1
|
Perxés Perich M, O'Connor CR, Draijer KM, Visser NL, Artrith N, Reece C, de Jongh PE, van der Hoeven JES. In situ analysis of gas dependent redistribution kinetics in bimetallic Au-Pd nanoparticles. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:32760-32774. [PMID: 39659480 PMCID: PMC11627011 DOI: 10.1039/d4ta03030c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 12/12/2024]
Abstract
The catalytic and plasmonic properties of bimetallic gold-palladium (Au-Pd) nanoparticles (NPs) critically depend on the distribution of the Au and Pd atoms inside the nanoparticle bulk and at the surface. Under operating conditions, the atomic distribution is highly dynamic. Analyzing gas induced redistribution kinetics at operating temperatures is therefore key in designing and understanding the behavior of Au-Pd nanoparticles for applications in thermal and light-driven catalysis, but requires advanced in situ characterization strategies. In this work, we achieve the in situ analysis of the gas dependent alloying kinetics in bimetallic Au-Pd nanoparticles at elevated temperatures through a combination of CO-DRIFTS and gas-phase in situ transmission electron microscopy (TEM), providing direct insight in both the surface- and nanoparticle bulk redistribution dynamics. Specifically, we employ a well-defined model system consisting of colloidal Au-core Pd-shell NPs, monodisperse in size and uniform in composition, and quantify the alloying dynamics of these NPs in H2 and O2 under isothermal conditions. By extracting the alloying kinetics from in situ TEM measurements, we show that the alloying behavior in Au-Pd NPs can be described by a numerical diffusion model based on Fick's second law. Overall, our results indicate that exposure to reactive gasses strongly affects the surface composition and surface alloying kinetics, but has a smaller effect on the alloying dynamics of the nanoparticle bulk. Both our in situ methodology as well as the quantitative insights on restructuring phenomena can be extended to a wider range of bimetallic nanoparticle systems and are relevant in understanding the behavior of nanoparticle catalysts under operating conditions.
Collapse
Affiliation(s)
- Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | | | - Koen M Draijer
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Nienke L Visser
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Nongnuch Artrith
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Christian Reece
- Rowland Institute at Harvard, Harvard University Cambridge Massachusetts 02142 USA
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| | - Jessi E S van der Hoeven
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University 3584 CG Utrecht The Netherlands
| |
Collapse
|
2
|
Sharma D, Sajwan D, Mishra S, Gouda A, Mittal P, Choudhary P, Mishra BP, Kumar S, Krishnan V. Tailoring catalysis at the atomic level: trends and breakthroughs in single atom catalysts for organic transformation reactions. NANOSCALE HORIZONS 2024. [PMID: 39635733 DOI: 10.1039/d4nh00479e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The utilization of precise materials in heterogeneous catalysis will provide various new possibilities for developing superior catalysts to tackle worldwide energy and environmental issues. In recent years, single atom catalysts (SACs) with excellent atom utilization and isolated active sites have progressed dramatically as a thriving sector of catalysis research. Additionally, SACs bridge the gap between homogeneous and heterogeneous catalysts and overcome the limitations of both categories. Current research on SACs is highly oriented towards the organic synthesis of high-significance molecules with promising potential for large-scale applicability and industrialization. In this context, this review aims to comprehensively analyze the state-of-the-art research in the synthesis of SACs and analyze their structural, electronic, and geometric properties. Moreover, the unprecedented catalytic performance of the SACs towards various organic transformation reactions is succinctly summarized with recent reports. Further, a detailed summary of the current state of the research field of SACs in organic transformation is discussed. Finally, a critical analysis of the existing challenges in this emerging field of SACs and the possible countermeasures are provided. We believe that SACs have the potential to profoundly alter the chemical industry, pushing the boundaries of catalysis in new and undiscovered territory.
Collapse
Affiliation(s)
- Devendra Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Shubhankar Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Prerna Mittal
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Priyanka Choudhary
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Bhagyashree Priyadarshini Mishra
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Sahil Kumar
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India.
| |
Collapse
|
3
|
Mohrhusen L, Zhang S, Montemore MM, Madix RJ. Modifying the Reactivity of Single Pd Sites in a Trimetallic Sn-Pd-Ag Surface Alloy: Tuning CO Binding Strength. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405715. [PMID: 39239996 PMCID: PMC11600693 DOI: 10.1002/smll.202405715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Improving control over active-site reactivity is a grand challenge in catalysis. Single-atom alloys (SAAs) consisting of a reactive component doped as single atoms into a more inert host metal feature localized and well-defined active sites, but fine tuning their properties is challenging. Here, a framework is developed for tuning single-atom site reactivity by alloying in an additional inert metal, which this work terms an alloy-host SAA. Specifically, this work creates about 5% Pd single-atom sites in a Pd33Ag67(111) single crystal surface, and then identifies Sn based on computational screening as a suitable third metal to introduce. Subsequent experimental studies show that introducing Sn indeed modifies the electronic structure and chemical reactivity (measured by CO desorption energies) of the Pd sites. The modifications to both the electronic structure and the CO adsorption energies are in close agreement with the calculations. These results indicate that the use of an alloy host environment to modify the reactivity of single-atom sites can allow fine-tuning of catalytic performance and boost resistance against strong-binding adsorbates such as CO.
Collapse
Affiliation(s)
- Lars Mohrhusen
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeMA02138USA
- Present address:
Institute of ChemistryCarl von Ossietzky Universität Oldenburg26129OldenburgGermany
| | - Shengjie Zhang
- Department of Chemical and Biomolecular EngineeringTulane UniversityNew OrleansLA70118USA
| | - Matthew M. Montemore
- Department of Chemical and Biomolecular EngineeringTulane UniversityNew OrleansLA70118USA
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
4
|
Meng W, Li L, Zhao R, Liu Y, Wang X, Qiu H. Coverage-dependent activation of CO over Ni/Cu(100) single atom alloys (SAAs). J Chem Phys 2024; 161:014712. [PMID: 38958159 DOI: 10.1063/5.0213809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Single atom alloys (SAAs) often bring new chemistry in heterogeneous catalysis and well-defined structure for the study of structure-activity relationship (SAR). However, the existing pressure gap causes the reported SARs quite divergent. Herein, we have studied CO activation over Ni/Cu(100) SAAs in ultrahigh vacuum (UHV) and millibar range. While the Ni SAAs formed on Cu(100) significantly enhance the CO adsorption strength under UHV conditions, the CO treatment at elevated pressure leads to notable surface carbon and oxygen deposition through surface reaction. Density functional theory calculations revealed that either dissociation or disproportionation is thermodynamically forbidden for the coverage of CO less than 5/16 ML. However, these two reaction pathways can be opened at higher CO coverages due to the elevated energy state involving repulsion between adsorbed CO. This work uncovers the initial activation process of CO and demonstrates one typical cause for the pressure gap in surface science study as well.
Collapse
Affiliation(s)
- Weiwen Meng
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ling Li
- Laboratory Management Center, Zhengzhou University, Zhengzhou 450001, China
| | - Rui Zhao
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Liu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xuan Wang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hengshan Qiu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Gao Q, Han X, Liu Y, Zhu H. Electrifying Energy and Chemical Transformations with Single-Atom Alloy Nanoparticle Catalysts. ACS Catal 2024; 14:6045-6061. [PMID: 38660612 PMCID: PMC11036398 DOI: 10.1021/acscatal.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Single-atom alloys (SAAs) have attracted considerable attention as promising electrocatalysts in reactions central to energy conversion and chemical transformation. In contrast to monometallic nanocrystals and metal alloys, SAAs possess unique and intriguing physicochemical properties, positioning them as ideal model systems for studying structure-property relationships. However, the field is still in its early stages. In this Perspective, we first review and summarize rational synthesis methods and advanced characterization techniques for SAA nanoparticle catalysts. We then emphasize the extensive applications of SAAs in a range of electrocatalytic reactions, including fuel cell reactions, water splitting, and carbon dioxide and nitrate reductions. Finally, we provide insights into existing challenges and prospects associated with the controlled synthesis, characterization, and design of SAA catalysts.
Collapse
Affiliation(s)
- Qiang Gao
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Xue Han
- Department
of Chemical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yuanqi Liu
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Huiyuan Zhu
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
6
|
He C, Gong Y, Li S, Wu J, Lu Z, Li Q, Wang L, Wu S, Zhang J. Single-Atom Alloys Materials for CO 2 and CH 4 Catalytic Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311628. [PMID: 38181452 DOI: 10.1002/adma.202311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Indexed: 01/07/2024]
Abstract
The catalytic conversion of greenhouse gases CH4 and CO2 constitutes an effective approach for alleviating the greenhouse effect and generating valuable chemical products. However, the intricate molecular characteristics characterized by high symmetry and bond energies, coupled with the complexity of associated reactions, pose challenges for conventional catalysts to attain high activity, product selectivity, and enduring stability. Single-atom alloys (SAAs) materials, distinguished by their tunable composition and unique electronic structures, confer versatile physicochemical properties and modulable functionalities. In recent years, SAAs materials demonstrate pronounced advantages and expansive prospects in catalytic conversion of CH4 and CO2. This review begins by introducing the challenges entailed in catalytic conversion of CH4 and CO2 and the advantages offered by SAAs. Subsequently, the intricacies of synthesis strategies employed for SAAs are presented and characterization techniques and methodologies are introduced. The subsequent section furnishes a meticulous and inclusive overview of research endeavors concerning SAAs in CO2 catalytic conversion, CH4 conversion, and synergy CH4 and CO2 conversion. The particular emphasis is directed toward scrutinizing the intricate mechanisms underlying the influence of SAAs on reaction activity and product selectivity. Finally, insights are presented on the development and future challenges of SAAs in CH4 and CO2 conversion reactions.
Collapse
Affiliation(s)
- Chengxuan He
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yalin Gong
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Songting Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhaojun Lu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Qixin Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Dimitratos N, Vilé G, Albonetti S, Cavani F, Fiorio J, López N, Rossi LM, Wojcieszak R. Strategies to improve hydrogen activation on gold catalysts. Nat Rev Chem 2024; 8:195-210. [PMID: 38396010 DOI: 10.1038/s41570-024-00578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/25/2024]
Abstract
Catalytic reactions involving molecular hydrogen are at the heart of many transformations in the chemical industry. Classically, hydrogenations are carried out on Pd, Pt, Ru or Ni catalysts. However, the use of supported Au catalysts has garnered attention in recent years owing to their exceptional selectivity in hydrogenation reactions. This is despite the limited understanding of the physicochemical aspects of hydrogen activation and reaction on Au surfaces. A rational design of new improved catalysts relies on making better use of the hydrogenating properties of Au. This Review analyses the strategies utilized to improve hydrogen-Au interactions, from addressing the importance of the Au particle size to exploring alternative mechanisms for H2 dissociation on Au cations and Au-ligand interfaces. These insights hold the potential to drive future applications of Au catalysis.
Collapse
Affiliation(s)
- Nikolaos Dimitratos
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Stefania Albonetti
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Fabrizio Cavani
- Dipartimento di Chimica Industriale "Toso Montanari", Alma Mater Studiorum Università di Bologna, Bologna, Italy
- Center for Chemical Catalysis-C3, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Jhonatan Fiorio
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de catalyse et chimie du solide, Lille, France.
- Université de Lorraine and CNRS, L2CM UMR 7053, Nancy, France.
| |
Collapse
|
8
|
Ahmed M, Wang C, Zhao Y, Sathish CI, Lei Z, Qiao L, Sun C, Wang S, Kennedy JV, Vinu A, Yi J. Bridging Together Theoretical and Experimental Perspectives in Single-Atom Alloys for Electrochemical Ammonia Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2308084. [PMID: 38243883 DOI: 10.1002/smll.202308084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/26/2023] [Indexed: 01/22/2024]
Abstract
Ammonia is an essential commodity in the food and chemical industry. Despite the energy-intensive nature, the Haber-Bosch process is the only player in ammonia production at large scales. Developing other strategies is highly desirable, as sustainable and decentralized ammonia production is crucial. Electrochemical ammonia production by directly reducing nitrogen and nitrogen-based moieties powered by renewable energy sources holds great potential. However, low ammonia production and selectivity rates hamper its utilization as a large-scale ammonia production process. Creating effective and selective catalysts for the electrochemical generation of ammonia is critical for long-term nitrogen fixation. Single-atom alloys (SAAs) have become a new class of materials with distinctive features that may be able to solve some of the problems with conventional heterogeneous catalysts. The design and optimization of SAAs for electrochemical ammonia generation have recently been significantly advanced. This comprehensive review discusses these advancements from theoretical and experimental research perspectives, offering a fundamental understanding of the development of SAAs for ammonia production.
Collapse
Affiliation(s)
- MuhammadIbrar Ahmed
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cheng Wang
- CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Yong Zhao
- CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - C I Sathish
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Liang Qiao
- University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chenghua Sun
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - John V Kennedy
- National Isotope Centre, GNS Science, P.O. Box 31312, Lower Hutt, 5010, New Zealand
| | - Ajayan Vinu
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
9
|
Cordoba M, Garcia L, Badano J, Betti C, Coloma-Pascual F, Quiroga M, Lederhos C. In Situ DRIFTS Analysis during Hydrogenation of 1-Pentyne and Olefin Purification with Ag Nanoparticles. Chempluschem 2023; 88:e202300344. [PMID: 37749065 DOI: 10.1002/cplu.202300344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The catalytic performance of nanoparticles (NPs) of Ag anchored on different supports was evaluated during the selective hydrogenation of 1-pentyne and the purification of a mixture of 1-pentene/1-pentyne (70/30 vol %). The catalysts were identified: Ag/Al (Ag supported on ɣ-Al2 O3 ), Ag/Al-Mg (Ag supported on ɣ-Al2 O3 modified with Mg), Ag/Ca (Ag supported on CaCO3 ) and Ag/RX3 (Ag supported on activated carbon-type: RX3). In addition, in situ DRIFTS analysis of 1-pentyne adsorption on each support, catalyst, and 1-pentyne hydrogenation were investigated. The results showed that the synthesized catalysts were active and very selective (≥85 %) for obtaining the desired product (1-pentene). Different adsorbed species (-C≡C- and -C=C-) were observed on the supports and catalysts surface using in situ DRIFT analysis, which can be correlated to the activity and high selectivity reached. The role of the supports and electronic properties over Ag improve the H2 dissociative chemisorption during the hydrogenation reactions; promoting the selectivity and the high catalytic performance. Ag/Al and Ag/Al-Mg were the most active catalysts. This was due to the synergism between the active Ag/Ag+ species and the supports (electronic effects). The results show that Ag/Al and Ag/Al-Mg catalysts have favorable properties and are promising for the alkyne hydrogenation and olefin purification reactions.
Collapse
Affiliation(s)
- Misael Cordoba
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
- Grupo de Investigación en Catálisis, Universidad del Cauca, Calle 5 No. 4-70, Popayán, Colombia
| | - Lina Garcia
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
- Grupo de Investigación Ciencia e Ingeniería en Sistemas Ambientales (GCISA), Universidad del Cauca, Calle 5 No. 4-70, Popayán, Colombia
| | - Juan Badano
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| | - Carolina Betti
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| | | | - Mónica Quiroga
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| | - Cecilia Lederhos
- Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE), Colectora Ruta Nacional 168 Km 0, Santa Fe, Argentina
| |
Collapse
|
10
|
Liu L, Akhoundzadeh H, Li M, Huang H. Alloy Catalysts for Electrocatalytic CO 2 Reduction. SMALL METHODS 2023; 7:e2300482. [PMID: 37256287 DOI: 10.1002/smtd.202300482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/18/2023] [Indexed: 06/01/2023]
Abstract
CO2 conversion is an anticipated route to resolve the energy crisis and environmental pollution, in which electrocatalysis is one of the technologies closest to industrialization. Alloy catalysts are promising candidates for electrocatalysis, and the high tenability in electronic structures and surface physical and chemical properties allows alloy catalysts high catalytic activity and selectivity for electrocatalytic CO2 reduction. Herein, the recent advances in alloy catalysts for electrocatalytic CO2 reduction have been systematically summarized, with insight into the structure of the active center, catalytic performance, and mechanism, to uncover the key to their high catalytic performance. The alloy catalysts are mainly classified as binary and multi-metallic alloys (medium entropy and high entropy alloy) based on components and mixed configuration entropy, on which the relationship among the active center, catalytic performance, and mechanism has been fully discussed to inspire the rational design of alloy catalysts. Finally, the current challenges and future perspectives are presented to propose the dilemma and development direction for alloy catalysts. This review provides an overview of about the recent progress and future development of alloy catalysts to present a guideline for future research work on relevant catalysts.
Collapse
Affiliation(s)
- Lizhen Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Hossein Akhoundzadeh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| | - Mingtao Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing, 100083, P. R. China
| |
Collapse
|
11
|
Markov PV, Bragina GO, Smirnova NS, Baeva GN, Mashkovsky IS, Gerasimov EY, Bukhtiyarov AV, Zubavichus YV, Stakheev AY. Single-Atom Alloy Pd1Ag10/CeO2–ZrO2 as a Promising Catalyst for Selective Alkyne Hydrogenation. INORGANICS 2023. [DOI: 10.3390/inorganics11040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The effect of support on the performance of Pd1Ag10/Al2O3 and Pd1Ag10/CeO2–ZrO2 catalysts in the selective hydrogenation of diphenylacetylene (DPA) was studied. Characterization of the catalyst by DRIFTS-CO and HRTEM revealed the formation of a PdAg single-atom alloy (SAA) structure on the surface of PdAg nanoparticles, with Pd1 sites isolated by Ag atoms. It was found that the use of CeO2–ZrO2 as a carrier makes it possible to increase the activity of the Pd1Ag10 catalyst by a factor of three without loss of selectivity compared to the reference Pd1Ag10/Al2O3. According to the HRTEM data, this catalytic behavior can be explained by an increase in the dispersion of Pd1Ag10/CeO2–ZrO2 compared to its Pd1Ag10/Al2O3 counterpart. As evidenced by DRIFTS-CO data, the high selectivity of the Pd1Ag10/CeO2–ZrO2 sample presumably stems from the stability of the structure of isolated Pd1 sites on the surface of SAA Pd1Ag10/CeO2–ZrO2.
Collapse
Affiliation(s)
- Pavel V. Markov
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Galina O. Bragina
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nadezhda S. Smirnova
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Galina N. Baeva
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Igor S. Mashkovsky
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Evgeny Y. Gerasimov
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Prospect 5, 630090 Novosibirsk, Russia
| | - Andrey V. Bukhtiyarov
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Prospect 5, 630090 Novosibirsk, Russia
| | - Yan. V. Zubavichus
- G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Academician Lavrentiev Prospect 5, 630090 Novosibirsk, Russia
| | - Alexander Y. Stakheev
- N. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
12
|
Kress PL, Zhang S, Wang Y, Çınar V, Friend CM, Sykes ECH, Montemore MM. A Priori Design of Dual-Atom Alloy Sites and Experimental Demonstration of Ethanol Dehydrogenation and Dehydration on PtCrAg. J Am Chem Soc 2023; 145. [PMID: 36888984 PMCID: PMC10119928 DOI: 10.1021/jacs.2c13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 03/10/2023]
Abstract
Single-atom catalysts have received significant attention for their ability to enable highly selective reactions. However, many reactions require more than one adjacent site to align reactants or break specific bonds. For example, breaking a C-O or O-H bond may be facilitated by a dual site containing an oxophilic element and a carbophilic or "hydrogenphilic" element that binds each molecular fragment. However, design of stable and well-defined dual-atom sites with desirable reactivity is difficult due to the complexity of multicomponent catalytic surfaces. Here, we describe a new type of dual-atom system, trimetallic dual-atom alloys, which were designed via computation of the alloying energetics. Through a broad computational screening we discovered that Pt-Cr dimers embedded in Ag(111) can be formed by virtue of the negative mixing enthalpy of Pt and Cr in Ag and the favorable interaction between Pt and Cr. These dual-atom alloy sites were then realized experimentally through surface science experiments that enabled the active sites to be imaged and their reactivity related to their atomic-scale structure. Specifically, Pt-Cr sites in Ag(111) can convert ethanol, whereas PtAg and CrAg are unreactive toward ethanol. Calculations show that the oxophilic Cr atom and the hydrogenphilic Pt atom act synergistically to break the O-H bond. Furthermore, ensembles with more than one Cr atom, present at higher dopant loadings, produce ethylene. Our calculations have identified many other thermodynamically favorable dual-atom alloy sites, and hence this work highlights a new class of materials that should offer new and useful chemical reactivity beyond the single-atom paradigm.
Collapse
Affiliation(s)
- Paul L. Kress
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Shengjie Zhang
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Yicheng Wang
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Volkan Çınar
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Cynthia M. Friend
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - E. Charles H. Sykes
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Matthew M. Montemore
- Department
of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
13
|
Tripodal Pd metallenes mediated by Nb 2C MXenes for boosting alkynes semihydrogenation. Nat Commun 2023; 14:661. [PMID: 36750563 PMCID: PMC9905561 DOI: 10.1038/s41467-023-36378-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
2D metallene nanomaterials have spurred considerable attention in heterogeneous catalysis by virtue of sufficient unsaturated metal atoms, high specific surface area and surface strain. Nevertheless, the strong metallic bonding in nanoparticles aggravates the difficulty in the controllable regulation of the geometry of metallenes. Here we propose an efficient galvanic replacement strategy to construct Pd metallenes loaded on Nb2C MXenes at room temperature, which is triggered by strong metal-support interaction based on MD simulations. The Pd metallenes feature a chair structure of six-membered ring with the coordination number of Pd as low as 3. Coverage-dependent kinetic analysis based on first-principles calculations reveals that the tripodal Pd metallenes promote the diffusion of alkene and inhibit its overhydrogenation. As a consequence, Pd/Nb2C delivers an outstanding turnover frequency of 10372 h-1 and a high selectivity of 96% at 25 oC in the semihydrogenation of alkynes without compromising the stability. This strategy is general and scalable considering the plentiful members of the MXene family, which can set a foundation for the design of novel supported-metallene catalysts for demanding transformations.
Collapse
|
14
|
Pt nanoparticles confined in hollow silica nanoreactors as highly efficient catalysts for semihydrogenations of alkynes at atmospheric H2 pressure. J Colloid Interface Sci 2023; 630:334-342. [DOI: 10.1016/j.jcis.2022.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
15
|
Mao S, Wang Z, Luo Q, Lu B, Wang Y. Geometric and Electronic Effects in Hydrogenation Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou310028, People’s Republic of China
| |
Collapse
|
16
|
Ngan HT, Yan G, van der Hoeven JES, Madix RJ, Friend CM, Sautet P. Hydrogen Dissociation Controls 1-Hexyne Selective Hydrogenation on Dilute Pd-in-Au Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - George Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jessi E. S. van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Robert J. Madix
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Single-Atom Catalysts: Preparation and Applications in Environmental Catalysis. Catalysts 2022. [DOI: 10.3390/catal12101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Due to the expensive price and the low reserve of noble metals in nature, much attention has been paid to single-atom catalysts (SACs)—especially single-atom noble metal catalysts—owing to their maximum atomic utilization and dispersion. The emergence of SACs greatly decreases the amount of precious metals, improves the catalytic activity, and makes the catalytic process progressively economic and sustainable. However, the most remarkable challenge is the active sites and their stability against migration and aggregation under practical conditions. This review article summarizes the preparation strategies of SACs and their catalytic applications for the oxidation of methane, carbon monoxide, and volatile organic compounds (VOCs) and the reduction of nitrogen oxides. Furthermore, the perspectives and challenges of SACs in future research and practical applications are proposed. It is envisioned that the results summarized in this review will stimulate the interest of more researchers in developing SACs that are effective in catalyzing the reactions related to the environmental pollution control.
Collapse
|
18
|
Single Atom Catalysts in Liquid Phase Selective Hydrogenations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Zhou C, Ngan HT, Lim JS, Darbari Z, Lewandowski A, Stacchiola DJ, Kozinsky B, Sautet P, Boscoboinik JA. Dynamical Study of Adsorbate-Induced Restructuring Kinetics in Bimetallic Catalysts Using the PdAu(111) Model System. J Am Chem Soc 2022; 144:15132-15142. [PMID: 35952667 DOI: 10.1021/jacs.2c04871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic restructuring of bimetallic catalysts plays a crucial role in their catalytic activity and selectivity. In particular, catalyst pretreatment with species such as carbon monoxide and oxygen has been shown to be an effective strategy for tuning the surface composition and morphology. Mechanistic and kinetic understanding of such restructuring is fundamental to the chemistry and engineering of surface active sites but has remained challenging due to the large structural, chemical, and temporal degrees of freedom. Here, we combine time-resolved temperature-programmed infrared reflection absorption spectroscopy, ab initio thermodynamics, and machine-learning molecular dynamics to uncover previously unidentified timescale and kinetic parameters of in situ restructuring in Pd/Au(111), a highly relevant model system for dilute Pd-in-Au nanoparticle catalysts. The key innovation lies in utilizing CO not only as a chemically sensitive probe of surface Pd but also as an agent that induces restructuring of the surface. Upon annealing in vacuum, as-deposited Pd islands became encapsulated by Au and partially dissolved into the subsurface, leaving behind isolated Pd monomers on the surface. Subsequent exposure to 0.1 mbar CO enabled Pd monomers to repopulate the surface up to 373 K, above which complete Pd dissolution occurred by 473 K, with apparent activation energies of 0.14 and 0.48 eV, respectively. These restructuring processes occurred over the span of ∼1000 s at a given temperature. Such a minute-timescale dynamics not only elucidates the fluxional nature of alloy catalysts but also presents an opportunity to fine-tune the surface under moderate temperature and pressure conditions.
Collapse
Affiliation(s)
- Chen Zhou
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zubin Darbari
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, United States
| | - Adrian Lewandowski
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Boris Kozinsky
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02139, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jorge Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
20
|
Zhang Y, Li S, Sun C, Wang P, Yang Y, Yi D, Wang X, Yao J. Understanding and Modifying the Scaling Relations for Ammonia Synthesis on Dilute Metal Alloys: From Single-Atom Alloys to Dimer Alloys. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yining Zhang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Sha Li
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People’s Republic of China
| | - Chao Sun
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Ping Wang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, People’s Republic of China
| | - Yijun Yang
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
| | - Ding Yi
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
| | - Xi Wang
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, People’s Republic of China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People’s Republic of China
| |
Collapse
|
21
|
Cordoba M, Garcia L, Martinez Bovier L, Badano J, Betti C, Coloma Pascual F, Quiroga M, Lederhos C. In Situ DRIFTS Investigation During the Adsorption of 1-Pentyne and Catalytic Performance of Pd–Ni Bimetallic Catalysts for Olefinic Purification. Top Catal 2022. [DOI: 10.1007/s11244-022-01664-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Poerwoprajitno AR, Gloag L, Watt J, Cheong S, Tan X, Lei H, Tahini HA, Henson A, Subhash B, Bedford NM, Miller BK, O’Mara PB, Benedetti TM, Huber DL, Zhang W, Smith SC, Gooding JJ, Schuhmann W, Tilley RD. A single-Pt-atom-on-Ru-nanoparticle electrocatalyst for CO-resilient methanol oxidation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00756-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Lee JD, Miller JB, Shneidman AV, Sun L, Weaver JF, Aizenberg J, Biener J, Boscoboinik JA, Foucher AC, Frenkel AI, van der Hoeven JES, Kozinsky B, Marcella N, Montemore MM, Ngan HT, O'Connor CR, Owen CJ, Stacchiola DJ, Stach EA, Madix RJ, Sautet P, Friend CM. Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chem Rev 2022; 122:8758-8808. [PMID: 35254051 DOI: 10.1021/acs.chemrev.1c00967] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.
Collapse
Affiliation(s)
- Jennifer D Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jeffrey B Miller
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Lixin Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jason F Weaver
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juergen Biener
- Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - J Anibal Boscoboinik
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.,Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nicholas Marcella
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher R O'Connor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cameron J Owen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dario J Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert J Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cynthia M Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Xu Z, Ao Z, Yang M, Wang S. Recent progress in single-atom alloys: Synthesis, properties, and applications in environmental catalysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127427. [PMID: 34678562 DOI: 10.1016/j.jhazmat.2021.127427] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 05/14/2023]
Abstract
Heterogeneous catalysts have made outstanding advancements in pollutants elimination as well as energy and materials production over the past decades. Single-atom alloys (SAAs) are novel environmental catalysts prepared by dispersing single metal atoms on other metals. Integrating the advantages of single atom and alloys, SAAs can maximize atom utilization, reduce the use of noble metals and enhance catalytic performances. The synergistic, electronic and geometric effects of SAAs are effective to modulate the activation energy and adsorption strength, consequently breaking linear scaling relationship as well as offering an excellent catalytic activity and selectivity. Moreover, SAAs possess clear atomic structure, active sites and reaction mechanisms, providing an opportunity to tailor catalytic properties and develop effective environmental catalysts. In this review, we provide the recent progress on synthetic strategies, catalytic properties and catalyst design of SAAs. Furthermore, the applications of SAAs in environmental catalysis are introduced towards catalytic conversion and elimination of different air pollutants in many important reactions including (electrochemical) oxidation of volatile organic compounds (VOCs), dehydrogenation of VOCs, CO2 conversion, NOx reduction, CO oxidation, SO3 decomposition, etc. Finally, challenges and opportunities of SAAs in a broad environmental field are proposed.
Collapse
Affiliation(s)
- Zhiling Xu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Zhimin Ao
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mei Yang
- SINOPEC Maoming Petrochemical Company, Maoming 525011, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
25
|
Dynamic Pt Coordination in Dilute AgPt Alloy Nanoparticle Catalysts Under Reactive Environments. Top Catal 2022. [DOI: 10.1007/s11244-021-01545-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Zhao X, Chang Y, Chen WJ, Wu Q, Pan X, Chen K, Weng B. Recent Progress in Pd-Based Nanocatalysts for Selective Hydrogenation. ACS OMEGA 2022; 7:17-31. [PMID: 35036674 PMCID: PMC8756445 DOI: 10.1021/acsomega.1c06244] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Selective hydrogenation plays an important role in the chemical industry and has a wide range of applications, including the production of fine chemicals and petrochemicals, pharmaceutical synthesis, healthcare product development, and the synthesis of agrochemicals. Pd-based catalysts have been widely applied for selective hydrogenation due to their unique electronic structure and ability to adsorb and activate hydrogen and unsaturated substrates. However, the exclusive and comprehensive summarization of the size, composition, and surface and interface effect of metal Pd on the performance for selective hydrogenation is still lacking. In this perspective, the research progress on selective hydrogenation using Pd-based catalysts is summarized. The strategies for improving the catalytic hydrogenation performance over Pd-based catalysts are investigated. Specifically, the effects of the size, composition, and surface and interfacial structure of Pd-based catalysts, which could influence the dissociation mode of hydrogen, the adsorption, and the reaction mode of the catalytic substrate, on the performance have been systemically reviewed. Then, the progress on Pd-based catalysts for selective hydrogenation of unsaturated alkynes, aldehydes, ketones, and nitroaromatic hydrocarbons is revealed based on the fundamental principles of selective hydrogenation. Finally, perspectives on the further development of strategies for chemical selective hydrogenation are provided. It is hoped that this perspective would provide an instructive guideline for constructing efficient heterogeneous Pd-based catalysts for various selective hydrogenation reactions.
Collapse
Affiliation(s)
- Xiaojing Zhao
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Yandong Chang
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Wen-Jie Chen
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Qingshi Wu
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Xiaoyang Pan
- College
of Chemical Engineering and Materials, Quanzhou
Normal University, Quanzhou 362000, China
| | - Kongfa Chen
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Bo Weng
- cMACS,
Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Kim H, Yoo TY, Bootharaju MS, Kim JH, Chung DY, Hyeon T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104054. [PMID: 34791823 PMCID: PMC8728832 DOI: 10.1002/advs.202104054] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Indexed: 05/08/2023]
Abstract
Noble metal-based multimetallic nanoparticles (NMMNs) have attracted great attention for their multifunctional and synergistic effects, which offer numerous catalytic applications. Combined experimental and theoretical studies have enabled formulation of various design principles for tuning the electrocatalytic performance through controlling size, composition, morphology, and crystal structure of the nanoparticles. Despite significant advancements in the field, the chemical synthesis of NMMNs with ideal characteristics for catalysis, including high activity, stability, product-selectivity, and scalability is still challenging. This review provides an overview on structure-based classification and the general synthesis of NMMN electrocatalysts. Furthermore, postsynthetic treatments, such as the removal of surfactants to optimize the activity, and utilization of NMMNs onto suitable support for practical electrocatalytic applications are highlighted. In the end, future direction and challenges associated with the electrocatalysis of NMMNs are covered.
Collapse
Affiliation(s)
- Hyunjoong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Tae Yong Yoo
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Chung
- Department of ChemistryGwangju Institute of Science and Technology (GIST)Gwangju61005Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
28
|
Zhou X, Sterbinsky GE, Wasim E, Chen L, Tait SL. Tuning Ligand-Coordinated Single Metal Atoms on TiO 2 and their Dynamic Response during Hydrogenation Catalysis. CHEMSUSCHEM 2021; 14:3825-3837. [PMID: 33955201 DOI: 10.1002/cssc.202100208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Ligand-coordinated supported catalysts (LCSCs) are of growing interest for heterogeneous single-atom catalysis. Here, the effect of the choice of organic ligand on the activity and stability of TiO2 -supported single-atom Pt-ligand catalysts was investigated for ethylene hydrogenation. The activity of these catalysts showed a significant dependence on the choice of ligand and also correlated with coordination number for Pt-ligand and Pt-Cl- . Of the three ligands examined in this study, the one with the lowest Pt coordination number, 1,10-phenanthroline-5,6-dione (PDO), showed the lowest reaction temperature and highest reaction rate, likely due to those metal sites being more accessible to reactant adsorption. In-situ X-ray absorption spectroscopy (XAS) experiments showed that the activity also correlated with good heterolytic dissociation of hydrogen, which was supported by OH/OD exchange experiments and was the rate-determining step of the hydrogenation reaction. In these in-situ XAS experiments up to 190 °C, the supported Pt-ligand catalyst showed excellent stability against structural and chemical change. Instead of Pt, the PDO ligand could be coordinated with Ir on TiO2 to form Ir LCSCs that showed slow activation by loss of Ir-Cl bonds, then excellent stability in the hydrogenation of ethylene. These results provide the chance to engineer ligand-coordinated supported catalysts at the single-atom catalyst level by the choice of ligand and enable new applications at relatively high temperature.
Collapse
Affiliation(s)
- Xuemei Zhou
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
- School of Chemical Engineering, Sichuan University No. 24 South Section 1, Yihuan Road, Chengdu, 610065, P. R. China
| | - George E Sterbinsky
- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois, 60439, USA
| | - Eman Wasim
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
| | - Linxiao Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
| | - Steven L Tait
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana, 47405, USA
| |
Collapse
|
29
|
Luo Q, Wang Z, Chen Y, Mao S, Wu K, Zhang K, Li Q, Lv G, Huang G, Li H, Wang Y. Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31775-31784. [PMID: 34227385 DOI: 10.1021/acsami.1c09682] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective hydrogenation of alkynes plays a pivotal role in the field of chemical production but still suffers from restrained catalytic activity and low alkene selectivity. Herein, a dynamic modification strategy was utilized by preferentially attaching diethylenetriamine (DETA) to the surface of the support to modify the Pd catalyst. The DETA-modified Pd catalyst demonstrates unprecedented reactivity (14,412 h-1) and selectivity as high as 94% for the semihydrogenation of 2-methyl-3-butyn-2-ol at 35 °C, presenting a 36-fold higher reactivity than the Lindlar catalyst. Moreover, the yield exceeds 98.2% at full conversion under no solvent and organic adsorbate conditions, indicating the potential applications for industrial production. Systematic studies reveal that flexible DETA serves in a reversible "breathing pattern" for the molecular discrimination by constructing dynamic metal-support interaction (DMSI), enabling selective exclusion of alkenes from the Pd surface. DETA is competent to dynamically adjust the adsorption behaviors of reactants and effectively boost the intrinsic activity of the modified catalyst. Impressively, the DETA-modified Pd catalyst exhibits exceptional stability even after being recycled 20 times. This work sheds light on a novel and applicable method for the rational design of heterogeneous catalysts via DMSI.
Collapse
Affiliation(s)
- Qian Luo
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuzhuo Chen
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Kejun Wu
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Kaichao Zhang
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Qichuan Li
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Guofeng Lv
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Guodong Huang
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Haoran Li
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
30
|
van der Hoeven JES, Ngan HT, Taylor A, Eagan NM, Aizenberg J, Sautet P, Madix RJ, Friend CM. Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jessi E. S. van der Hoeven
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hio Tong Ngan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Austin Taylor
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nathaniel M. Eagan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert J. Madix
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
31
|
Zheng G, Li Y, Qian X, Yao G, Tian Z, Zhang X, Chen L. High-Throughput Screening of a Single-Atom Alloy for Electroreduction of Dinitrogen to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16336-16344. [PMID: 33797214 DOI: 10.1021/acsami.1c01098] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Exploring electrocatalysts with high activity, selectivity, and stability is essential for the development of applicable electrocatalytic ammonia synthesis technology. By performing density functional theory calculations, we systematically investigated the potential of a series of transition-metal-doped Au-based single-atom alloys (SAAs) as promising electrocatalysts for nitrogen reduction reaction (NRR). The overall process for the Au-based electrocatalyst suffers from the limiting potential arising from the first hydrogenation step of the reduction of *N2 to *NNH. However, SAAs showed to be favorable toward lowering free energy barriers by increasing the binding strength of N2. According to simulation results, three descriptors were proposed to describe the first hydrogenation step ΔG(*N2 → *NNH): ΔG(*NNH), d-band center, and d/√Em. Eight doped elements (Ti, V, Nb, Ru, Ta, Os, W, and Mo) were initially screened out with a limiting potential ranging from -0.75 to -0.30 V. Particularly, Mo- and W-doped systems possess the best activity with a limiting potential of -0.30 V each. Then, the intrinsic relationship between the structure and potential performance was analyzed using machine learning. The selectivity, feasibility, and stability of these candidates were also evaluated, confirming that SAA containing Mo, Ru, Ta, and W could be outstanding NRR electrocatalysts. This work not only broadens our understanding of SAA application in electrocatalysis, but also leads to the discovery of novel NRR electrocatalysts.
Collapse
Affiliation(s)
- Guokui Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang Province 310027, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Yanle Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xu Qian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ge Yao
- School of Physics, Collaborative Innovation Center of Advanced Microstructures, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang Province 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
32
|
Abstract
The discussion concerning cooperativity in supported single-atom (SA) catalysis is often limited to the metal-support interaction, which is certainly important, but which is not the only lever for modifying the catalytic performance. Indeed, if the interaction between the SA and the support, which can be seen as a solid ligand presenting its own specificities that fix the first coordination sphere of the metal, plays a central role as in homogeneous catalysis, other factors can strongly contribute to modification of the activity, selectivity and stability of SAs. Therefore, in this mini-review, we briefly summarize the importance of the support (oxide, carbon or a second metal) in SA photo- electro- and thermal-catalysis (support-assisted operation), and concentrate on other types of cooperativities that in some cases enable previously impossible reaction pathways on supported metal SAs. This includes topics that are not specific to SA catalysis, such as metal-ligand or heterobimetallic cooperativity, and cooperativity which is SA-specific such as nanoparticle-SA or mixed-valence SA cooperativity.
Collapse
Affiliation(s)
- Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France.
| |
Collapse
|
33
|
Ouyang M, Papanikolaou KG, Boubnov A, Hoffman AS, Giannakakis G, Bare SR, Stamatakis M, Flytzani-Stephanopoulos M, Sykes ECH. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat Commun 2021; 12:1549. [PMID: 33750788 PMCID: PMC7943817 DOI: 10.1038/s41467-021-21555-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.
Collapse
Affiliation(s)
- Mengyao Ouyang
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | - Alexey Boubnov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Georgios Giannakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK
| | | | | |
Collapse
|
34
|
Chu M, Pan Q, Bian W, Liu Y, Cao M, Zhang C, Lin H, Zhang Q, Xu Y. Strong metal–support interaction between palladium and gallium oxide within monodisperse nanoparticles: self-supported catalysts for propyne semi-hydrogenation. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Filie A, Shirman T, Aizenberg M, Aizenberg J, Friend CM, Madix RJ. The dynamic behavior of dilute metallic alloy PdxAu1−x/SiO2 raspberry colloid templated catalysts under CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00469g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dilute palladium-in-gold alloys have potential as efficient oxidation catalysts; controlling the Pd surface distribution is critical.
Collapse
Affiliation(s)
- Amanda Filie
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Tanya Shirman
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Cynthia M. Friend
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| |
Collapse
|
36
|
Wang Y, Papanikolaou KG, Hannagan RT, Patel DA, Balema TA, Cramer LA, Kress PL, Stamatakis M, Sykes ECH. Surface facet dependence of competing alloying mechanisms. J Chem Phys 2020; 153:244702. [DOI: 10.1063/5.0034520] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Yicheng Wang
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Konstantinos G. Papanikolaou
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - Ryan T. Hannagan
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Tedros A. Balema
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Laura A. Cramer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Paul L. Kress
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, USA
| |
Collapse
|
37
|
Zhang T, Walsh AG, Yu J, Zhang P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem Soc Rev 2020; 50:569-588. [PMID: 33170202 DOI: 10.1039/d0cs00844c] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Monometallic catalysts, in particular those containing noble metals, are frequently used in heterogeneous catalysis, but they are expensive, rare and the ability to tailor their structures and properties remains limited. Traditionally, alloy catalysts have been used instead that feature enhanced electronic and chemical properties at a reduced cost. Furthermore, the introduction of single metal atoms anchored onto supports provided another effective strategy to increase both the atomic efficiency and the chance of tailoring the properties. Most recently, single-atom alloy catalysts have been developed in which one metal is atomically dispersed throughout the catalyst via alloy bonding; such catalysts combine the traditional advantages of alloy catalysts with the new feature of tailoring properties achievable with single atom catalysts. This review will first outline the atomic scale structural analysis on single-atom alloys using microscopy and spectroscopy tools, such as high-angle annular dark field imaging-scanning transmission electron microscopy and extended X-ray absorption fine structure spectroscopy. Next, progress in research to understand the electronic properties of single-atom alloys using X-ray spectroscopy techniques and quantum calculations will be presented. The catalytic activities of single-atom alloys in a few representative reactions will be further discussed to demonstrate their structure-property relationships. Finally, future perspectives for single-atom alloy catalysts from the structural, electronic and reactivity aspects will be proposed.
Collapse
Affiliation(s)
- Tianjun Zhang
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, B3H 4R2, Halifax, Canada.
| | | | | | | |
Collapse
|
38
|
Fan J, Du H, Zhao Y, Wang Q, Liu Y, Li D, Feng J. Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03280] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jiaxuan Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Haoxuan Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
39
|
Kaiser SK, Chen Z, Faust Akl D, Mitchell S, Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem Rev 2020; 120:11703-11809. [PMID: 33085890 DOI: 10.1021/acs.chemrev.0c00576] [Citation(s) in RCA: 394] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.
Collapse
Affiliation(s)
- Selina K Kaiser
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Zupeng Chen
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
40
|
Monasterial AP, Hinderks CA, Viriyavaree S, Montemore MM. When more is less: Nonmonotonic trends in adsorption on clusters in alloy surfaces. J Chem Phys 2020; 153:111102. [PMID: 32962359 DOI: 10.1063/5.0022076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-atom alloys can be effective catalysts and have been compared to supported single-atom catalysts. To rationally design single-atom alloys and other surfaces with localized ensembles, it is crucial to understand variations in reactivity when varying the dopant and the ensemble size. Here, we examined hydrogen adsorption on surfaces embedded with localized clusters and discovered general trends. Counterintuitively, increasing the amount of a more reactive metal sometimes makes a surface site less reactive. This behavior is due to the hybridization and splitting of narrow peaks in the electronic density of states of many of these surfaces, making them analogous to free-standing nanoclusters. When a single-atom alloy has a peak just below the Fermi energy, the corresponding two-dopant cluster often has weaker adsorption than the single-atom alloy due to splitting of this peak across the Fermi energy. Furthermore, single-atom alloys have qualitatively different behaviors than larger ensembles. Specifically, the adsorption energy is a U-shaped function of the dopant's group for single-atom alloys. Additionally, adsorption energies on single-atom alloys correlate more strongly with the dopant's p-band center than with the d-band center.
Collapse
Affiliation(s)
- Abigale P Monasterial
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Calla A Hinderks
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Songkun Viriyavaree
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | - Matthew M Montemore
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| |
Collapse
|
41
|
Recent advances in single-atom catalysts and single-atom alloys: opportunities for exploring the uncharted phase space in-between. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Hannagan RT, Giannakakis G, Flytzani-Stephanopoulos M, Sykes ECH. Single-Atom Alloy Catalysis. Chem Rev 2020; 120:12044-12088. [DOI: 10.1021/acs.chemrev.0c00078] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Chivers BA, Scott RWJ. Selective oxidation of crotyl alcohol by AuxPd bimetallic pseudo-single-atom catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01387k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudo single-atom Pd catalysts dispersed in gold nanoparticle matrices show high selectivity and activity for room temperature crotyl alcohol oxidation.
Collapse
|
44
|
Luneau M, Shirman T, Foucher AC, Duanmu K, Verbart DM, Sautet P, Stach EA, Aizenberg J, Madix RJ, Friend CM. Achieving High Selectivity for Alkyne Hydrogenation at High Conversions with Compositionally Optimized PdAu Nanoparticle Catalysts in Raspberry Colloid-Templated SiO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Alexandre C. Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - David M.A. Verbart
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | - Eric A. Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|