1
|
Wang G, Chen S, Duan Q, Wei F, Lin S, Xie Z. Surface Chemistry and Catalytic Reactivity of Borocarbonitride in Oxidative Dehydrogenation of Propane. Angew Chem Int Ed Engl 2023; 62:e202307470. [PMID: 37523147 DOI: 10.1002/anie.202307470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Borocarbonitride (BCN) materials are newly developed oxidative dehydrogenation catalysts that can efficiently convert alkanes to alkenes. However, BCN materials tend to form bulky B2 O3 due to over-oxidation at the high reaction temperature, resulting in significant deactivation. Here, we report a series of super stable BCN nanosheets for the oxidative dehydrogenation of propane (ODHP) reaction. The catalytic performance of the BCN nanosheets can be easily regulated by changing the guanine dosage. The control experiment and structural characterization indicate that the introduction of a suitable amount of carbon could prevent the formation of excessive B2 O3 from BCN materials and maintain the 2D skeleton at a high temperature of 520 °C. The best-performing catalyst BCN exhibits 81.9 % selectivity towards olefins with a stable propane conversion of 35.8 %, and the propene productivity reaches 16.2 mmol h-1 g-1 , which is much better than hexagonal BN (h-BN) catalysts. Density functional theory calculation results show that the presence of dispersed rather than aggregated carbon atoms can significantly affect the electronic microenvironment of h-BN, thereby boosting the catalytic activity of BCN.
Collapse
Affiliation(s)
- Guangming Wang
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Shunhua Chen
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Qiwei Duan
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Fenfei Wei
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Sen Lin
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| | - Zailai Xie
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, 350016, Fuzhou, China
| |
Collapse
|
2
|
Jan F, Yang M, Zhou N, Sun X, Li B. Engineering the catalytic properties of CeO2 catalyst in HCl-assisted propane dehydrogenation by effective doping: A first-principles-based microkinetic simulation. Front Chem 2023; 11:1133865. [PMID: 36970413 PMCID: PMC10036589 DOI: 10.3389/fchem.2023.1133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
HCl-assisted propane dehydrogenation (PDH) is an attractive route for propene production with good selectivity. In this study, the doping of CeO2 with different transition metals, including V, Mn, Fe, Co, Ni, Pd, Pt, and Cu, in the presence of HCl was investigated for PDH. The dopants have a pronounced effect on the electronic structure of pristine ceria that significantly alters the catalytic capabilities. The calculations indicate the spontaneous dissociation of HCl on all surfaces with a facile abstraction of the first hydrogen atom except on V- and Mn-doped surfaces. The lowest energy barrier of 0.50 and 0.51eV was found for Pd- and Ni-doped CeO2 surfaces. The surface oxygen is responsible for hydrogen abstraction, and its activity is described by the p-band center. Microkinetics simulation is performed on all doped surfaces. The increase in the turnover frequency (TOF) is directly linked with the partial pressure of propane. The adsorption energy of reactants aligned with the observed performance. The reaction follows first-order kinetics to C3H8. Furthermore, on all surfaces, the formation of C3H7 is found as the rate-determining step confirmed by the degree of rate control (DRC) analysis. This study provides a decisive description of catalyst modification for HCl-assisted PDH.
Collapse
Affiliation(s)
- Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Min Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - Nuodan Zhou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, Liaoning, China
| | - XiaoYing Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- *Correspondence: Bo Li, ; XiaoYing Sun,
| | - Bo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- *Correspondence: Bo Li, ; XiaoYing Sun,
| |
Collapse
|
3
|
Jiang L, Xu G, Fu Y. Catalytic Cleavage of the C–O Bond in Lignin and Lignin-Derived Aryl Ethers over Ni/AlP yO x Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Jiang
- Anhui Province Key Laboratory of Biomass Clean Energy, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Guangyue Xu
- Anhui Province Key Laboratory of Biomass Clean Energy, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| | - Yao Fu
- Anhui Province Key Laboratory of Biomass Clean Energy, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
| |
Collapse
|
4
|
Cao T, Dai X, Li F, Liu W, Bai Y, Fu Y, Qi W. Efficient Non‐Precious Metal Catalyst for Propane Dehydrogenation: Atomically Dispersed Cobalt‐nitrogen Compounds on Carbon Nanotubes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tianlong Cao
- Department of Chemistry College of Sciences Northeastern University No. 3–11, Wenhua Road Shenyang 110819 P.R. China
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Xueya Dai
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Fan Li
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Weijie Liu
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Yunli Bai
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| | - Yu Fu
- Department of Chemistry College of Sciences Northeastern University No. 3–11, Wenhua Road Shenyang 110819 P.R. China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences No. 72, Wenhua Road Shenyang 110016 P.R. China
| |
Collapse
|
5
|
Büchele S, Zichittella G, Kanatakis S, Mitchell S, Pérez‐Ramírez J. Impact of Heteroatom Speciation on the Activity and Stability of Carbon‐Based Catalysts for Propane Dehydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Simon Büchele
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Guido Zichittella
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Spyridon Kanatakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Javier Pérez‐Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
6
|
Zichittella G, Polyhach Y, Tschaggelar R, Jeschke G, Pérez‐Ramírez J. Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guido Zichittella
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - René Tschaggelar
- Laboratory of Physical Chemistry Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 2 8093 Zurich Switzerland
| | - Javier Pérez‐Ramírez
- Institute for Chemical and Bioengineering Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| |
Collapse
|
7
|
Zichittella G, Polyhach Y, Tschaggelar R, Jeschke G, Pérez-Ramírez J. Quantification of Redox Sites during Catalytic Propane Oxychlorination by Operando EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:3596-3602. [PMID: 33166088 DOI: 10.1002/anie.202013331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/06/2022]
Abstract
Identification and quantification of redox-active centers at relevant conditions for catalysis is pivotal to understand reaction mechanisms and requires development of advanced operando methods. Herein, we demonstrate operando EPR spectroscopy as an important technique to quantify the oxidation state of representative CrPO4 and EuOCl catalysts during propane oxychlorination, an attractive route for propylene production. In particular, we show that the space-time-yield of C3 H6 correlates with the amount of Cr2+ and Eu2+ ions generated over the catalysts during reaction. These results provide a powerful strategy to gather quantitative understanding of selective alkane oxidation, which could potentially be extrapolated to other functionalization approaches and operating conditions.
Collapse
Affiliation(s)
- Guido Zichittella
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Yevhen Polyhach
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - René Tschaggelar
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| |
Collapse
|
8
|
Jiang X, Sharma L, Fung V, Park SJ, Jones CW, Sumpter BG, Baltrusaitis J, Wu Z. Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03999] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiao Jiang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Lohit Sharma
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Victor Fung
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sang Jae Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jonas Baltrusaitis
- Department of Chemical & Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
Sheng J, Yan B, Lu WD, Qiu B, Gao XQ, Wang D, Lu AH. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chem Soc Rev 2021; 50:1438-1468. [PMID: 33300532 DOI: 10.1039/d0cs01174f] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metal-free boron- and carbon-based catalysts have shown both great fundamental and practical value in oxidative dehydrogenation (ODH) of light alkanes. In particular, boron-based catalysts show a superior selectivity toward olefins, excellent stability and atom-economy to valuable carbon-based products by minimizing CO2 emission, which are highly promising in future industrialization. The carbonaceous catalysts also exhibited impressive behavior in the ODH of light alkanes helped along by surface oxygen-containing functional groups. This review surveyed and compared the preparation methods of the boron- and carbon-based catalysts and their characterization, their performance in the ODH of light alkanes, and the mechanistic issues of the ODH including the identification of the possible active sites and the exploration of the underlying mechanisms. We discussed different boron-based materials and established versatile methodologies for the investigation of active sites and reaction mechanisms. We also elaborated on the similarities and differences in catalytic and kinetic behaviors, and reaction mechanisms between boron- and carbon-based metal-free materials. A perspective of the potential issues of metal-free ODH catalytic systems in terms of their rational design and their synergy with reactor engineering was sketched.
Collapse
Affiliation(s)
- Jian Sheng
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zichittella G, Pérez-Ramírez J. Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. Chem Soc Rev 2021; 50:2984-3012. [DOI: 10.1039/d0cs01506g] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We critically review the recent advances in process, reactor, and catalyst design that enable process miniaturisation for decentralised natural gas upgrading into electricity, liquefied natural gas, fuels and chemicals.
Collapse
Affiliation(s)
- Guido Zichittella
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Javier Pérez-Ramírez
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
11
|
Scharfe M, Zichittella G, Paunović V, Pérez-Ramírez J. Ceria in halogen chemistry. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63528-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zichittella G, Hemberger P, Holzmeier F, Bodi A, Pérez-Ramírez J. Operando Photoelectron Photoion Coincidence Spectroscopy Unravels Mechanistic Fingerprints of Propane Activation by Catalytic Oxyhalogenation. J Phys Chem Lett 2020; 11:856-863. [PMID: 31935108 DOI: 10.1021/acs.jpclett.9b03836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we demonstrate operando photoelectron photoion coincidence (PEPICO) spectroscopy as a pivotal technique for evidencing unprecedented mechanistic insights by isomer-selective radical detection within complex hydrocarbon-functionalization reaction networks, such as those of catalyzed propane oxychlorination and oxybromination. In particular, while the oxychlorination is surface-confined, we show that in oxybromination alkane activation follows a gas-phase reaction mechanism with evolved bromine and bromine radicals, favoring 2-propyl over 1-propyl radical formation, as evidenced by isomer-selective threshold photoelectron analysis. Furthermore, we provide new mechanistic insights into the cracking and coking pathways that are observed in oxybromination. The first entails propargyl radical formation from consecutive hydrogen abstraction of propyl radicals, ultimately yielding benzene. The second originates from C-C bond cleavage in propane to ethyl and methyl radicals, which produce CH4 and C2H4, or undergo chain-growth reactions, forming C4-C6 species.
Collapse
Affiliation(s)
- Guido Zichittella
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland
| | - Patrick Hemberger
- Laboratory of Femtochemistry and Synchrotron Radiation , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Fabian Holzmeier
- Dipartimento di Fisica , Politecnico di Milano , Piazza Leonardo da Vinci 32 , 20133 Milano , Italy
| | - Andras Bodi
- Laboratory of Femtochemistry and Synchrotron Radiation , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zurich , Switzerland
| |
Collapse
|
13
|
Stephens KJ, Zichittella G, Saadun AJ, Büchele S, Puértolas B, Verel R, Krumeich F, Willinger MG, Pérez-Ramírez J. Transformation of titanium carbide into mesoporous titania for catalysed HBr oxidation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00805b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TiC oxidises via a combination of spot-oxidation and shrinking core mechanisms, resulting in a mesoporous, high-performance TiO2–TiC composite for bromine production via catalysed HBr oxidation.
Collapse
Affiliation(s)
- Kyle J. Stephens
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Guido Zichittella
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Ali J. Saadun
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Simon Büchele
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Begoña Puértolas
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - René Verel
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Marc-Georg Willinger
- Scientific Center for Optical and Electron Microscopy
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|