1
|
Hu MC, Zhou HT, Fang YC, Zhang LR, Cui BD, Chen YZ, Bai M. In situ generated CF 3CHN 2 with 3-ylideneoxindoles to access CF 3-containing pyrazolo[1,5- c]quinazolines derivatives. RSC Adv 2024; 14:36410-36415. [PMID: 39545173 PMCID: PMC11562030 DOI: 10.1039/d4ra06651k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Toward a selective and facile method for the synthesis of CF3-containing pyrazolo[1,5-c]quinazolines, we developed a [3 + 2] cycloaddition/1,3-H shift/rearrangement/dehydrogenation cascade involving in situ generated CF3CHN2 and 3-ylideneoxindoles with DBU as a base. The reaction is distinguished by its mild conditions, metal-free process, operational simplicity, and broad functional group tolerance, thus presenting a convenient protocol for the construction of pyrazolo[1,5-c]quinazolines that are of interest in medicinal chemistry.
Collapse
Affiliation(s)
- Ming-Cheng Hu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Hai-Tao Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Yu-Chen Fang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Li-Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| | - Mei Bai
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University Zunyi 563000 China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University Zunyi 563000 China
| |
Collapse
|
2
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
3
|
Cooke L, Gristwood K, Adamson K, Sims MT, Deary ME, Bruce D, Antoniou AN, Walden HR, Knight JC, Antoine-Brunet T, Joly M, Goyard D, Lanoë PH, Berthet N, Kozhevnikov VN. Annealing 1,2,4-triazine to iridium(III) complexes induces luminogenic behaviour in bioorthogonal reactions with strained alkynes. Dalton Trans 2024; 53:15501-15508. [PMID: 39246105 DOI: 10.1039/d4dt01499e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A phenanthroline-type ligand containing an annealed 1,2,4-triazine ring was used to prepare novel Ir(III) complexes 3 and 4. The complexes are non-luminescent but show luminogenic behaviour following the inverse electron demand Diels-Alder (IEDDA) reaction with bicyclononyne (BCN) derivatives. It was observed that the complexes react with BCN-C10 faster than the corresponding free ligands. The magnitude of this accelerating metal-coordination effect, however, is less profound than in previously reported Ir(III) complexes of 1,2,4-triazines, in which the triazine was directly coordinated to the Ir(III) metal centre. Nevertheless, luminogenic behaviour opens prospects for the use of such complexes in bioimaging applications, which was demonstrated by developing a convenient methodology using the "chemistry on the complex" concept for labelling antibodies with luminescent Ir(III) complexes. The bioorthogonal reactivity of complex 4 was demonstrated by metabolically labelling live cells with BCN groups, followed by a luminogenic IEDDA reaction with the triazine iridium complex.
Collapse
Affiliation(s)
- Lydia Cooke
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - Katie Gristwood
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, UK
| | - Kate Adamson
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - Mark T Sims
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - Michael E Deary
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - Dawn Bruce
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - Antony N Antoniou
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hannah R Walden
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| | - James C Knight
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, UK
| | | | - Marie Joly
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble, France
| | - David Goyard
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble, France
| | | | - Nathalie Berthet
- Université Grenoble Alpes, CNRS, DCM UMR 5250, 38000 Grenoble, France
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
4
|
Šlachtová V, Motornov V, Beier P, Vrabel M. Bioorthogonal Cycloadditions of C3-Trifluoromethylated 1,2,4-Triazines with trans-Cyclooctenes. Chemistry 2024; 30:e202400839. [PMID: 38739300 DOI: 10.1002/chem.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
1,2,4-triazines are a valuable class of heterodienes that can be employed in inverse electron-demand Diels-Alder reactions. However, their broader application in bioorthogonal chemistry is limited due to their low reactivity. This article focuses on 3-(trifluoromethyl)-1,2,4-triazines, which can be efficiently prepared in a one-pot reaction from NH-1,2,3-triazoles. These triazines are highly reactive in reactions with strained cyclooctenes, giving second-order rate constants as high as 230 M-1 s-1. Despite their high reactivity, the compounds remain sufficiently stable under biologically relevant conditions. We show that some of the compounds are fluorogenic, a property of potential use in bioimaging. In addition, we demonstrate the successful application of the triazines in labeling model biomolecules. Our work shows that the reactivity of 1,2,4-triazines can be enhanced by the 3-CF3-substitution, which we consider an important step toward the wider use of this promising class of reagents.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Vladimir Motornov
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic
| |
Collapse
|
5
|
Zhang Y, Zhu T, Lin Y, Wei X, Xie X, Lin R, Zhang Z, Fang W, Zhang JJ, Zhang Y, Hu MY, Cai L, Chen Z. Organo-photoredox catalyzed gem-difluoroallylation of ketone-derived dihydroquinazolinones via C(sp 3)-C bond and C(sp 3)-F bond cleavage. Org Biomol Chem 2024; 22:5561-5568. [PMID: 38916128 DOI: 10.1039/d4ob00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of both acyclic and cyclic ketone derivatives with α-trifluoromethyl alkenes has been demonstrated, thus giving access to a diverse set of gem-difluoroalkenes in moderate to high yields. Pro-aromatic dihydroquinazolinones can be either pre-formed or in situ generated for ketone activation. This reaction is characterized by readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this reaction has been highlighted by the late-stage modification of several natural products and drug-like molecules as well as the in vitro antifungal activity.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Tianshuai Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhijie Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China.
| | - Meng-Yang Hu
- DreamChem (Tianjin) Co., Ltd., No. 4, Haitai Development 2nd Road, Binhai High-tech Zone, Tianjin, 300380, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
6
|
Fang Y, Hillman AS, Fox JM. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top Curr Chem (Cham) 2024; 382:15. [PMID: 38703255 PMCID: PMC11559631 DOI: 10.1007/s41061-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 05/06/2024]
Abstract
Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
7
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
8
|
Kumar S, Fatma L, Vaishanv NK, Mohanan K. CsF-Mediated Reaction of Trifluorodiazoethane with 3-Nitroindoles Enables Access to Trifluoromethylpyrazolo[4,3- b]indoles. J Org Chem 2024; 89:761-769. [PMID: 38145929 DOI: 10.1021/acs.joc.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
A mild and metal-free strategy for the construction of trifluoromethylated pyrazolo[4,3-b]indoles through the reaction of N-substituted 3-nitroindoles with trifluorodiazoethane is reported. This operationally simple transformation involves a [3 + 2] cycloaddition of trifluorodiazoethane with 3-nitroindole, followed by the elimination of the nitro group to furnish pyrazole-fused indoles. The synthetic utility of this method is further demonstrated by applying it to other heterocycles, such as 3-nitrobenzothiophene and 2-nitrobenzofuran.
Collapse
Affiliation(s)
- Sandeep Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Lubina Fatma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Narendra Kumar Vaishanv
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
9
|
Wei X, Zhang Y, Zhang JJ, Fang W, Chen Z. Solvent-Controllable C-F Bond Activation for Masked Formylation of α-Trifluoromethyl Alkenes via Organo-Photoredox Catalysis. J Org Chem 2024; 89:624-632. [PMID: 38115588 DOI: 10.1021/acs.joc.3c02385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A solvent-controllable organo-photoredox-catalyzed C-F bond activation for masked formylation of α-trifluoromethyl alkenes with low-priced 1,3-dioxolane as masked formyl radical equivalent has been described. Consequently, a diversity of masked formylated gem-difluoroalkenes and monofluoroalkenes are constructed in moderate to high yields. This approach merits readily available starting materials, mild reaction conditions, and broad substrate scope. The feasibility of this approach has been highlighted by the one-pot masked formylation/hydrolysis sequence to form γ,γ-difluoroallylic aldehydes and late-stage modification of pharmaceutical and natural product derivatives.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
10
|
Gao CF, Chen YJ, Nie J, Zhang FG, Cheung CW, Ma JA. Synthesis of di/trifluoromethyl cyclopropane-dicarbonitriles via [2+1] annulation of fluoro-based diazoethanes with (alkylidene)malononitriles. Chem Commun (Camb) 2023; 59:11664-11667. [PMID: 37695256 DOI: 10.1039/d3cc03897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Herein, we describe a [2+1] annulation reaction of di/trifluorodiazoethane with (alkylidene)malononitriles. This protocol offers a streamlined synthesis of a wide range of stereospecific and densely functionalized difluoromethyl and trifluoromethyl cyclopropane-1,1-dicarbonitriles. Further functional group interconversions or skeletal elaborations afford structurally distinct cyclopropyl variants.
Collapse
Affiliation(s)
- Cheng-Feng Gao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Yue-Ji Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
11
|
Cen K, Wei J, Feng Y, Liu Y, Wang X, Liu Y, Yin Y, Yu J, Wang D, Cai J. Synthesis of fused 3-trifluoromethyl-1,2,4-triazoles via base-promoted [3 + 2] cycloaddition of nitrile imines and 1 H-benzo[ d]imidazole-2-thiols. Org Biomol Chem 2023; 21:7095-7099. [PMID: 37622281 DOI: 10.1039/d3ob01133j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Here we report a strategy for the facile assembly of fused 3-trifluoromethyl-1,2,4-triazoles, which are difficult to synthesize using traditional strategies, in 50-96% yields through a triethylamine-promoted intermolecular [3 + 2] cycloaddition pathway. This protocol features high efficiency, good functional group tolerance, mild conditions, and easy operation. Furthermore, a gram-scale reaction and product derivatizations were carried out smoothly to illustrate the practicability of this method.
Collapse
Affiliation(s)
- Kaili Cen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| | - Jiahao Wei
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Yuting Feng
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Yuan Liu
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Xinye Wang
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Yangyu Liu
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Yalin Yin
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| | - Junhong Yu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| | - Dahan Wang
- Department of Food and Chemical Engineering, Shaoyang University, Shaoyang 422100, Hunan, China.
| | - Jinhui Cai
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
12
|
Liu XY, Yang YL, Dang Y, Marek I, Zhang FG, Ma JA. Tetrazole Diversification of Amino Acids and Peptides via Silver-Catalyzed Intermolecular Cycloaddition with Aryldiazonium Salts. Angew Chem Int Ed Engl 2023; 62:e202304740. [PMID: 37212541 DOI: 10.1002/anie.202304740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Selective structural modification of amino acids and peptides is a central strategy in organic chemistry, chemical biology but also in pharmacology and material science. In this context, the formation of tetrazole rings, known to possess significant therapeutic properties, would expand the chemical space of unnatural amino acids but has received less attention. In this study, we demonstrated that the classic unimolecular Wolff rearrangement of α-amino acid-derived diazoketones could be replaced by a faster intermolecular cycloaddition reaction with aryldiazonium salts under identical practical conditions. This strategy provides an efficient synthetic platform that could transform proteinogenic α-amino acids into a plethora of unprecedented tetrazole-decorated amino acid derivatives with preservation of the stereocenters. Density functional theory studies shed some light on the reaction mechanism and provided information regarding the origins of the chemo- and regioselectivity. Furthermore, this diazo-cycloaddition protocol was applied to construct tetrazole-modified peptidomimetics and drug-like amino acid derivatives.
Collapse
Affiliation(s)
- Xuan-Yu Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Yi-Lin Yang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Yanfeng Dang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Ilan Marek
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion-Israel Institute of Technology, Haifa, 3200009, Israel
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Chandrasekharan SP, Dhami A, Mohanan K. Ag-Catalyzed Annulation of o-Alkynylaryl Aldehydes, Amines, and Diazo Compounds: Construction of Trifluoromethyl- and Cyano-Functionalized Benzo[ d]azepines. Org Lett 2023; 25:5806-5811. [PMID: 37530707 DOI: 10.1021/acs.orglett.3c02053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A Ag-catalyzed three-component annulation protocol, which uses o-alkynylaryl aldehydes, amines, and trifluorodiazoethane or diazoacetonitrile, to forge a new class of trifluoromethyl- and cyano-functionalized benzo[d]azepine is presented in this Letter. The key transformations involved in this reaction are the transient formation of the isoquinolinium intermediate and the subsequent ring-expansive addition of in situ-formed silver trifluorodiazoethylide to this intermediate. The practicality of this protocol is illustrated by realizing access to a wide range of densely functionalized benzo[d]azepines.
Collapse
Affiliation(s)
- Sanoop P Chandrasekharan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Anamika Dhami
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
14
|
Xu XC, Gong Y, Wang J, Yuan YR, Zhao YL. DBU-Promoted Tandem Cyclization of Ynones and Diazo Compounds: Direct Synthesis of Eight-Membered Cyclic Ethers. Org Lett 2023; 25:5750-5755. [PMID: 37498163 DOI: 10.1021/acs.orglett.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A novel DBU-promoted tandem cyclization reaction of ynones with diazo compounds as the N-terminal electrophiles has been developed. The reaction provides a simple and efficient method for the synthesis of fused eight-membered oxocino[2,3-c] pyrazoles from readily available acyclic starting materials in a single step. This reaction allows the formation of four new bonds and two rings in a highly regio- and diastereoselective manner, where two adjacent stereocenters are created simultaneously in an atom-economic manner.
Collapse
Affiliation(s)
- Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yue Gong
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jie Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yi-Rong Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design and Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
15
|
Chen YJ, Zheng J, Ma JA, Zhang FG. Radical-initiated diazo-retaining nucleophilic addition reaction of trifluorodiazoethane and diazoacetate with 2H‑azirines. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
16
|
Dhami A, Chandrasekharan SP, Mohanan K. Direct Access to Trifluoromethylated Benzo[ d]oxepines from o-Alkynylaryl Aldehydes and Trifluorodiazoethane. Org Lett 2023; 25:3018-3022. [PMID: 37092874 DOI: 10.1021/acs.orglett.3c00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Reported in this Letter is a silver-catalyzed reaction between o-alkynylaryl aldehydes and trifluorodiazoethane that enables an expedient synthesis of trifluoromethylated benzo[d]oxepines. The reaction works through a silver-promoted 6-endo-dig cyclization of o-alkynylbenzaldehydes for the generation of an isochromenylium intermediate, which upon a ring-expansive addition of trifluorodiazoethane delivers a novel class of trifluoromethylated benzoxepine frameworks. This strategy was applied to the synthesis of phosphonylated benzo[d]oxepines using the Seyferth-Gilbert reagent.
Collapse
Affiliation(s)
- Anamika Dhami
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CSIR), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh 226031, India
| | - Sanoop P Chandrasekharan
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CSIR), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh 226031, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division, Central Drug Research Institute (CSIR), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
17
|
Zhang Y, Zeng JL, Chen Z, Wang R. Base-Promoted (3 + 2) Cycloaddition of Trifluoroacetohydrazonoyl Chlorides with Imidates En Route to Trifluoromethyl-1,2,4-Triazoles. J Org Chem 2022; 87:14514-14522. [PMID: 36264227 DOI: 10.1021/acs.joc.2c01926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A base-mediated (3 + 2) cycloaddition of trifluoroacetohydrazonoyl chlorides with imidates for the construction of 3-trifluoromethyl-1,2,4-triazoles has been described. This reaction is characterized by readily starting materials, simple reaction conditions, good yields, a broad substrate scope, and excellent regioselectivity. The utility of this protocol has been validated by the synthesis of a drug-like molecule.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jun-Liang Zeng
- School of Chemistry and Chemical Engineering, Xuchang University, Henan 461000, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ren Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
18
|
Fatykhov RF, Khalymbadzha IA, Sharapov AD, Potapova AP, Mochulskaya NN, Tsmokalyuk AN, Ivoilova AV, Mozharovskaia PN, Santra S, Chupakhin ON. MnO 2-Mediated Oxidative Cyclization of "Formal" Schiff's Bases: Easy Access to Diverse Naphthofuro-Annulated Triazines. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207105. [PMID: 36296698 PMCID: PMC9611995 DOI: 10.3390/molecules27207105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
A different type of MnO2-induced oxidative cyclization of dihydrotriazines has been developed. These dihydrotriazines are considered as a "formal" Schiff's base. This method provided easy access to naphthofuro-fused triazine via the C-C/C-O oxidative coupling reaction. The reaction sequence comprised the nucleophilic addition of 2-naphthol or phenol to 1,2,4-triazine, followed by oxidative cyclization. The scope and limitations of this novel coupling reaction have been investigated. Further application of the synthesized compound has been demonstrated by synthesizing carbazole-substituted benzofuro-fused triazines. The scalability of the reaction was demonstrated at a 40 mmol load. The mechanistic study strongly suggests that this reaction proceeds through the formation of an O-coordinated manganese complex.
Collapse
Affiliation(s)
- Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| | - Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Anastasia P. Potapova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Nataliya N. Mochulskaya
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Anton N. Tsmokalyuk
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Alexandra V. Ivoilova
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Polina N. Mozharovskaia
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
| | - Sougata Santra
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Correspondence:
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., 620002 Ekaterinburg, Russia
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskaya Str., 620990 Ekaterinburg, Russia
| |
Collapse
|
19
|
Teng Y, Fang T, Lin Z, Qin L, Jiang M, Wu W, You Y, Weng Z. Ring-expansion reaction for the synthesis of 2-(trifluoromethyl)oxazoles and 3-(trifluoromethyl)-1,2,4-triazines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
20
|
Synthesis of 3,5-difuroxanyl-1,6-dihydro-1,2,4-triazines. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3527-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Zhu Z, Boger DL. N1/N4 1,4-Cycloaddition of 1,2,4,5-Tetrazines with Enamines Promoted by the Lewis Acid ZnCl 2. J Org Chem 2022; 87:6288-6301. [PMID: 35417656 PMCID: PMC9081262 DOI: 10.1021/acs.joc.2c00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The second example of selective N1/N4 1,4-cycloaddition (vs C3/C6 1,4-cycloaddition) of 1,2,4,5-tetrazines with preformed or in situ generated enamines now promoted by the Lewis acid ZnCl2 and with an expanded scope is described. The reaction constitutes a formal [4 + 2] cycloaddition across two nitrogen atoms (N1/N4 vs C3/C6) of a 1,2,4,5-tetrazine followed by retro [4 + 2] cycloaddition loss of a nitrile and aromatization to provide 1,2,4-triazines. Optimization of reaction parameters, simplification of its implementation through in situ enamine generation from ketones, definition of the enamine reaction scope for 3,6-bis(thiomethyl)-1,2,4,5-tetrazine, exploration of the 1,2,4,5-tetrazine scope, and representative applications of the product 1,2,4-triazines are detailed. The work establishes and further extends a powerful method for efficient one-step regioselective synthesis of 1,2,4-triazines under mild reaction conditions directly now from easily accessible ketones. It extends the substrate scope of a solvent (hexafluoroisopropanol) hydrogen bonding-promoted reaction that we recently reported with aryl-conjugated enamines, permitting the use of simple ketone-derived enamines and expanding the generality of the remarkable reaction. The reaction is regioselective with respect to the site of reaction with unsymmetrical ketones and provides exclusively a single 1,2,4-triazine regioisomer consistent with our previously established stepwise mechanism of formal N1/N4 1,4-cycloaddition, overcoming the challenges observed in conventional approaches to 1,2,4-triazines.
Collapse
Affiliation(s)
- Zixi Zhu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Dale L Boger
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Fang Z, Jin Q, Wang X, Ning Y. Metal-free [2 + 1 + 3] Cycloaddition of Trifluoroacetaldehyde N-Sulfonylhydrazones with Hexahydro-1,3,5-triazines Leading to Trifluoromethylated 2,3,4,5-Tetrahydro-1,2,4-triazines. J Org Chem 2022; 87:2966-2974. [PMID: 35133818 DOI: 10.1021/acs.joc.1c02810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition-metal-free [2 + 1 + 3] cycloaddition of trifluoroacetaldehyde N-sulfonylhydrazone and hexahydro-1,3,5-triazine was described. This operationally simple protocol provides a general synthesis of diverse trifluoromethylated 2,3,4,5-tetrahydro-1,2,4-triazines in 81-97% yield with a broad substrate scope, including aryl, benzyl, and alkyl hexahydro-1,3,5-triazine.
Collapse
Affiliation(s)
- Zhongxue Fang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Qihao Jin
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xinyu Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
23
|
Zhai SJ, Cahard D, Zhang FG, Ma JA. Metal-free regioselective construction of 2-aryl-2H-tetrazol-5-yl difluoromethylene phosphonates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Convenient and efficient access to tri- and tetra-substituted 4-fluoropyridines via a [3 + 2]/[2 + 1] cyclization reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Xiaoyong Z, Lili Y, Junfang G, Yue G, Yulong Z. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-Promoted Nucleophilic Addition of Two Molecules of Nitroalkanes to Diazo Compounds: Synthesis of Highly Functionalized Hydrazones and Tetrahydropyridazines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Kumar A, Khan WA, Ahamad S, Mohanan K. Trifluorodiazoethane: A versatile building block to access trifluoromethylated heterocycles. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anuj Kumar
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Lucknow India
| | | | - Shakir Ahamad
- Department of Chemistry Aligarh Muslim University Aligarh India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division CSIR‐Central Drug Research Institute Lucknow India
- Medicinal and Process Chemistry Division Academy of Scientific and Innovative Research Ghaziabad India
| |
Collapse
|
27
|
Shi HS, Li SH, Zhang FG, Ma JA. Catalytic regioselective construction of phenylthio- and phenoxyldifluoroalkyl tetrazoles from difluorodiazoketones. Chem Commun (Camb) 2021; 57:13744-13747. [PMID: 34851338 DOI: 10.1039/d1cc05890h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we report the design and synthesis of two new difluoro-diazoketone reagents (difluorophenylthiol diazoketone and difluorophenoxyl diazoketone) and their [3+2] cycloaddition reactions with aryldiazonium salts under silver catalysis conditions. This protocol enables regioselective access to a broad scope of difluorophenylthiol- and difluorophenoxyl-substituted tetrazole-carbinols in a one-pot operation. Further synthetic derivatizations including dephenylthiolation and unexpected phenylthiol group migration/fluorination allow the efficient preparation of α-difluoromethyl tetrazole-carbinols and α-trifluoromethyl tetrazole-thioethers.
Collapse
Affiliation(s)
- Hong-Song Shi
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Shuo-Han Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai, Fuzhou 350207, P. R. China.
| |
Collapse
|
28
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
29
|
Liu Y, Peng X, She R, Zhou X, Peng Y. Catalytic Asymmetric (3 + 3) Cycloaddition of Oxyallyl Zwitterions with α-Diazomethylphosphonates. Org Lett 2021; 23:7295-7300. [PMID: 34494440 DOI: 10.1021/acs.orglett.1c02809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The unique structure of oxyallyls represents a significant challenge for their catalytic asymmetric applications. Herein, an unprecedented chiral imidodiphosphoric acid-catalytic enantioselective (3 + 3) cycloaddition between oxyallyl zwitterions generated in situ from α-haloketones and α-diazomethylphosphonates was developed. Pharmaceutically interesting chiral pyridazine-4(1H)-ones were obtained in up to 98% yields with excellent stereoselectivities (up to 99% ee, > 99:1 dr).
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xian Peng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rui She
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yungui Peng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
30
|
Chen YJ, Zhang FG, Ma JA. Zinc-Enabled Annulation of Trifluorodiazoethane with 2 H-Azirines to Construct Trifluoromethyl Pyrazolines, Pyrazoles, and Pyridazines. Org Lett 2021; 23:6062-6066. [PMID: 34319752 DOI: 10.1021/acs.orglett.1c02139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diethylzinc-promoted unconventional annulation reaction of 2,2,2-trifluorodiazoethane with 2H-azirines is described. This transformation involves two [3 + 2] cycloaddition steps and one dinitrogen extrusion process in one pot, thus giving a broad array of 3-trifluoromethyl pyrazolines in good yields with excellent diastereoselectivities. Further transformations provide facile access to 3-trifluoromethyl pyrazoles and 3,5-ditrifluoromethyl pyridazines with good efficiency.
Collapse
Affiliation(s)
- Yue-Ji Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
31
|
Kumar A, Dhami A, Fairoosa J, Kant R, Mohanan K. Silver-Catalyzed Direct Synthesis of Trifluoromethylated Enaminopyridines and Isoquinolinones Employing Trifluorodiazoethane. Org Lett 2021; 23:5815-5820. [PMID: 34264078 DOI: 10.1021/acs.orglett.1c01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This Letter reports a Ag-catalyzed three-component approach for the N-alkenylation of 2-aminopyridines employing aldehydes and trifluorodiazoethane. Unlike the known reactions of trifluorodiazoethane with imines, which generate Mannich adducts, aziridines, or triazolines depending on the substrates and conditions, this reaction, after Mannich addition, proceeds via a carbene formation and 1,2-aryl migration sequence to afford (E)-enaminopyridines. This surprising selectivity, which is effective for a wide range of aldehydes and 2-aminopyridines, has been subsequently explored to access trifluoromethylated isoquinolinones.
Collapse
Affiliation(s)
| | | | | | | | - Kishor Mohanan
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
32
|
Yuan SY, Yan QQ, Wang D, Dan TT, He L, He CY, Chu WD, Liu QZ. Asymmetric Synthesis of 3-Methyleneindolines via Rhodium(I)-Catalyzed Alkynylative Cyclization of N-( o-Alkynylaryl)imines. Org Lett 2021; 23:4823-4827. [PMID: 34080868 DOI: 10.1021/acs.orglett.1c01518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric synthesis of 3-methyleneindolines from alkynyl imines has been developed via a rhodium-catalyzed tandem process: regioselective alkynylation of the internal alkynes and subsequent intramolecular addition to the imines. The reaction proceeded with unconventional chemoselectivity and provided 3-methyleneindolines with good yields (up to 82% yield) and high enantioselectivities (up to 97% ee). Moreover, this transformation also features mild reaction conditions, perfect atom economy, and a broad substrate scope.
Collapse
Affiliation(s)
- Shi-Yi Yuan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Qi-Qi Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Dan Wang
- Chengdu Institute of Product Quality Inspection Co., Ltd., Chengdu 610000,China
| | - Ting-Ting Dan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
33
|
Cao T, Yang Z, Sun Y, Zhao N, Lu S, Zhang J, Wang L. Lewis Base‐Catalyzed Cycloaddition of Heterocyclic Alkenes with 2,2,2‐Trifluorodiazoethane (CF
3
CHN
2
): Access to Trifluoromethylated Pyrazolines and Pyrazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tingting Cao
- Department of Traditional Chinese Medicine Jilin Agricultural University Changchun 130118 P. R. China
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Zhen Yang
- Department of Traditional Chinese Medicine Jilin Agricultural University Changchun 130118 P. R. China
| | - Yunfang Sun
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Nannan Zhao
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Shan Lu
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| | - Jing Zhang
- Department of Traditional Chinese Medicine Jilin Agricultural University Changchun 130118 P. R. China
| | - Lei Wang
- Institute of Medicinal Plant Development Chinese Academy of Medical Science&Peking Union Medical College Beijing 100193 P. R. China
| |
Collapse
|
34
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
35
|
Wu T, Li A, Chen K, Peng X, Zhang J, Jiang M, Chen S, Zheng X, Zhou X, Jiang ZX. Perfluoro- tert-butanol: a cornerstone for high performance fluorine-19 magnetic resonance imaging. Chem Commun (Camb) 2021; 57:7743-7757. [PMID: 34286714 DOI: 10.1039/d1cc02133h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a versatile quantification and tracking technology, 19F magnetic resonance imaging (19F MRI) provides quantitative "hot-spot" images without ionizing radiation, tissue depth limit, and background interference. However, the lack of suitable imaging agents severely hampers its clinical application. First, because the 19F signals are solely originated from imaging agents, the relatively low sensitivity of MRI technology requires high local 19F concentrations to generate images, which are often beyond the reach of many 19F MRI agents. Second, the peculiar physicochemical properties of many fluorinated compounds usually lead to low 19F signal intensity, tedious formulation, severe organ retention, etc. Therefore, the development of 19F MRI agents with high sensitivity and with suitable physicochemical and biological properties is of great importance. To this end, perfluoro-tert-butanol (PFTB), containing nine equivalent 19F and a modifiable hydroxyl group, has outperformed most perfluorocarbons as a valuable building block for high performance 19F MRI agents. Herein, we summarize the development and application of PFTB-based 19F MRI agents and analyze the strategies to improve their sensitivity and physicochemical and biological properties. In the context of PFC-based 19F MRI agents, we also discuss the challenges and prospects of PFTB-based 19F MRI agents.
Collapse
Affiliation(s)
- Tingjuan Wu
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Anfeng Li
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Kexin Chen
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xingxing Peng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Jing Zhang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Mou Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Xing Zheng
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China.
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovative Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Wuhan 430071, China.
| | - Zhong-Xing Jiang
- Group of Lead Compound, Department of Pharmacy, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, Hunan, China. and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
36
|
Li C, Zhang X, He J, Xu S, Cao S. Et
3
N‐Catalyzed
Cycloaddition Reactions of α‐(Trifluoromethyl)styrenes with 2,2,
2‐Trifluorodiazoethane
to Access Bis(trifluoromethyl)‐Substituted Pyrazolines. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chunmei Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Xuxue Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University Jinan Shandong 250200 China
| | - Jingjing He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Sixue Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| | - Song Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
37
|
Li JK, Zhou B, Tian YC, Jia C, Xue XS, Zhang FG, Ma JA. Potassium Acetate-Catalyzed Double Decarboxylative Transannulation To Access Highly Functionalized Pyrroles. Org Lett 2020; 22:9585-9590. [DOI: 10.1021/acs.orglett.0c03621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jun-Kuan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| | - Biying Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yu-Chen Tian
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| | - Chunman Jia
- Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| | - Xiao-Song Xue
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, People’s Republic of China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
38
|
A mineralogically-inspired silver–bismuth hybrid material: Structure, stability and application for catalytic benzyl alcohol dehydrogenations under continuous flow conditions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Yang T, Deng Z, Wang KH, Li P, Huang D, Su Y, Hu Y. Synthesis of CF 3-Substituted 1,6-Dihydropyridazines by Copper-Promoted Cascade Oxidation/Cyclization of Trifluoromethylated Homoallylic N-Acylhydrazines. J Org Chem 2020; 85:12304-12314. [DOI: 10.1021/acs.joc.0c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tianyu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Pengfei Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
40
|
Liu X, Zhai S, Feng F, Zhang F, Ma J. Silver‐Catalyzed [3+2] Cycloaddition Approach to Coumarin‐Decorated Tetrazoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202001143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan‐Yu Liu
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
| | - Shi‐Jing Zhai
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
| | - Fang‐Fang Feng
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
| | - Fa‐Guang Zhang
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 P.R. China
| | - Jun‐An Ma
- Department of chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072 P.R. China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 P.R. China
| |
Collapse
|
41
|
Affiliation(s)
- Pavel K. Mykhailiuk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
- Chemistry Department, Taras Shevchenko National University of Kyiv, Volodymyrska 64, 01601 Kyiv, Ukraine
| |
Collapse
|
42
|
Peng X, Zhang F, Ma J. Cu‐Catalysed Three‐Component Reaction of Aryldiazonium Salts with Fluorinated Diazo Reagents and Nitriles: Access to Difluoro‐ and Trifluoromethylated
N
1
‐Aryl‐1,2,4‐triazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000776] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xing Peng
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
43
|
Zhang F, Chen Z, Cheung CW, Ma J. Aryl Diazonium
Salt‐Triggered
Cyclization and Cycloaddition Reactions: Past, Present, and Future. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000270] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fa‐Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Zhen Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University Tianjin 300072 China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou 350207 Fujian China
| |
Collapse
|
44
|
Ho PY, Ho CL, Wong WY. Recent advances of iridium(III) metallophosphors for health-related applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Yan X, Li C, Xu X, Zhao X, Pan Y. Hemin Catalyzed Dealkylative Intercepted [2, 3]‐Sigmatropic Rearrangement Reactions of Sulfonium Ylides with 2, 2, 2‐Trifluorodiazoethane. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojing Yan
- Department of ChemistryZhejiang University Zheda Road 38 Hangzhou 310027 People's Republic of China
| | - Chang Li
- Zhejiang Chinese Medical University Bingwen Road 548 Hangzhou 310053 People's Republic of China
| | - Xiaofei Xu
- Department of ChemistryZhejiang University Zheda Road 38 Hangzhou 310027 People's Republic of China
| | - Xiaoyong Zhao
- Department of ChemistryZhejiang University Zheda Road 38 Hangzhou 310027 People's Republic of China
| | - Yuanjiang Pan
- Department of ChemistryZhejiang University Zheda Road 38 Hangzhou 310027 People's Republic of China
| |
Collapse
|
46
|
Li J, Zhang D, Chen J, Ma C, Hu W. Enantioselective Synthesis of Fluoroalkyl-Substituted syn-Diamines by the Asymmetric gem-Difunctionalization of 2,2,2-Trifluorodiazoethane. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00972] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiuling Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dan Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianghui Chen
- School Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chaoqun Ma
- School Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- School Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
47
|
Jamali MF, Gupta E, Kumar A, Kant R, Mohanan K. Ag-Catalyzed Trifluoromethylative Ring Expansion of Isatins and Isatin Ketimines with Trifluorodiazoethane. Chem Asian J 2020; 15:757-761. [PMID: 32017397 DOI: 10.1002/asia.201901799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Indexed: 01/06/2023]
Abstract
A general method for the construction of trifluoromethylated 2-quinolinones has been established herein by using a trifluoromethylative ring expansion of isatin with trifluorodiazoethane. The strategy provides a platform for the rapid synthesis of a wide range of substituted 3-hydroxy-4-trifluoromethyl-2-quinolinones. This operationally simple and robust Ag-catalyzed protocol successfully transforms isatin ketimines to 3-amino-4-trifluoromethylquinolinones in excellent yields. The utility of this novel method is further illustrated by the conversion of the products into various synthetically and medicinally relevant molecules.
Collapse
Affiliation(s)
- Muhammad Fahad Jamali
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, 110025, New Delhi, India
| | - Ekta Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anuj Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, 110025, New Delhi, India
| |
Collapse
|
48
|
Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Synthesis of Both Enantiomers of Nine‐Membered CF
3
‐Substituted Heterocycles Using a Single Chiral Ligand: Palladium‐Catalyzed Decarboxylative Ring Expansion with Kinetic Resolution. Angew Chem Int Ed Engl 2020; 59:8187-8194. [DOI: 10.1002/anie.201915021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Motoo Shiro
- Rigaku Corporation 3-9-12, Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 321004 Jinhua China
| |
Collapse
|
49
|
Uno H, Punna N, Tokunaga E, Shiro M, Shibata N. Synthesis of Both Enantiomers of Nine‐Membered CF
3
‐Substituted Heterocycles Using a Single Chiral Ligand: Palladium‐Catalyzed Decarboxylative Ring Expansion with Kinetic Resolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroto Uno
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Nagender Punna
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Motoo Shiro
- Rigaku Corporation 3-9-12, Matsubara-cho, Akishima-shi Tokyo 196-8666 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied ChemistryNagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing MaterialsZhejiang Normal University 321004 Jinhua China
| |
Collapse
|
50
|
Liu HN, Cao HQ, Cheung CW, Ma JA. Cu-Mediated Expeditious Annulation of Alkyl 3-Aminoacrylates with Aryldiazonium Salts: Access to Alkyl N2-Aryl 1,2,3-Triazole-carboxylates for Druglike Molecular Synthesis. Org Lett 2020; 22:1396-1401. [PMID: 32013455 DOI: 10.1021/acs.orglett.0c00006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alkyl N-aryl 1,2,3-triazole-carboxylates are important molecules or intermediates in medicinal chemistry, but the synthesis of N2-aryl counterparts remains elusive. Herein, we describe a Cu-mediated annulation reaction of alkyl 3-aminoacrylates with aryldiazonium salts, both of which are readily available substrates. Furthermore, alkyl 2-aminoacrylates are also viable substrates. Diverse alkyl N2-aryl 1,2,3-triazole-carboxylates and their analogues can be rapidly prepared under mild conditions. Especially, this protocol allows one to access several druglike variants of carbonic anhydrase inhibitors and celecoxib.
Collapse
Affiliation(s)
- Hao-Nan Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China
| | - Hao-Qiang Cao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China.,Joint School of NUS & TJU , International Campus of Tianjin University, Fuzhou , Fujian 350207 , P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering , Tianjin University , Tianjin 300072 , P. R. of China.,Joint School of NUS & TJU , International Campus of Tianjin University, Fuzhou , Fujian 350207 , P. R. of China
| |
Collapse
|