1
|
Wang GQ, Zhang Y, Zhou YX, Yang D, Han P, Jing LH, Tang K. Photoredox Synthesis of Silicon-Containing Isoindolin-1-ones and Deuterated Analogues Through Hydrosilylation and Deuterium-silylation. J Org Chem 2024. [PMID: 38728220 DOI: 10.1021/acs.joc.4c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kai Tang
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
2
|
Zhang SG, Wan YQ, Zhang WH. Discovery of Dehydroabietylamine Derivatives as Antibacterial and Antifungal Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:924-934. [PMID: 38513270 DOI: 10.1021/acs.jnatprod.3c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A diverse array of biologically active derivatives was derived by modifying the chemically active sites of dehydroabietylamine. Herein, we describe the synthesis of a new series of C-19-arylated dehydroabietylamine derivatives using a palladium-catalyzed C(sp3)-H activation reaction. Five analogues (3b, 3d, 3h, 3n, and 4a) exhibited antibacterial activity against Escherichia coli. Compound 4a exhibited strong inhibitory activity against DNA Topo II and Topo IV. Molecular docking modeling indicated that it can bind effectively to the target through interactions with amino acid residues. The synthesized compounds were tested in vitro for their antifungal activity against six common phytopathogenic fungi. The mechanism of action of compound 4c against Rhizoctorzia solani was investigated, revealing that it disrupts the morphology of the mycelium and enhances cell membrane permeability.
Collapse
Affiliation(s)
- Shu-Guang Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yu-Qiang Wan
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
3
|
Brösamlen D, Oestreich M. Ligand-Controlled On-Off Switch of a Silicon-Tethered Directing Group Enabling the Regiodivergent Hydroalkylation of Vinylsilanes under Ni-H Catalysis. Org Lett 2024; 26:977-982. [PMID: 38051157 DOI: 10.1021/acs.orglett.3c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A regiodivergent Ni-H-catalyzed hydroalkylation of vinylsilanes is described. Depending on the ancillary ligand at the nickel catalyst, the regioselectivity can be steered by a directing group attached to the silicon atom. The mild protocols allow for the selective synthesis of either branched or linear alkylsilanes. An example of a vinylgermane is also reported. The method features a broad scope with high functional-group tolerance and follows a radical mechanism.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
4
|
Moniwa H, Yamanaka M, Shintani R. Copper-Catalyzed Regio- and Stereoselective Formal Hydro(borylmethylsilyl)ation of Internal Alkynes via Alkenyl-to-Alkyl 1,4-Copper Migration. J Am Chem Soc 2023; 145:23470-23477. [PMID: 37852271 DOI: 10.1021/jacs.3c06187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Catalytic reactions involving 1,n-metal migration from carbon to carbon enable a nonclassical way of constructing organic molecular skeletons, rapidly providing complex molecules from relatively simple precursors. By utilization of this attractive feature, a new and efficient synthesis of alkenylsilylmethylboronates has been developed by formal hydro(borylmethylsilyl)ation of unsymmetric internal alkynes with silylboronates under copper catalysis. The reaction proceeds regioselectively and involves an unprecedented alkenyl-to-alkyl 1,4-copper migration. The reaction mechanism has been investigated by a series of kinetic, NMR, and deuterium-labeling experiments.
Collapse
Affiliation(s)
- Hirokazu Moniwa
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
5
|
Zhou S, Liu T, Bao X. Direct intermolecular C(sp)–H amidation with dioxazolones via synergistic decatungstate anion photocatalysis and nickel catalysis: A combined experimental and computational study. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Yang B, Cao K, Zhao G, Yang J, Zhang J. Pd/Ming-Phos-Catalyzed Asymmetric Three-Component Arylsilylation of N-Sulfonylhydrazones: Enantioselective Synthesis of gem-Diarylmethine Silanes. J Am Chem Soc 2022; 144:15468-15474. [PMID: 35994322 DOI: 10.1021/jacs.2c07037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A Pd-catalyzed enantioselective three-component reaction of N-sulfonylhydrazones, aryl bromides, and silylboronic esters is developed, enabling the synthesis of chiral gem-diarylmethine silanes in high enantioselectivity with the use of a newly identified Ming-Phos. Compared with N-tosyl, the more easily decomposed N-mesitylsulfonyl is more suitable as the masking group of electron-rich hydrazone to improve the reaction efficiency. The reaction features a broad scope concerning both coupling partners, high enantioselectivity, and mild reaction conditions. The ready access to enantiomers and utility of this catalytic method are also presented.
Collapse
Affiliation(s)
- Bin Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Kangning Cao
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Guofeng Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
7
|
Du B, Ouyang Y, Chen Q, Yu WY. Thioether-Directed NiH-Catalyzed Remote γ-C(sp 3)-H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J Am Chem Soc 2021; 143:14962-14968. [PMID: 34496211 DOI: 10.1021/jacs.1c05834] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C-H bond amidation of unactivated alkenes. Due to the preference for five-membered nickelacycle formation, the chain-walking isomerization initiated by the NiH insertion to an alkene can be terminated at the γ-methylene site remote from the alkene moiety. By employing 2,9-dibutyl-1,10-phenanthroline (L4) as the ligand and dioxazolones as the reagent, the amidation occurs at the γ-C(sp3)-H bonds to afford the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).
Collapse
Affiliation(s)
- Bingnan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yuxin Ouyang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qishu Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
8
|
Chen C, Wang Y, Shi X, Sun W, Zhao J, Zhu YP, Liu L, Zhu B. Palladium-Catalyzed C-2 and C-3 Dual C-H Functionalization of Indoles: Synthesis of Fluorinated Isocryptolepine Analogues. Org Lett 2020; 22:4097-4102. [PMID: 32459097 DOI: 10.1021/acs.orglett.0c01159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here we report a protocol to synthesize diversiform fluorinated isocryptolepine analogues with potential biological activities in one step via directed C-2 and C-3 dual C-H functionalization of indoles. We also attempted to take into account fluorinated imidoyl chlorides as a novel kind of synthons in the directed C-H functionalization reactions. As a result, a variety of fluorinated isocryptolepine analogues were obtained in up to 96% yield. Moreover, we conducted control experiments to disclose the reaction mechanism.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yuebo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Xiaonan Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, People's Republic of China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
| |
Collapse
|
9
|
van Vliet KM, de Bruin B. Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00961] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaj M. van Vliet
- Van ’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Van ’t Hoff Institute for Molecular Sciences (HIMS), Faculty of Science, University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Han J, Qin Y, Ju C, Zhao D. Divergent Synthesis of Vinyl‐, Benzyl‐, and Borylsilanes: Aryl to Alkyl 1,5‐Palladium Migration/Coupling Sequences. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie‐Lian Han
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| | - Cheng‐Wei Ju
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of ChemistryNankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
11
|
Han JL, Qin Y, Ju CW, Zhao D. Divergent Synthesis of Vinyl-, Benzyl-, and Borylsilanes: Aryl to Alkyl 1,5-Palladium Migration/Coupling Sequences. Angew Chem Int Ed Engl 2020; 59:6555-6560. [PMID: 31981459 DOI: 10.1002/anie.201914740] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/19/2019] [Indexed: 12/31/2022]
Abstract
Organosilicon compounds have been extensively utilized both in industry and academia. Studies on the syntheses of diverse organosilanes is highly appealing. Through-space metal/hydrogen shifts allow functionalization of C-H bonds at a remote site, which are otherwise difficult to achieve. However, until now, an aryl to alkyl 1,5-palladium migration process seems to have not been presented. Reported herein is the remote olefination, arylation, and borylation of a methyl group on silicon to access diverse vinyl-, benzyl-, and borylsilanes, constituting a unique C(sp3 )-H transformation based on a 1,5-palladium migration process.
Collapse
Affiliation(s)
- Jie-Lian Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
12
|
Chen C, Liu L, Sun W, Ding J, Zhu YP, Zhu B. Pd/NBE-catalyzed sequential carbamoylation/olefination of aryl iodides. Org Chem Front 2020. [DOI: 10.1039/d0qo00905a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present a Pd/NBE-catalyzed sequential carbamoylation/olefination of aryl iodides under mild reaction conditions, which provide diverse 4-methylene-3,4-dihydro-1(2H)-isoquinolin-1-one analogues.
Collapse
Affiliation(s)
- Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Liying Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Wan Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Jie Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
- Tianjin 300387
- P. R. China
| |
Collapse
|
13
|
Li T, Liu C, Wu S, Chen C, Zhu B. Rhodium(iii)-catalyzed unreactive C(sp 3)-H alkenylation of N-alkyl-1H-pyrazoles with alkynes. Org Biomol Chem 2019; 17:7679-7683. [PMID: 31386754 DOI: 10.1039/c9ob01531k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The first example of pyrazole-directed rhodium(iii)-catalyzed unreactive C(sp3)-H alkenylation with alkynes has been described, which showed a relatively broad substrate scope with good functional group compatibility. Moreover, we demonstrated that the transitive coordinating center pyrazole could be easily removed under mild conditions.
Collapse
Affiliation(s)
- Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Shaonan Wu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|