1
|
Saha S, Krause JA, Guan H. C(sp)-H, S-H, and Sn-H Bond Activation with a Cobalt(I) Pincer Complex. Inorg Chem 2024; 63:13689-13699. [PMID: 38976491 DOI: 10.1021/acs.inorgchem.4c01993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
This study focuses on the stoichiometric reactions of {2,6-(iPr2PO)2C6H3}Co(PMe3)2 with terminal alkynes, thiols, and tin hydrides as part of an effort to develop catalytic, two-electron processes with cobalt. This specific Co(I) pincer complex proves to be effective for cleaving the C(sp)-H, S-H, and Sn-H bonds to give oxidative addition products with the general formula {2,6-(iPr2PO)2C6H3}CoHX(PMe3) (X = alkynyl, thiolate, and stannyl groups) along with the free PMe3. These reactions typically reach completion when the substituents on acetylene, sulfur, and tin are electron-withdrawing groups (e.g., phenyl, pyridyl, and alkenyl groups). In contrast, alkyl-substituted acetylenes, 1-pentanethiol, and tributyltin hydride are partially converted due to the equilibria with the corresponding oxidative addition products. The Co(I) pincer complex is not a hydrothiolation catalyst but capable of catalyzing the hydrostannation of terminal alkynes with Ph3SnH to produce β-(Z)-alkenylstannanes selectively.
Collapse
Affiliation(s)
- Sayantani Saha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
2
|
Hess SN, Fürstner A. An Efficient and Scalable "Second Generation" Total Synthesis of the Marine Polyketide Limaol Endowed with Antiparasitic Activity. Chemistry 2024; 30:e202401429. [PMID: 38716817 DOI: 10.1002/chem.202401429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/20/2024]
Abstract
The cluster of four skipped exo-methylene substituents on the "northern" wing of limaol renders this dinoflagellate-derived marine natural product unique in structural terms. This arguably non-thermodynamic array gains kinetic stability by virtue of populating local conformations which impede isomerization to a partly or fully conjugated polyene. This analysis suggested that the difficulties encountered during the late stages of our first total synthesis of this polyketide had not been caused by an overly fragile character of this unusual substructure; rather, an unfavorable steric microenvironment about the spirotricyclic core was identified as the likely cause. To remedy the issue, the protecting groups on this central fragment were changed; in effect, this amendment allowed all strategic and practical problems to be addressed. As a result, the overall yield over the longest linear sequence was multiplied by a factor of almost five and the material throughput increased more than eighty-fold per run. Key-to-success was a gold-catalyzed spirocyclization reaction; the reasons why a Brønsted acid cocatalyst is needed and the origin of the excellent levels of selectivity were delineated. The change of the protecting groups also allowed for much improved fragment coupling processes; most notably, the sequence of a substrate-controlled carbonyl addition reaction followed by Mitsunobu inversion that had originally been necessary to affix the southern tail to the core could be replaced by a reagent controlled asymmetric allylation. Finally, a much-improved route to the "northern" sector was established by leveraging the power of asymmetric hydrogenation of a 2-pyrone derivative. Limaol was found to combine appreciable antiparasitic activity with very modest cytotoxicity.
Collapse
Affiliation(s)
- Stephan N Hess
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
3
|
Chen J, Wei WT, Li Z, Lu Z. Metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes. Chem Soc Rev 2024; 53:7566-7589. [PMID: 38904176 DOI: 10.1039/d4cs00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metal-catalyzed highly Markovnikov-type selective hydrofunctionalization of terminal alkynes provides a straightforward and atom-economical route to access 1,1-disubstituted alkenes, which have a wide range of applications in organic synthesis. However, the highly Markovnikov-type selective transformations are challenging due to the electronic and steric effects during the addition process. With the development of metal-catalyzed organic synthesis, different metal catalysts have been developed to solve this challenge, especially for platinum group metal catalysts. In this perspective, we review homogeneous metal-catalyzed Markovnikov-type selective hydrofunctionalization of terminal alkynes according to the classified element types as well as reaction mechanisms. Future avenues for investigation are also presented to help expand this exciting field.
Collapse
Affiliation(s)
- Jieping Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China
| | - Zhuocheng Li
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Wang L, Qin W. Copper-Initiated Regiodivergent Chloropentafluorosulfanylation of 1,3-Enynes under Substrate Control. Org Lett 2024; 26:5049-5054. [PMID: 38833632 DOI: 10.1021/acs.orglett.4c01768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A copper-catalyzed regiodivergent chloropentafluorosulfanylation strategy for 1,3-enynes using SF5Cl has been developed. The regioselectivity is dictated by the structural and substitution patterns of 1,3-enynes, enabling facile access to three classes of SF5-containing products: propargylic chlorides, 1,3-dienes, and allenes. The reaction systems involve radical species, where the transfer of a chlorine atom from SF5Cl to a carbon radical is considered the predominant pathway. Diverse types of SF5- building blocks can be synthesized through simple functional group transformations.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Frontier Chemistry School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Wenhui Qin
- Institute of Frontier Chemistry School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
5
|
Fan ZW, Li ZQ, Zhao BY, Wang MY, Zhang HX, Wang YQ. Acid Promoted Tetrafunctionalization of Terminal Alkynes: Geminal Diazidation and Dibromination. Org Lett 2024; 26:3878-3882. [PMID: 38678578 DOI: 10.1021/acs.orglett.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The synthesis of complex alkanes by the tetrafunctionalization of alkynes is limited and challenging. Herein, an unprecedented efficient geminal diazidation and dibromination of terminal alkynes is developed, which provides novel access to structurally diverse organic azides. The approach has exclusive chemo- and regioselectivity and features mild reaction conditions, good tolerance of various functional groups, and more crucially, no metal involved in the reaction, thereby benefiting the late-stage decoration of medicinal molecules. A mechanistic study showed that the current geminal diazidation and dibromination proceeds via a radical pathway.
Collapse
Affiliation(s)
- Zhi-Wu Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zhi-Qi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Hong-Xia Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
6
|
Zhang Y, Deng G. Highly Diastereoselective Synthesis and Application of Functionalized 2,3-Dihydrofuran Derivatives from Enynones and Bis(diazo) Compounds. J Org Chem 2024; 89:80-90. [PMID: 38091516 DOI: 10.1021/acs.joc.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A highly efficient Ag(I)-catalyzed cascade Michael addition/cyclization of enynones with 1,3-(bis)diazo compounds has been established, providing functionalized 2,3-dihydrofuran derivatives containing a diazo group and an acetylenic bond with excellent diastereoselectivity. Transformation of the diazo group and hydration of the carbon-carbon triple bond have been performed successfully in different reaction systems.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
7
|
Xu J, Ge Z, Ding K, Wang X. Rh(II)/Pd(0) Dual-Catalyzed Regio-Divergent Three-Component Propargylic Substitution. JACS AU 2023; 3:2862-2872. [PMID: 37885573 PMCID: PMC10598837 DOI: 10.1021/jacsau.3c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Regio-divergent propargylic substitution to generate functionally diverse products from identical starting materials remains a formidable challenge, probably due to the unpredictable regiochemical complexity. In practically, the synthesis of α-quaternary propargylic-substituted products is still much less developed, and preprepared nucleophiles are generally applied in this type of reaction with propargylic substrates, which limits the reaction efficiency and diversity of the obtained products. Herein, we disclose unprecedented three-component propargylic substitution of α-diazo esters with amines and propargylic carbonates under dirhodium/palladium dual catalysis. The key to the success of this multicomponent propargylic substitution is to avoid two-component side reactions through a tandem process of dirhodium(II)-catalyzed carbene insertion and palladium-catalyzed regiodivergent propargylic substitution. The judicious selection of a diphosphine (dppf) or monophosphine (tBuBrettphos) as the ligand is crucial for the reaction to generate different products in a switchable way, α-quaternary 1,3-dienyl or propargylated products, with high regio- and chemoselectivities.
Collapse
Affiliation(s)
- Jie Xu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaoliang Ge
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kuiling Ding
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Frontier
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, 800 Dongchuan
Road, Shanghai 200240, China
| | - Xiaoming Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
| |
Collapse
|
8
|
Varlet T, Portmann S, Fürstner A. Total Synthesis of Njaoamine C by Concurrent Macrocycle Formation. J Am Chem Soc 2023; 145:21197-21202. [PMID: 37734001 PMCID: PMC10557140 DOI: 10.1021/jacs.3c08410] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 09/23/2023]
Abstract
In conceptual terms, the first total synthesis of the cytotoxic marine natural product njaoamine C differs from all known approaches toward related alkaloids of the manzamine superfamily in that both macrocyclic rings enveloping the diazatricyclic core are concomitantly formed; this goal was reached by double ring closing alkyne metathesis (dRCAM). The success of this maneuver does not merely reflect a favorable preorientation of the four alkyne chains that need to be concatenated in the proper pairwise manner but is also the outcome of dynamic covalent chemistry involving error correction by the chosen "canopy" molybdenum alkylidyne catalyst. The end game downstream of dRCAM capitalizes on the striking chemoselectivity of palladium-catalyzed hydrostannation, which selects for (hetero)arylalkynes even in the presence of sterically much more accessible dialkylalkynes or alkenes; for this preference, the method complements the classical repertoire of hydrometalation and semireduction reactions.
Collapse
Affiliation(s)
- Thomas Varlet
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Sören Portmann
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
9
|
Molinillo P, Puyo M, Vattier F, Lacroix B, Rendón N, Lara P, Suárez A. Ruthenium nanoparticles stabilized by 1,2,3-triazolylidene ligands in the hydrogen isotope exchange of E-H bonds (E = B, Si, Ge, Sn) using deuterium gas. NANOSCALE 2023; 15:14488-14495. [PMID: 37606171 DOI: 10.1039/d3nr02637j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A series of ruthenium nanoparticles (Ru·MIC) stabilized with different mesoionic 1,2,3-triazolylidene (MIC) ligands were prepared by decomposition of the Ru(COD)(COT) (COD = 1,5-cyclooctadiene; COT = 1,3,5-cyclooctatriene) precursor with H2 (3 bar) in the presence of substoichiometric amounts of the stabilizer (0.1-0.2 equiv.). Small and monodisperse nanoparticles exhibiting mean sizes between 1.1 and 1.2 nm were obtained, whose characterization was carried out by means of transmission electron microscopy (TEM), including high resolution TEM (HRTEM), inductively coupled plasma (ICP) analysis and X-ray photoelectron spectroscopy (XPS). In particular, XPS measurements confirmed the presence of MIC ligands on the surfaces of the nanoparticles. The Ru·MIC nanoparticles were used in the isotopic H/D exchange of different hydrosilanes, hydroboranes, hydrogermananes and hydrostannanes using deuterium gas under mild conditions (1.0 mol% Ru, 1 bar D2, 55 °C). Selective labelling of the E-H (E = B, Si, Ge, Sn) bond in these derivatives, with high levels of deuterium incorporation, was observed.
Collapse
Affiliation(s)
- Pablo Molinillo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Maxime Puyo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Florencia Vattier
- Instituto de Ciencia de Materiales de Sevilla. CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Bertrand Lacroix
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Patricia Lara
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Andrés Suárez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
10
|
Doraghi F, Mohaghegh F, Qareaghaj OH, Larijani B, Mahdavi M. Synthesis of N-, O-, and S-heterocycles from aryl/alkyl alkynyl aldehydes. RSC Adv 2023; 13:13947-13970. [PMID: 37181524 PMCID: PMC10167737 DOI: 10.1039/d3ra01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of heterocyclic synthesis, alkynyl aldehydes serve as privileged reagents for cyclization reactions with other organic compounds to construct a broad spectrum of N-, O-, and S-heterocycles. Due to the immense application of heterocyclic molecules in pharmaceuticals, natural products, and material chemistry, the synthesis of such scaffolds has received wide attention. The transformations occurred under metal-catalyzed, metal-free-promoted, and visible-light-mediated systems. The present review article highlights the progress made in this field over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
11
|
Pan X, Talavera M, Braun T. Efficient hydrostannation of fluorinated alkenes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Wang C, Wu J, Yan B, Ni C, Ma X, Yang Z. N
‐coordinated Aluminum Complexes Catalyze the Hydrostannation of Alkynes. ChemistrySelect 2023. [DOI: 10.1002/slct.202204405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chengzhi Wang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Jin Wu
- Xi'an Aerospace Propulsion Test Technique Institute Xi'an 710100 P. R. China
| | - Ben Yan
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Congjian Ni
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
13
|
Zhang R, Xia Y, Yan Y, Ouyang L. Cu-catalyzed, Mn-mediated propargylation and allenylation of aldehydes with propargyl bromides. BMC Chem 2022; 16:14. [PMID: 35303949 PMCID: PMC8933908 DOI: 10.1186/s13065-022-00803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
A simple, practical, and high chemo-selective method for the synthesis of propargyl alcohol and allenyl alcohols via Cu-catalyzed, Mn-mediated propargylation and allenylation of aldehydes with propargyl bromides has been established. When 3-bromo-1-propyne was conducted under the standard condition, the aldehydes were transformed to the corresponding propargylation products completely, while when 1-bromo-2-pentyne was used, allenic alcohol was the only product. Variety of homopropargyl alcohols and allenyl alcohols were obtained in high yields and the reaction is compatible with broad substrate scopes. In addition, the large-scale reaction could also be proceeded smoothly indicating the potential synthetic applications of this transformation.
Collapse
Affiliation(s)
- Rongli Zhang
- Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, China.
| | - Yanping Xia
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Yuchen Yan
- Xuzhou Medical University, Tongshan Road 209, Xuzhou, 221004, China
| | - Lu Ouyang
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
14
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
15
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
16
|
Yan T, Li Y, Huang G, Ni S, Dang L. Reaction Mechanism Study on Reactions of Phenylacetylenes with HSnEt3 Promoted by B(C6F5)3 with/without DABCO. Org Chem Front 2022. [DOI: 10.1039/d2qo00375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There are great variety of transformations for phenylacetylenes. Most efforts have been focused on the dehydrogenative coupling, although nucleophilic addition is often observed as the side reaction. The selectivity of...
Collapse
|
17
|
Liu M, Sun J, Engle KM. Recent advances in the generation and functionalization of C(alkenyl)–Pd species for synthesis of polysubstituted alkenes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Torquato NA, Palasz JM, Bertrand QC, Brunner FM, Chan T, Gembicky M, Mrse AA, Kubiak CP. Synthesis, structure and reactivity of μ 3-SnH capped trinuclear nickel cluster. Chem Sci 2022; 13:11382-11387. [PMID: 36320577 PMCID: PMC9533397 DOI: 10.1039/d2sc04042e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Treatment of the trichlorotin-capped trinuclear nickel cluster, [Ni3(dppm)3(μ3-Cl)(μ3-SnCl3)], 1, with 4 eq. NaHB(Et)3 yields a μ3-SnH capped trinuclear nickel cluster, [Ni3(dppm)3(μ3-H)(μ3-SnH)], 2 [dppm = bis(diphenylphosphino)methane]. Single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and computational studies together support that cluster 2 is a divalent tin hydride. Complex 2 displays a wide range of reactivity including oxidative addition of bromoethane across the Sn center. Addition of 1 eq. iodoethane to complex 2 releases H2 (g) and generates an ethyltin-capped nickel cluster with a μ3-iodide, [Ni3(dppm)3(μ3-I)(μ3-Sn(CH2CH3))], 4. Notably, insertion of alkynes into the Sn–H bond of 2 can be achieved via addition of 1 eq. 1-hexyne to generate the 1-hexen-2-yl-tin-capped nickel cluster, [Ni3(dppm)3(μ3H)(μ3-Sn(C6H11))], 5. Addition of H2 (g) to 5 regenerates the starting material, 2, and hexane. The formally 44-electron cluster 2 also displays significant redox chemistry with two reversible one-electron oxidations (E = −1.3 V, −0.8 V vs. Fc0/+) and one-electron reduction process (E = −2.7 V vs. Fc0/+) observed by cyclic voltammetry. The synthesis, structure, and reactivity of a μ3-SnH capped trinuclear nickel cluster, [Ni3(dppm)3(μ3-H)(μ3-SnH)], is reported. This complex undergoes oxidative addition chemistry, alkyne insertion, and subsequent hydrogenation.![]()
Collapse
Affiliation(s)
- Nicole A. Torquato
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Joseph M. Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Felix M. Brunner
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Thomas Chan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Anthony A. Mrse
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
19
|
Roy MMD, Omaña AA, Wilson ASS, Hill MS, Aldridge S, Rivard E. Molecular Main Group Metal Hydrides. Chem Rev 2021; 121:12784-12965. [PMID: 34450005 DOI: 10.1021/acs.chemrev.1c00278] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Collapse
Affiliation(s)
- Matthew M D Roy
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Alvaro A Omaña
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Andrew S S Wilson
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Michael S Hill
- Department of Chemistry, University of Bath, Avon BA2 7AY, United Kingdom
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
20
|
Masonheimer CL, Atwood MG, Hartzell SE, Reph EA, Pike RD, Stockland RA. Syn-Insertion of Alkynes into Gold–Phosphito Bonds: Stereoselectivity and Reversible Protodeauration. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carly L. Masonheimer
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Madeleine G. Atwood
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Susan E. Hartzell
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Erin A. Reph
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - Robert D. Pike
- Department of Chemistry, The College of William and Mary, Williamsburg, Virginia 23185, United States
| | - Robert A. Stockland
- Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| |
Collapse
|
21
|
Watson HA, Fielding AJ, Hale KJ. EPR evidence for α-triphenylstannylvinyl radicals in the O-directed hydrostannation of dialkylacetylenes with Ph 3SnH/cat. Et 3B/O 2. Chem Commun (Camb) 2021; 57:7449-7452. [PMID: 34235526 DOI: 10.1039/d1cc01702k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we provide definitive EPR evidence for the existence of α-triphenylstannylvinyl radicals in the low temperature O-directed free radical hydrostannation of dialkyl propargylic alcohols with Ph3SnH/cat. Et3B and O2 in PhMe. Isotropic hyperfine splitting patterns and spectral simulations confirm the assignments made. In the case of the α-triphenylstannylvinyl radical (Z)-2, an isotopic 119/117Sn hyperfine coupling constant of 9.5 mT (95 G) was measured along with a 1Hβ hyperfine coupling constant of 1.1 mT.
Collapse
Affiliation(s)
- Hamish A Watson
- The School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| | - Alistair J Fielding
- The School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK.
| | - Karl J Hale
- The School of Chemistry and Chemical Engineering, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
22
|
Zhu M, Messaoudi S. Diastereoselective Decarboxylative Alkynylation of Anomeric Carboxylic Acids Using Cu/Photoredox Dual Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01600] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingxiang Zhu
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay, Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay, Malabry, France
| |
Collapse
|
23
|
Li Y, Zhou M, Park S, Dang L. Comparative DFT Study on Dehydrogenative C(sp)-H Elementation (E = Si, Ge, and Sn) of Terminal Alkynes Catalyzed by a Cationic Ruthenium(II) Thiolate Complex. Inorg Chem 2021; 60:6228-6238. [PMID: 33852282 DOI: 10.1021/acs.inorgchem.0c03695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is a comparative theoretical study of dehydrogenative C(sp)-H functionalizations of a terminal alkyne with group-14-based hydrides (HEEt3; E = Si, Ge, Sn) catalyzed by an Ohki-Tatsumi complex-a cationic Ru(II) complex with a tethered thiolate ligand ([Ru-S] = [(DmpS)Ru(PiPr3)][BAr4F]; Dmp = 2,6-(dimesityl)2C6H3; ArF = 3,5-(CF3)2C6H3). The calculations indicate that the energy barriers for heterolytic cleavage of the H-EEt3 bonds at the Ru-S sites of the Ohki-Tatsumi complex highly vary depending on the group 14 elements from 3.8 kcal/mol (E = Sn) to 10.5 kcal/mol (E = Ge) and 18.5 kcal/mol (E = Si), where Ru and S elements cooperatively serve as the Lewis acid and base, respectively. Likewise, the transfer of the group 14 cation (Et3E+) to the C-C triple bond to generate the β-element-stabilized vinyl cations-the rate-determining step (RDS) of the overall reaction-is predicted to be susceptible to the element's identity [Ea = 36.8 for Sn < 42.9 and Ge < 50.7 for Si (kcal/mol)]. The key transition states involved in the RDS are compared in terms of energy and structure within each system of the group 14 hydrides. The distortion/interaction-activation strain (DIAS) model analysis of the transition states responsible for dehydrogenative stannylation and hydrostannation of a terminal alkyne sheds light on the origin of the experimentally observed kinetic preference toward dehydrogenative C-H stannylation over hydrostannation.
Collapse
Affiliation(s)
- Yahui Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Miaomiao Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Sehoon Park
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou, Guangdong 515063, China.,Technion-Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
24
|
Sakamoto K, Nagashima Y, Wang C, Miyamoto K, Tanaka K, Uchiyama M. Illuminating Stannylation. J Am Chem Soc 2021; 143:5629-5635. [PMID: 33769051 DOI: 10.1021/jacs.1c00887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have developed photoboosted stannylation reactions of terminal alkynes (linear-selective hydrostannylation) and fluoroarenes (defluorostannylation), in which the stannyl anion is photoexcited to an excited triplet (T1) stannyl diradical species. This unprecedented T1-stannyl diradical species shows completely different reactivity and selectivity from those of stannyl anions and stannyl radicals. This methodology is operationally simple, has broad functional group tolerance, and proceeds in high yield without the need for any catalyst.
Collapse
Affiliation(s)
- Kyoka Sakamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Nagashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Chao Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
25
|
Mi J, Huo S, Zeng Y, Meng L, Li X. Control of the Regioselectivity of Alkyne Hydrostannylation by Tuning the Metal Pair of Heterobimetallic Catalysts: A Theoretical Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- JinHui Mi
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic and Nano-Materials, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
- National Experimental Chemistry Teaching Center, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Suhong Huo
- School of Safety Supervision, North China Institute of Science and Technology, Langfang 065201, P. R. China
| | - Yanli Zeng
- National Experimental Chemistry Teaching Center, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic and Nano-Materials, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic and Nano-Materials, Hebei Normal University, Road East of 2nd Ring South, Shijiazhuang 050024, China
| |
Collapse
|
26
|
Liu J, Song H, Wang T, Jia J, Tong QX, Tung CH, Wang W. Iron-Catalyzed Regiodivergent Hydrostannation of Alkynes: Intermediacy of Fe(IV)-H versus Fe(II)-Vinylidene. J Am Chem Soc 2020; 143:409-419. [PMID: 33371677 DOI: 10.1021/jacs.0c11448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We report an iron system, Cp*Fe(1,2-R2PC6H4X), which controls the Markovnikov and anti-Markovnikov hydrostannation of alkynes by tuning the ionic metal-heteroatom bonds (Fe-X) reactivity. The sequential addition of nBu3SnH to the iron-amido catalyst (1, X = HN-, R = Ph) affords a distannyl Fe(IV)-H species responsible for syn-addition of the Sn-H bond across the C≡C bond to produce branched α-vinylstannanes. Activation of the C(sp)-H bond of alkynes by an iron-aryloxide catalyst (2, X = O-, R = Cy) affords an iron(II) vinylidene intermediate, allowing for gem-addition of the Sn-H to the terminal-carbon producing β-vinylstannanes. These catalytic reactions exhibit excellent regioselectivity and broad functional group compatibility and enable the large-scale synthesis of diverse vinylstannanes. Many new reactions have been established based on such a synthetic Fe-X platform to demonstrate that the initial step of the catalysis is conveniently controlled by the activation of either the tin hydride or the alkyne substrate.
Collapse
Affiliation(s)
- Jianguo Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Heng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tianlin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing-Xiao Tong
- Department of Chemistry, Shantou University, Shantou 515063, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
MacMillan JWM, Marczenko KM, Johnson ER, Chitnis SS. Hydrostibination of Alkynes: A Radical Mechanism*. Chemistry 2020; 26:17134-17142. [PMID: 32706129 DOI: 10.1002/chem.202003153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 11/09/2022]
Abstract
The addition of Sb-H bonds to alkynes was reported recently as a new hydroelementation reaction that exclusively yields anti-Markovnikov Z-olefins from terminal acetylenes. We examine four possible mechanisms that are consistent with the observed stereochemical and regiochemical outcomes. A comprehensive analysis of solvent, substituent, isotope, additive, and temperature effects on hydrostibination reaction rates definitively refutes three ionic mechanisms involving closed-shell charged intermediates. Instead the data support a fourth pathway featuring open-shell neutral intermediates. Density-functional theory (DFT) calculations are consistent with this model, predicting an activation barrier that is in agreement with the experimental value (Eyring analysis) and a rate limiting step that is congruent with the experimental kinetic isotope effect. We therefore conclude that hydrostibination of arylacetylenes is initiated by the generation of stibinyl radicals, which then participate in a cycle featuring SbII and SbIII intermediates to yield the observed Z-olefins as products. This mechanistic understanding will enable rational evolution of hydrostibination as a synthetic methodology.
Collapse
Affiliation(s)
- Joshua W M MacMillan
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| | - Katherine M Marczenko
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| | - Saurabh S Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada
| |
Collapse
|
28
|
Esteruelas MA, Martínez A, Oliván M, Vélez A. A General Rhodium Catalyst for the Deuteration of Boranes and Hydrides of the Group 14 Elements. J Org Chem 2020; 85:15693-15698. [PMID: 33155805 DOI: 10.1021/acs.joc.0c01967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pinacolborane, catecholborane, triethylsilane, triphenylsilane, dimethylphenylsilane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, triethylgermane, triphenylgermane, and triphenylstannane deuterated at the heteroatom position have been catalytically prepared in 50-70% isolated yield, through H/D exchange between the D2 molecule and the respective boranes and hydrides of the group 14 elements, in the presence of the rhodium(I)-monohydride catalyst precursor RhH{κ3-P,O,P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene).
Collapse
Affiliation(s)
- Miguel A Esteruelas
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Antonio Martínez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| | - Andrea Vélez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
29
|
Huang WY, Wang GQ, Li WH, Li TT, Ji GJ, Ren SC, Jiang M, Yan L, Tang HT, Pan YM, Ding YJ. Porous Ligand Creates New Reaction Route: Bifunctional Single-Atom Palladium Catalyst for Selective Distannylation of Terminal Alkynes. Chem 2020. [DOI: 10.1016/j.chempr.2020.06.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Xiong W, Shi F, Cheng R, Zhu B, Wang L, Chen P, Lou H, Wu W, Qi C, Lei M, Jiang H. Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruixiang Cheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pengquan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongming Lou
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
31
|
The stannylvinyl cation that never was! New concentration- and temperature-dependent probe studies confirm an entirely free radical mechanism and O–Sn coordinative control of the hydrostannation of propargylically-oxygenated dialkyl acetylenes with stannanes and cat. Et3B. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Magre M, Szewczyk M, Rueping M. Magnesium-Catalyzed Stereoselective Hydrostannylation of Internal and Terminal Alkynes. Org Lett 2020; 22:1594-1598. [DOI: 10.1021/acs.orglett.0c00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marc Magre
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Marcin Szewczyk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
33
|
Saptal VB, Wang R, Park S. Recent advances in transition metal-free catalytic hydroelementation (E = B, Si, Ge, and Sn) of alkynes. RSC Adv 2020; 10:43539-43565. [PMID: 35519696 PMCID: PMC9058465 DOI: 10.1039/d0ra07768b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022] Open
Abstract
This review describes the recent advances in the transition metal-free hydroelementation of alkynes with various metalloid hydrides.
Collapse
Affiliation(s)
- Vitthal B. Saptal
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- China
| | - Ruibin Wang
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- China
| | - Sehoon Park
- Department of Chemistry
- Guangdong Technion Israel Institute of Technology
- China
- Technion-Israel Institute of Technology
- 32000 Haifa
| |
Collapse
|
34
|
Danilkina NA, Vasileva AA, Balova IA. A.E.Favorskii’s scientific legacy in modern organic chemistry: prototropic acetylene – allene isomerization and the acetylene zipper reaction. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alexei Evgrafovich Favorskii was an outstanding organic chemist who left a great scientific legacy as a result of long time and fruitful work. Most of the theoretically and practically important discoveries of A.E.Favorskii were made in the chemistry of acetylene and its derivatives. Nowadays, the reactions discovered by him, which include acetylene – allene isomerization, the Favorskii and retro-Favorskii reactions, the Favorskii rearrangement and the vinylation reaction, are widely used in industry and in laboratory synthesis. This review summarizes the main scientific achievements of A.E.Favorskii, as well as their development in modern organic chemistry. Much consideration is given to acetylene – allene isomerization as a convenient method for the synthesis of methyl-substituted acetylenes and to the acetylene zipper reaction as a synthetic tool for obtaining terminal acetylenes. The review presents examples of the application of these reactions in modern organic synthesis of complex molecules, including natural compounds and their analogues.
The bibliography includes 266 references.
Collapse
|
35
|
Li G, Huo X, Jiang X, Zhang W. Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chem Soc Rev 2020; 49:2060-2118. [DOI: 10.1039/c9cs00400a] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review article provides an overview of progress in asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes.
Collapse
Affiliation(s)
- Guanlin Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiaohong Huo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xieyang Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
36
|
Kim JS, Dutta A, Vasu V, Adebolu OI, Asandei AD. Universal Group 14 Free Radical Photoinitiators for Vinylidene Fluoride, Styrene, Methyl Methacrylate, Vinyl Acetate, and Butadiene. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joon-Sung Kim
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Abhirup Dutta
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Vignesh Vasu
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Olumide I. Adebolu
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| | - Alexandru D. Asandei
- Institute of Materials Science, Polymer Program and Department of Chemistry, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269-3136, United States
| |
Collapse
|
37
|
Kai Y, Oku S, Tani T, Sakurai K, Tsuchimoto T. A Drastic Effect of TEMPO in Zinc‐Catalyzed Stannylation of Terminal Alkynes with Hydrostannanes via Dehydrogenation and Oxidative Dehydrogenation. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuichi Kai
- Department of Applied Chemistry, School of Science and TechnologyMeiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Shinya Oku
- Department of Applied Chemistry, School of Science and TechnologyMeiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Tomohiro Tani
- Department of Applied Chemistry, School of Science and TechnologyMeiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Kyoko Sakurai
- Department of Applied Chemistry, School of Science and TechnologyMeiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry, School of Science and TechnologyMeiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
38
|
Watson HA, Manaviazar S, Steeds HG, Hale KJ. Fast ring-opening of an intermediary α-stannyl-β-cyclopropylvinyl radical does not support formation of an α-stannylvinyl cation in the O-directed free radical hydrostannation of dialkyl acetylenes. Chem Commun (Camb) 2019; 55:14454-14457. [DOI: 10.1039/c9cc05492h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O-directed hydrostannation of β-cyclopropyl propargyl alcohol 22 with stannanes and cat. Et3B in THF/H2O or PhMe/MeOH fails to deliver any detectable products of α-stannylvinyl cation capture.
Collapse
Affiliation(s)
- Hamish A. Watson
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Soraya Manaviazar
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Hannah G. Steeds
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| | - Karl J. Hale
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast BT9 5AG
- UK
| |
Collapse
|