particular, hcp-RuIrPt exhibits extremely high intrinsic (mass) activity, which is 3.1 (3.2) and 6.7 (6.9) times enhanced compared to that of fcc-RuIrPt and commercial Pt/C.
Collapse
Affiliation(s)
- Quan Zhang
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dongshuang Wu
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Centre, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Centre, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Syo Matsumura
- The Ultramicroscopy Research Centre, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Zhao J, He Y, Wang F, Yang Y, Zheng W, Huo C, Jiao H, Yang Y, Li Y, Wen X. A recyclable CoGa intermetallic compound catalyst for the hydroformylation reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Lin L, Zeng Z, Fu Q, Bao X. Achieving flexible large-scale reactivity tuning by controlling the phase, thickness and support of two-dimensional ZnO. Chem Sci 2021; 12:15284-15290. [PMID: 34976348 PMCID: PMC8635171 DOI: 10.1039/d1sc04428a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Tuning surface reactivity of catalysts is an effective strategy to enhance catalytic activity towards a chemical reaction. Traditional reactivity tuning usually relies on a change of the catalyst composition, especially when large-scale tuning is desired. Here, based on density functional theory calculations, we provide a strategy for flexible large-scale tuning of surface reactivity, i.e. from a few tenths of electronvolts (eV) to multiple eV, merely through manipulating the phase, thickness, and support of two-dimensional (2D) ZnO films. 2D ZnO films have three typical phases, i.e. graphene, wurtzite, and body-centered-tetragonal structures, whose intrinsic stability strongly depends on the thickness and/or the chemical nature of the support. We show that the adsorption energy of hydrogen differs by up to 3 eV on these three phases. For the same phase, varying the film thickness and/or support can lead to a few tenths of eV to 2 eV tuning of surface reactivity. We further demonstrate that flexible large-scale tuning of surface reactivity has a profound impact on the reaction kinetics, including breaking the Brønsted-Evans-Polanyi relationship.
Collapse
Affiliation(s)
- Le Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201203 China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University West Lafayette IN 47907 USA
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
13
|
van Etten MPC, Zijlstra B, Hensen EJM, Filot IAW. Enumerating Active Sites on Metal Nanoparticles: Understanding the Size Dependence of Cobalt Particles for CO Dissociation. ACS Catal 2021; 11:8484-8492. [PMID: 34306814 PMCID: PMC8294015 DOI: 10.1021/acscatal.1c00651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/12/2021] [Indexed: 11/28/2022]
Abstract
Detailed understanding of structure sensitivity, a central theme in heterogeneous catalysis, is important to guide the synthesis of improved catalysts. Progress is hampered by our inability to accurately enumerate specific active sites on ubiquitous metal nanoparticle catalysts. We employ herein atomistic simulations based on a force field trained with quantum-chemical data to sample the shape of cobalt particles as a function of their size. Algorithms rooted in pattern recognition are used to identify surface atom arrangements relevant to CO dissociation, the key step in the Fischer-Tropsch (FT) reaction. The number of step-edge sites that can catalyze C-O bond scission with a low barrier strongly increases for larger nanoparticles in the range of 1-6 nm. Combined with microkinetics of the FT reaction, we can reproduce experimental FT activity trends. The stabilization of step-edge sites correlates with increasing stability of terrace nanoislands on larger nanoparticles.
Collapse
Affiliation(s)
- Michel P. C. van Etten
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5612 AZ Eindhoven, the Netherlands
| | - Bart Zijlstra
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5612 AZ Eindhoven, the Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5612 AZ Eindhoven, the Netherlands
| | - Ivo A. W. Filot
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5612 AZ Eindhoven, the Netherlands
| |
Collapse
|
14
|
Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3611. [PMID: 34203371 PMCID: PMC8269646 DOI: 10.3390/ma14133611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The focus of this review is on the physical and magnetic properties that are related to the efficiency of monometallic magnetic nanoparticles used in biomedical applications, such as magnetic resonance imaging (MRI) or magnetic nanoparticle hyperthermia, and how to model these by theoretical methods, where the discussion is based on the example of cobalt nanoparticles. Different simulation systems (cluster, extended slab, and nanoparticle models) are critically appraised for their efficacy in the determination of reactivity, magnetic behaviour, and ligand-induced modifications of relevant properties. Simulations of the effects of nanoscale alloying with other metallic phases are also briefly reviewed.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
| | - Nora H. de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
15
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Zhang Q, Kusada K, Kitagawa H. Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. Chempluschem 2021; 86:504-519. [PMID: 33764700 DOI: 10.1002/cplu.202000782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In recent years, the phase control of monometallic and alloy nanomaterials has attracted great attention because of the potential to tune the physical and chemical properties of these species. In this Review, an overview of the latest research progress in phase-controlled monometallic and alloy nanomaterials is first given. Then, the phase-controlled synthesis using a chemical reduction method are discussed, and the formation mechanisms of these nanomaterials are specifically highlighted. Lastly, the challenges and future perspectives in this new research field are discussed.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kohei Kusada
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Kitagawa
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
17
|
Porkovich AJ, Kumar P, Ziadi Z, Lloyd DC, Weng L, Jian N, Sasaki T, Sowwan M, Datta A. Defect-assisted electronic metal-support interactions: tuning the interplay between Ru nanoparticles and CuO supports for pH-neutral oxygen evolution. NANOSCALE 2021; 13:71-80. [PMID: 33350421 DOI: 10.1039/d0nr06685k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electronic metal-support interactions (EMSIs) comprise an area of intense study, the manipulation of which is of paramount importance in the improvement of heterogeneous metal nanoparticle (NP) supported catalysts. EMSI is the transfer of charge from the support to NP, enabling more effective adsorption and interaction of reactants during catalysis. Ru NPs on CuO supports show different levels of EMSI (via charge transfer) depending on their crystal structure, with multiple twinned NPs showing greater potential for EMSI. We use magnetron-assisted gas phase aggregation for the synthesis of batches of Ru NPs with different populations of single crystal and multiple twinned nanoparticles, which were deposited on CuO nanowires (NWs). The surface charging of the Ru-CuO catalysts was investigated by Kelvin probe force microscopy (KPFM) and X-ray photoelectron spectroscopy (XPS). By doubling the population of multiple twinned NPs, the surface potential of the Ru-CuO catalysts increases roughly 4 times, coinciding with a similar increase in the amount of Ru4+. Therefore, tuning the amount of EMSI in a catalyst is possible through changing the population of multiple twinned Ru NPs in the catalyst. Increasing the amount of multiple twin NPs resulted in improved activity in the oxygen evolution reaction (a roughly 2.5 times decrease in the overpotentials when the population of multiple twinned NPs is increased) and better catalyst stability. This improvement is attributed to the fact that the multiple twin NPs maintained a metallic character under oxidation conditions (unlike single crystal NPs) due to the EMSI between the NP and support.
Collapse
Affiliation(s)
- Alexander J Porkovich
- Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna-Son, Okinawa 904-0495, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao P, Ehara M, Satsuma A, Sakaki S. Theoretical insight into oxidation catalysis of chromite spinel MCr2O4 (M = Mg, Co, Cu, and Zn): Volcano plot for oxygen-vacancy formation and catalytic activity. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Porkovich A, Ziadi Z, Kumar P, Kioseoglou J, Jian N, Weng L, Steinhauer S, Vernieres J, Grammatikopoulos P, Sowwan M. In Situ Observation of Metal to Metal Oxide Progression: A Study of Charge Transfer Phenomenon at Ru-CuO Interfaces. ACS NANO 2019; 13:12425-12437. [PMID: 31577415 DOI: 10.1021/acsnano.9b06224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface charge and charge transfer between nanoclusters and oxide supports are of paramount importance to catalysis, surface plasmonics, and optical energy harvesting areas. At present, high-energy X-rays and theoretical investigation are always required to determine the chemical state changes in the nanoclusters and the oxide supports, as well as the underlying transfer charge between them. This work presents the idea of using chrono-conductometric measurements to determine the chemical states of the Ru nanoclusters on CuO supports. Both icosahedral and single-crystal hexagonal close-packed Ru nanoclusters were deposited through gas-phase synthesis. To study the charge transfer phenomenon at the interface, a bias was applied to cupric oxide nanowires with metallic nanocluster decoration. In situ conductometric measurements were performed to observe the evolution of Ru into RuOx under heating conditions. Structural elucidation techniques such as transmission electron microscopy, X-ray photoelectron spectroscopy, and Kelvin probe force microscopy were employed to study the corresponding progression of structure, chemical ordering, and surface potential, respectively, as Ru(0) was oxidized to RuOx on the supporting oxide surface. Experimental and theoretical investigation of charge transfer between the nanocluster and oxide support highlighted the importance of metallic character and structure of the nanoclusters on the interfacial charge transfer, thus allowing the investigation of surface charge behavior on oxide-supported catalysts, in situ, during catalytic operation via conductometric measurements.
Collapse
Affiliation(s)
- Alexander Porkovich
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Zakaria Ziadi
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Pawan Kumar
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Joseph Kioseoglou
- Department of Physics , Aristotle University of Thessaloniki , GR-54124 Thessaloniki , Greece
| | - Nan Jian
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Lin Weng
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Stephan Steinhauer
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Jerome Vernieres
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Panagiotis Grammatikopoulos
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| | - Mukhles Sowwan
- Nanoparticles by Design Unit , Okinawa Institute of Science and Technology (OIST) Graduate University , 1919-1 Tancha, Onna-Son , Okinawa 904-0495 , Japan
| |
Collapse
|