1
|
Ludwig CT, Owolabi IA, Evans LW, Smith GJ, Ramos A, Shepherd JJ, Martin DBC. Wavelength-Selective Reactivity of Iron(III) Halide Salts in Photocatalytic C-H Functionalization. J Org Chem 2025. [PMID: 39993181 DOI: 10.1021/acs.joc.4c03107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The utility of halogen radicals in hydrocarbon functionalization extends from early examples of photochemical halogenation to recent reports using photoredox catalysis with iridium complexes and simple transition metal salts such as FeCl3. The majority of these methods (uncatalyzed and iron-catalyzed) require UV light (λ ≤ 390 nm), and systematic efforts to enable the use of visible light remain valuable. We report the use of a simple Fe(III) salt that enables a C-H to C-C and C-N functionalization under visible light. The reactivity and selectivity profile using different light sources demonstrates wavelength-selective behavior, which was further investigated with deuterium kinetic isotope effect experiments and DFT calculations. These results show that control over the reactive intermediates in this iron-catalyzed reaction can be achieved through proper choice of the wavelength of irradiation.
Collapse
Affiliation(s)
- Cory T Ludwig
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Isiaka A Owolabi
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Logan W Evans
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gabriel J Smith
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Alexander Ramos
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - David B C Martin
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Stini NA, Gkizis PL, Triandafillidi I, Kokotos CG. Photocatalytic CeCl 3-Promoted C-H Alkenylation and Alkynylation of Alkanes. Chemistry 2025; 31:e202404063. [PMID: 39636250 DOI: 10.1002/chem.202404063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
The reemerging field of photoredox catalysis offers numerous advantages towards the development of novel, sustainable and easy-to-execute organic transformations. Herein, we report a light-triggered application of cerium complexes towards the C-H alkenylation and alkynylation of alkanes. An indirect HAT-mediated photocatalytic protocol was developed, using a cerium salt (CeCl3 ⋅ 7H2O) and a chlorine source (TBACl) as the catalytic system. A variety of cyclic and linear hydrocarbons were utilized, delivering the corresponding alkenylation or alkynylation products in good to high yields, displaying high regioselectivity. A series of mechanistic experiments were conducted.
Collapse
Affiliation(s)
- Naya A Stini
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Panepistimiopolis, Athens, Greece
| |
Collapse
|
3
|
Fan H, Fang Y, Yu J. Direct alkene functionalization via photocatalytic hydrogen atom transfer from C(sp 3)-H compounds: a route to pharmaceutically important molecules. Chem Commun (Camb) 2024; 60:13796-13818. [PMID: 39526464 DOI: 10.1039/d4cc05026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct functionalization of alkenes with C(sp3)-H substrates offers unique opportunities for the rapid construction of pharmaceuticals and natural products. Although significant progress has been made over the past decades, the development of green, high step-economy methods to achieve these transformations under mild conditions without the need for pre-functionalization of C(sp3)-H bonds remains a substantial challenge. Therefore, the pursuit of such methodologies is highly desirable. Recently, the direct activation of C(sp3)-H bonds via photocatalytic hydrogen atom transfer (HAT), especially from unactivated alkanes, has shown great promise. Given the potential of this approach to generate a wide range of pharmaceutically relevant compounds, this review highlights the recent advancements in the direct functionalization of alkenes through photocatalytic HAT from C(sp3)-H compounds, as well as their applications in the synthesis and diversification of drugs, natural products, and bioactive molecules, aiming to provide medicinal chemists with a practical set of tools.
Collapse
Affiliation(s)
- Hangqian Fan
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yuxin Fang
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingbo Yu
- Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
4
|
Zachmann AKZ, Drappeau JA, Liu S, Alexanian EJ. C(sp 3)-H (N-Phenyltetrazole)thiolation as an Enabling Tool for Molecular Diversification. Angew Chem Int Ed Engl 2024; 63:e202404879. [PMID: 38657161 PMCID: PMC11795534 DOI: 10.1002/anie.202404879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Methods enabling the broad diversification of C(sp3)-H bonds from a common intermediate are especially valuable in chemical synthesis. Herein, we report a site-selective (N-phenyltetrazole)thiolation of aliphatic and (hetero)benzylic C(sp3)-H bonds using a commercially available disulfide to access N-phenyltetrazole thioethers. The thioether products are readily elaborated in diverse fragment couplings for C-C, C-O, or C-N construction. The C-H functionalization proceeds via a radical-chain pathway involving hydrogen atom transfer by the electron-poor N-phenyltetrazolethiyl radical. Hexafluoroisopropanol was found to be essential to reactions involving aliphatic C(sp3)-H thiolation, with computational analysis consistent with dual hydrogen bonding of the N-phenyltetrazolethiyl radical imparting increased radical electrophilicity to facilitate the hydrogen atom transfer. Substrate is limiting reagent in all cases, and the reaction displays an exceptional functional group tolerance well suited to applications in late-stage diversification.
Collapse
Affiliation(s)
- Ashley K. Z. Zachmann
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Justine A. Drappeau
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Shubin Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA); Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (USA)
| |
Collapse
|
5
|
Dang H, O’Callaghan HT, Wymore MM, Suarez J, Martin DBC. Selective C-H Activation of Molecular Nanodiamonds via Photoredox Catalysis. ACS Catal 2024; 14:4093-4098. [PMID: 38510665 PMCID: PMC10949193 DOI: 10.1021/acscatal.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
While substituted adamantanes have widespread use in medicinal chemistry, materials science, and ligand design, the use of diamantanes and higher diamondoids is limited to a much smaller number. Selective functionalization beyond adamantane is challenging, as the number of very similar types of C-H bonds (secondary, 2°, and tertiary, 3°) increases rapidly, and H atom transfer does not provide a general solution for site selectivity. We report a method using pyrylium photocatalysts that is effective for nanodiamond functionalization in up to 84% yield with exclusive 3° selectivity and moderate levels of regioselectivity between 3° sites. The proposed mechanism involving photooxidation, deprotonation, and radical C-C bond formation is corroborated through Stern-Volmer luminescence quenching, cyclic voltammetry, and EPR studies. Our photoredox strategy offers a versatile approach for the streamlined synthesis of diamondoid building blocks.
Collapse
Affiliation(s)
- Hoang
T. Dang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Henry T. O’Callaghan
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Mikayla M. Wymore
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jennifer Suarez
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - David B. C. Martin
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Rodgers LVH, Nguyen ST, Cox JH, Zervas K, Yuan Z, Sangtawesin S, Stacey A, Jaye C, Weiland C, Pershin A, Gali A, Thomsen L, Meynell SA, Hughes LB, Jayich ACB, Gui X, Cava RJ, Knowles RR, de Leon NP. Diamond surface functionalization via visible light-driven C-H activation for nanoscale quantum sensing. Proc Natl Acad Sci U S A 2024; 121:e2316032121. [PMID: 38451945 PMCID: PMC10945787 DOI: 10.1073/pnas.2316032121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
Nitrogen-vacancy (NV) centers in diamond are a promising platform for nanoscale NMR sensing. Despite significant progress toward using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. Such sensing requires that target molecules are immobilized within nanometers of NV centers with long spin coherence. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light, forming C-F, C-Cl, C-S, and C-N bonds at the surface. This method is compatible with NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof-of-principle demonstration, we use shallow ensembles of NV centers to detect nuclear spins from surface-bound functional groups. Our approach to surface functionalization opens the door to deploying NV centers as a tool for chemical sensing and single-molecule spectroscopy.
Collapse
Affiliation(s)
- Lila V. H. Rodgers
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| | - Suong T. Nguyen
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | - James H. Cox
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | - Kalliope Zervas
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| | - Zhiyang Yuan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| | - Sorawis Sangtawesin
- School of Physics, Suranaree University of Technology, Nakhon Ratchasima30000, Thailand
- Center of Excellence in Advanced Functional Materials, Suranaree University of Technology, Nakhon Ratchasima30000, Thailand
| | - Alastair Stacey
- School of Physics, University of Melbourne, Parkville, VIC3010, Australia
- School of Science, RMIT University, Melbourne, VIC3000, Australia
| | - Cherno Jaye
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Conan Weiland
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899
| | - Anton Pershin
- HUN-REN Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, BudapestH-1525, Hungary
- MTA-WFK Lendület “Momentum” Semiconductor Nanostructures Research Group, BudapestH-1525, Hungary
| | - Adam Gali
- HUN-REN Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, BudapestH-1525, Hungary
- MTA-WFK Lendület “Momentum” Semiconductor Nanostructures Research Group, BudapestH-1525, Hungary
- Department of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, BudapestH-1111, Hungary
| | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, Clayton, VIC3168, Australia
| | - Simon A. Meynell
- Physics Department, University of California, Santa Barbara, CA93106
| | - Lillian B. Hughes
- Materials Department, University of California, Santa Barbara, CA93106
| | | | - Xin Gui
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | - Robert J. Cava
- Department of Chemistry, Princeton University, Princeton, NJ08540
| | | | - Nathalie P. de Leon
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ08540
| |
Collapse
|
7
|
Yi L, Zhu C, Chen X, Yue H, Ji T, Ma Y, Cao Y, Kancherla R, Rueping M. O-H bond activation of β,γ-unsaturated oximes via hydrogen atom transfer (HAT) and photoredox dual catalysis. Chem Sci 2023; 14:14271-14279. [PMID: 38098711 PMCID: PMC10718179 DOI: 10.1039/d3sc04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Hydrogen atom transfer (HAT) and photoredox dual catalysis provides a unique opportunity in organic synthesis, enabling the direct activation of C/Si/S-H bonds. However, the activation of O-H bonds of β,γ-unsaturated oximes poses a challenge due to their relatively high redox potential, which exceeds the oxidizing capacity of most currently developed photocatalysts. We here demonstrate that the combination of HAT and photoredox catalysis allows the activation of O-H bond of β,γ-unsaturated oximes. The strategy effectively addresses the oxime's high redox potential and offers a universal pathway for iminoxyl radical formation. Leveraging the versatility of this approach, a diverse array of valuable heterocycles have been synthesized with the use of different radical acceptors. Mechanistic studies confirm a HAT process for the O-H bond activation.
Collapse
Affiliation(s)
- Liang Yi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiangyu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Yiqiao Ma
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Yuanyuan Cao
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
8
|
Zhong PF, Tu JL, Zhao Y, Zhong N, Yang C, Guo L, Xia W. Photoelectrochemical oxidative C(sp 3)-H borylation of unactivated hydrocarbons. Nat Commun 2023; 14:6530. [PMID: 37845202 PMCID: PMC10579347 DOI: 10.1038/s41467-023-42264-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Organoboron compounds are of high significance in organic synthesis due to the unique versatility of boryl substituents to access further modifications. The high demand for the incorporation of boryl moieties into molecular structures has witnessed significant progress, particularly in the C(sp3)-H borylation of hydrocarbons. Taking advantage of special characteristics of photo/electrochemistry, we herein describe the development of an oxidative C(sp3)-H borylation reaction under metal- and oxidant-free conditions, enabled by photoelectrochemical strategy. The reaction exhibits broad substrate scope (>57 examples), and includes the use of simple alkanes, halides, silanes, ketones, esters and nitriles as viable substrates. Notably, unconventional regioselectivity of C(sp3)-H borylation is achieved, with the coupling site of C(sp3)-H borylation selectively located in the distal methyl group. Our method is operationally simple and easily scalable, and offers a feasible approach for the one-step synthesis of high-value organoboron building blocks from simple hydrocarbons, which would provide ample opportunities for drug discovery.
Collapse
Affiliation(s)
- Ping-Fu Zhong
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Nan Zhong
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
9
|
Zhang G, Zhang Y, Li P, Zhou C, Wang M, Wang L. Metal-Free Synthesis of 2 H-Indazole Skeletons by Photochemistry or Thermochemistry. J Org Chem 2023; 88:12341-12356. [PMID: 37582245 DOI: 10.1021/acs.joc.3c01091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A simple and tuned synthesis of a 2H-indazole skeleton under metal-free conditions was developed. Under visible-light irradiation at room temperature, 2-((aryl/alkyl/H)ethynyl))aryltriazenes reacted with arylsulfinic acids to afford 3-functionalized 2H-indazoles without extra photocatalyst via an electron donor-acceptor complex. In the presence of arylsulfinic acid, 2-(ethynyl)aryltriazenes underwent an intramolecular oxidation/cyclization to provide 2H-indazole-3-carbaldehydes at 50 °C in air.
Collapse
Affiliation(s)
- Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Min Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Scienes, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
11
|
Chang L, Wang S, An Q, Liu L, Wang H, Li Y, Feng K, Zuo Z. Resurgence and advancement of photochemical hydrogen atom transfer processes in selective alkane functionalizations. Chem Sci 2023; 14:6841-6859. [PMID: 37389263 PMCID: PMC10306100 DOI: 10.1039/d3sc01118f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 07/01/2023] Open
Abstract
The selective functionalization of alkanes has long been recognized as a prominent challenge and an arduous task in organic synthesis. Hydrogen atom transfer (HAT) processes enable the direct generation of reactive alkyl radicals from feedstock alkanes and have been successfully employed in industrial applications such as the methane chlorination process, etc. Nevertheless, challenges in the regulation of radical generation and reaction pathways have created substantial obstacles in the development of diversified alkane functionalizations. In recent years, the application of photoredox catalysis has provided exciting opportunities for alkane C-H functionalization under extremely mild conditions to trigger HAT processes and achieve radical-mediated functionalizations in a more selective manner. Considerable efforts have been devoted to building more efficient and cost-effective photocatalytic systems for sustainable transformations. In this perspective, we highlight the recent development of photocatalytic systems and provide our views on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Liang Chang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Linxuan Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yubo Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Kaixuan Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
12
|
Tkachenko IM, Shiryaev VA, Klimochkin YN. Towards a qualitative understanding of the carbonyl reactivity of α-substituted ethyl 5-oxohomoadamantyl-4-carboxylates. Org Biomol Chem 2023. [PMID: 37377423 DOI: 10.1039/d3ob00777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Substituted ethyl 5-oxohomoadamantane-4-carboxylates were subjected to reactions with several nucleophiles to establish some aspects of the carbonyl reactivity. However, only one example of the desired Claisen retro-reaction was observed as 3,7-disubstituted bicyclo[3.3.1]nonane formation. Most of the reactions yielded α-substituted homoadamantan-5-ones or some products of their further transformations. Reductive amination of substituted homoadamantane-5-ones gave several homoadamantane-fused nitrogen heterocycles, which could be considered as GABA- and/or ∂-aminovaleric acid analogues. Reduction products of several substituted ketones were observed as single products when treated with organomagnesium reagents. These deviations from the general chemical reactivity patterns are associated with steric factors and the geometry of the cage unit and could be a particular case, which is reflecting the overall specificity of the chemistry of cage carbonyl compounds.
Collapse
Affiliation(s)
- Ilya M Tkachenko
- Samara State Technical University, 244, Molodogvardeyskaya st, Samara, 443100, Russian Federation.
| | - Vadim A Shiryaev
- Samara State Technical University, 244, Molodogvardeyskaya st, Samara, 443100, Russian Federation.
| | - Yuri N Klimochkin
- Samara State Technical University, 244, Molodogvardeyskaya st, Samara, 443100, Russian Federation.
| |
Collapse
|
13
|
Tu JL, Hu AM, Guo L, Xia W. Iron-Catalyzed C(Sp 3)-H Borylation, Thiolation, and Sulfinylation Enabled by Photoinduced Ligand-to-Metal Charge Transfer. J Am Chem Soc 2023; 145:7600-7611. [PMID: 36958308 DOI: 10.1021/jacs.3c01082] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Catalytic C(sp3)-H functionalization has provided enormous opportunities to construct organic molecules, facilitating the derivatization of complex pharmaceutical compounds. Within this framework, direct hydrogen atom transfer (HAT) photocatalysis becomes an appealing approach to this goal. However, the viable substrates utilized in these protocols are limited, and the site selectivity shows preference to activated and thermodynamically favored C(sp3)-H bonds. Herein, we describe the development of undirected iron-catalyzed C(sp3)-H borylation, thiolation, and sulfinylation reactions enabled by the photoinduced ligand-to-metal charge transfer (LMCT) process. These reactions exhibit remarkably broad substrate scope (>150 examples in total), and most importantly, all of these three reactions show unconventional regioselectivity, with the occurrence of C(sp3)-H borylation, thiolation, and sulfinylation preferentially at the distal methyl position. The procedures are operationally simple and readily scalable and provide access to high-value products from simple hydrocarbons in one step. Mechanistic studies and control experiments indicate that the afforded site selectivity is not only relevant to the HAT species but also largely affected by the use of boron- and sulfone-based radical acceptors.
Collapse
Affiliation(s)
- Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
14
|
Chen Y, Yang B, Li QY, Lin YM, Gong L. Selectfluor®-enabled photochemical selective C(sp 3)-H(sulfonyl)amidation. Chem Commun (Camb) 2022; 59:118-121. [PMID: 36477311 DOI: 10.1039/d2cc05569d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transition metal- and photosensitizer-free C(sp3)-H (sulfonyl)amidation reactions have been realized by employing Selectfluor® as a versatile reagent, functioning as a photoactive component, a HAT precursor and an oxidant. Various toluene derivatives, cycloalkanes, natural products and bioactive molecules can be converted into N-containing products under mild conditions in good yield and with high chemo- and site-selectivity.
Collapse
Affiliation(s)
- Yuehua Chen
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Boxuan Yang
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. .,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
15
|
Reznikov AN, Ashatkina MA, Yu. Vostruhina S, Klimochkin YN. Reductive Heck cyclization of cage containing compounds: convenient access to adamantyl-substituted indolines and spiro-homoadamantane-oxindole. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
17
|
Vorobjov F, De Smet G, Daems N, Vincent Ching H, Leveque P, Maes BU, Breugelmans T. Electrochemical quinuclidine-mediated C-H activation: intermediates and mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
19
|
Schlegel M, Qian S, Nicewicz DA. Aliphatic C-H Functionalization Using Pyridine N-Oxides as H-Atom Abstraction Agents. ACS Catal 2022; 12:10499-10505. [PMID: 37727583 PMCID: PMC10508875 DOI: 10.1021/acscatal.2c02997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation and heteroarylation of unactivated tertiary, secondary, and primary C(sp3)-H bonds was achieved by employing an acridinium photoredox catalyst along with readily available pyridine Noxides as hydrogen atom transfer (HAT) precursors under visible light. Oxygen-centered radicals, generated by single-electron oxidation of the Noxides, are the proposed key intermediates whose reactivity can be easily modified by structural adjustments. A broad range of aliphatic C-H substrates with electron-donating or -withdrawing groups as well as various olefinic radical acceptors and heteroarenes were well tolerated.
Collapse
Affiliation(s)
- Marcel Schlegel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Siran Qian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
20
|
Wang B, Ascenzi Pettenuzzo C, Singh J, Mccabe GE, Clark L, Young R, Pu J, Deng Y. Photoinduced Site-Selective Functionalization of Aliphatic C–H Bonds by Pyridine N-oxide Based HAT Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Cristina Ascenzi Pettenuzzo
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Gavin E. Mccabe
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Logan Clark
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Ryan Young
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
21
|
Fuse H, Irie Y, Fuki M, Kobori Y, Kato K, Yamakata A, Higashi M, Mitsunuma H, Kanai M. Identification of a Self-Photosensitizing Hydrogen Atom Transfer Organocatalyst System. J Am Chem Soc 2022; 144:6566-6574. [PMID: 35357152 DOI: 10.1021/jacs.2c01705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We developed organocatalyst systems to promote the cleavage of stable C-H bonds, such as formyl, α-hydroxy, and benzylic C-H bonds, through a hydrogen atom transfer (HAT) process without the use of exogenous photosensitizers. An electronically tuned thiophosphoric acid, 7,7'-OMe-TPA, was assembled with substrate or co-catalyst N-heteroaromatics through hydrogen bonding and π-π interactions to form electron donor-acceptor (EDA) complexes. Photoirradiation of the EDA complex induced stepwise, sequential single-electron transfer (SET) processes to generate a HAT-active thiyl radical. The first SET was from the electron-rich naphthyl group of 7,7'-OMe-TPA to the protonated N-heteroaromatics and the second proton-coupled SET (PCET) from the thiophosphoric acid moiety of 7,7'-OMe-TPA to the resulting naphthyl radical cation. Spectroscopic studies and theoretical calculations characterized the stepwise SET process mediated by short-lived intermediates. This organocatalytic HAT system was applied to four different carbon-hydrogen (C-H) functionalization reactions, hydroxyalkylation and alkylation of N-heteroaromatics, acceptorless dehydrogenation of alcohols, and benzylation of imines, with high functional group tolerance.
Collapse
Affiliation(s)
- Hiromu Fuse
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yu Irie
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Fuki
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan.,Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kosaku Kato
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Akira Yamakata
- Graduate School of Engineering, Toyota Technological Institute, Nagoya 468-8511, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Pan A, Chojnacka M, Crowley R, Göttemann L, Haines BE, Kou KGM. Synergistic Brønsted/Lewis acid catalyzed aromatic alkylation with unactivated tertiary alcohols or di- tert-butylperoxide to synthesize quaternary carbon centers. Chem Sci 2022; 13:3539-3548. [PMID: 35432882 PMCID: PMC8943850 DOI: 10.1039/d1sc06422c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Dual Brønsted/Lewis acid catalysis involving environmentally benign, readily accessible protic acid and iron promotes site-selective tert-butylation of electron-rich arenes using di-tert-butylperoxide. This transformation inspired the development of a synergistic Brønsted/Lewis acid catalyzed aromatic alkylation that fills a gap in the Friedel-Crafts reaction literature by employing unactivated tertiary alcohols as alkylating agents, leading to new quaternary carbon centers. Corroborated by DFT calculations, the Lewis acid serves a role in enhancing the acidity of the Brønsted acid. The use of non-allylic, non-benzylic, and non-propargylic tertiary alcohols represents an underexplored area in Friedel-Crafts reactivity.
Collapse
Affiliation(s)
- Aaron Pan
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Maja Chojnacka
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Robert Crowley
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Lucas Göttemann
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Brandon E Haines
- Department of Chemistry, Westmont College 955 La Paz Road Santa Barbara CA 93108 USA
| | - Kevin G M Kou
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| |
Collapse
|
23
|
Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts 2022. [DOI: 10.3390/catal12030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrochemical synthesis has been rapidly developing over the past few years. Here, we report a practical and eco-friendly electrocatalytic isomerization of allylic alcohols to their corresponding carbonyl compounds. This reaction can be carried out in undivided cells without the addition of external chemical oxidants and metal catalysts. Moreover, this reaction features a broad substrate scope including challenging allylic alcohols bearing tri- and tetra-substituted olefins and affords straightforward access to diverse β-aryl-ketones. Mechanistic investigations suggest that the reactions proceed through a radical process. This study represents a unique example in which electrochemistry enables hydrogen atom transfer in organic allylic alcohol substrates using a simple organocatalyst.
Collapse
|
24
|
Juneau A, Hope TO, Malenfant J, Mesko M, McNeill J, Frenette M. Methods to Predict Potential Reagents in Iridium-Based Photoredox Catalysis Calibrated with Stern–Volmer Quenching Rate Constants. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Antoine Juneau
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Taylor O. Hope
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Jason Malenfant
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Mihai Mesko
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Jacob McNeill
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| | - Mathieu Frenette
- Department of Chemistry and NanoQAM, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-Ville, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
25
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
26
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Maia da Silva Santos B, Dos Santos Dupim M, Paula de Souza C, Messias Cardozo T, Gadini Finelli F. DABCO-promoted photocatalytic C-H functionalization of aldehydes. Beilstein J Org Chem 2022; 17:2959-2967. [PMID: 35003372 PMCID: PMC8712972 DOI: 10.3762/bjoc.17.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Herein we present a direct application of DABCO, an inexpensive and broadly accessible organic base, as a hydrogen atom transfer (HAT) abstractor in a photocatalytic strategy for aldehyde C–H activation. The acyl radicals generated in this step were arylated with aryl bromides through a well stablished nickel cross-coupling methodology, leading to a variety of interesting aryl ketones in good yields. We also performed computational calculations to shine light in the HAT step energetics and determined an optimized geometry for the transition state, showing that the hydrogen atom transfer between aldehydes and DABCO is a mildly endergonic, yet sufficiently fast step. The same calculations were performed with quinuclidine, for comparison of both catalysts and the differences are discussed.
Collapse
Affiliation(s)
- Bruno Maia da Silva Santos
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Mariana Dos Santos Dupim
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| | - Cauê Paula de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Thiago Messias Cardozo
- Instituto de Química, Universidade Federal do Rio de Janeiro 149, Athos da Silveira Ramos Ave, Rio de Janeiro RJ, 21941-909, Brazil
| | - Fernanda Gadini Finelli
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 373, Carlos Chagas Ave, Rio de Janeiro RJ, 21941-902, Brazil
| |
Collapse
|
28
|
Li LH, Wei HZ, Wei Y, Shi M. The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chem Sci 2022; 13:1478-1483. [PMID: 35222932 PMCID: PMC8809420 DOI: 10.1039/d1sc06784b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.
Collapse
Affiliation(s)
- Long-Hai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hao-Zhao Wei
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
29
|
Weigel WK, Dang HT, Feceu A, Martin DBC. Direct radical functionalization methods to access substituted adamantanes and diamondoids. Org Biomol Chem 2021; 20:10-36. [PMID: 34651636 DOI: 10.1039/d1ob01916c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adamantane derivatives have diverse applications in the fields of medicinal chemistry, catalyst development and nanomaterials, owing to their unique structural, biological and stimulus-responsive properties, among others. The synthesis of substituted adamantanes and substituted higher diamondoids is frequently achieved via carbocation or radical intermediates that have unique stability and reactivity when compared to simple hydrocarbon derivatives. In this review, we discuss the wide range of radical-based functionalization reactions that directly convert diamondoid C-H bonds to C-C bonds, providing a variety of products incorporating diverse functional groups (alkenes, alkynes, arenes, carbonyl groups, etc.). Recent advances in the area of selective C-H functionalization are highlighted with an emphasis on the H-atom abstracting species and their ability to activate the particularly strong C-H bonds that are characteristic of these caged hydrocarbons, providing insights that can be applied to the C-H functionalization of other substrate classes.
Collapse
Affiliation(s)
- William K Weigel
- Chemistry, University of Iowa, Iow City, Iowa, USA.,University of California Riverside, Riverside, California, USA.
| | - Hoang T Dang
- Chemistry, University of Iowa, Iow City, Iowa, USA
| | - Abigail Feceu
- University of California Riverside, Riverside, California, USA.
| | | |
Collapse
|
30
|
Lefebvre C, Van Gysel T, Michelin C, Rousset E, Djiré D, Allais F, Hoffmann N. Photocatalytic Radical Addition to Levoglucosenone. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| | - Terence Van Gysel
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| | - Clément Michelin
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
- Clermont Auvergne INP, ICCF Université Clermont Auvergne, CNRS 63000 Clermont-Ferrand France
| | - Elodie Rousset
- ICMR, Groupe chimie de coordination CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| | - Djibril Djiré
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
- URD Agro-Biotechnologies Industrielles (ABI) CEBB AgroParisTech 51110 Pomacle France
| | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI) CEBB AgroParisTech 51110 Pomacle France
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS Université de Reims Champagne-Ardenne UFR Sciences B.P. 1039 51687 Reims France
| |
Collapse
|
31
|
Ye Z, Lin Y, Gong L. The Merger of Photocatalyzed Hydrogen Atom Transfer with Transition Metal Catalysis for C−H Functionalization of Alkanes and Cycloalkanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Yu‐Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province iChEM College of Chemistry and Chemical Engineering Xiamen University Xiamen, Fujian 361005 China
| |
Collapse
|
32
|
Simonetti SO, Kaufman TS, Rasia RM, Sarotti AM, Grimblat N. Thermal decomposition of hexamethylenetetramine: mechanistic study and identification of reaction intermediates via a computational and NMR approach. Org Biomol Chem 2021; 19:7374-7378. [PMID: 34612361 DOI: 10.1039/d1ob01522b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a joint DFT and chemometrics study applied to NMR spectra, we disclose the structure of the main decomposition products of hexamethylenetetramine. The combination of these techniques enabled us to propose the structures of near-identical intermediates of the process and to unveil the structure of the main decomposition product of this priviliged structure.
Collapse
Affiliation(s)
- Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531, (2000) Rosario, Argentina.
| | | | | | | | | |
Collapse
|
33
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 410] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
34
|
|
35
|
Bell JD, Murphy JA. Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chem Soc Rev 2021; 50:9540-9685. [PMID: 34309610 DOI: 10.1039/d1cs00311a] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Photoredox chemistry with organic or transition metal agents has been reviewed in earlier years, but such is the pace of progress that we will overlap very little with earlier comprehensive reviews. This review first presents an overview of the area of research and then examines recent examples of C-C, C-N, C-O and C-S bond formations via radical intermediates with transition metal and organic radical promoters. Recent successes with Birch reductions are also included. The transition metal chemistry will be restricted to photocatalysts based on the most widely used metals, Ru and Ir, but includes coupling chemistries that take advantage of low-valent nickel, or occasionally copper, complexes to process the radicals that are formed. Our focus is on developments in the past 10 years (2011-2021). This period has also seen great advances in the chemistry of organic photoredox reagents and the review covers this area. The review is intended to present highlights and is not comprehensive.
Collapse
Affiliation(s)
- Jonathan D Bell
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK.
| | | |
Collapse
|
36
|
Wu Z, Pratt DA. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. Angew Chem Int Ed Engl 2021; 60:15598-15605. [PMID: 33929774 DOI: 10.1002/anie.202104595] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of carboxylic acids into disulfides is described. The approach employs oxidative photocatalysis for base-promoted decarboxylation of the substrate, which yields an alkyl radical that reacts with a trisulfide dioxide through homolytic substitution. The trisulfide dioxides are easily prepared by a newly described approach. 1°, 2°, and 3° carboxylic acids with varied substitution are good substrates, including amino acids and substrates with highly activated C-H bonds. Trisulfide dioxides are also used to achieve the γ-C(sp3 )-H disulfuration of amides through a radical relay sequence. In both reactions, the sulfonyl radical that results from substitution propagates the reaction. Factors governing the selectivity of substitution at S2 versus S3 of the trisulfide dioxides have been explored.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
37
|
Radical philicity and its role in selective organic transformations. Nat Rev Chem 2021; 5:486-499. [PMID: 37118440 DOI: 10.1038/s41570-021-00284-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Radical intermediates in organic chemistry lack a full octet of electrons and, thus, are commonly said to be electron deficient. By denotation, such a statement is technically correct; however, in modern literature, the term 'electron deficient' carries a connotation of electrophilicity. This lexical quirk leads one to predict that all radicals should behave as electrophiles, when this is not the case. Indeed, practitioners of radical chemistry have known for decades that many radicals behave as nucleophiles, sometimes strongly so. This Review aims to establish guidelines for understanding radical philicity by highlighting examples from recent literature as a demonstration of general reactivity paradigms across a series of different carbon-based and heteroatom-based radicals. We present strategies for predicting the philicity of a given radical on the basis of qualitative features of the radical's structure. Finally, we discuss the implications of radical philicity to selective hydrogen atom transfer.
Collapse
|
38
|
Wang Z, Zeng L, He C, Duan C. Photocatalytic C-H Activation with Alcohol as a Hydrogen Atom Transfer Agent in a 9-Fluorenone Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25898-25905. [PMID: 34043310 DOI: 10.1021/acsami.1c03098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogen atom transfer (HAT) has become an attractive strategy for the activation of hydrocarbon feedstocks. Alcohols, as inexpensive and efficient hydrogen transfer reagents, have limited application in C-H functionalization due to the difficulty in the alkoxy radical acquisition. 9-Fluorenone moieties were incorporated into the metal-organic framework (MOF) as a photocatalyst; through the formation of hydrogen bonds between the carbonyl group of a ligand and alcohol, alkoxy radicals could be obtained by the visible-light-driven oxidation of 2,2,2-trichloroethanol via proton-coupled electron transfer (PCET). Effectively photocatalyzed intermolecular coupling reactions between phenyl vinyl sulfone and aldehyde or cyclic ether were realized through the HAT pathway. Compared to homogeneous catalysts, the heterogeneous MOF photocatalyst improved the catalytic efficiency and could be recycled at least five times. The microenvironment of the Zn-OFDC channel was beneficial for the formation of hydrogen bonds and stability of alkoxy radicals.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
39
|
Wu Z, Pratt DA. A Divergent Strategy for Site‐Selective Radical Disulfuration of Carboxylic Acids with Trisulfide‐1,1‐Dioxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
40
|
Xiao W, Wang X, Liu R, Wu J. Quinuclidine and its derivatives as hydrogen-atom-transfer catalysts in photoinduced reactions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Singh S, Dagar N, Raha Roy S. Direct functionalization of quinoxalin-2(1H)-one with alkanes: C(sp 2)-H/C(sp 3)-H cross coupling in transition metal-free mode. Org Biomol Chem 2021; 19:5383-5394. [PMID: 34047750 DOI: 10.1039/d1ob00665g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering the significance of pharmaceutically important heterocycles, efficient and highly versatile protocols for the functionalization of diverse heterocycles with easily accessible feedstock are crucial. Here, we have reported selective alkylation of quinoxalin-2(1H)-one with a broad class of hydrocarbons having different C(sp3)-H bonds with varying bond strengths using di-tert-butyl peroxide (DTBP) as an alkoxyl radical mediator for hydrogen atom transfer (HAT). This dehydrogenative coupling approach utilizes feedstock chemicals such as cycloalkanes, cyclic ethers and alkyl arenes as coupling partners. This protocol exhibits good functional group compatibility and selectivity regarding both heterocycles and unactivated alkanes. Moreover, this methodology allows functionalization of relatively strong C-H bonds of adamantane and exclusive selectivity towards 3° C(sp3)-H bonds is observed. We also illustrate the applicability of this C(sp2)-H/C(sp3)-H cross-coupling for practical access to bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
42
|
Photocatalytic three-component asymmetric sulfonylation via direct C(sp 3)-H functionalization. Nat Commun 2021; 12:2377. [PMID: 33888721 PMCID: PMC8062459 DOI: 10.1038/s41467-021-22690-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/25/2021] [Indexed: 01/27/2023] Open
Abstract
The direct and selective C(sp3)-H functionalization of cycloalkanes and alkanes is a highly useful process in organic synthesis owing to the low-cost starting materials, the high step and atom economy. Its application to asymmetric catalysis, however, has been scarcely explored. Herein, we disclose our effort toward this goal by incorporation of dual asymmetric photocatalysis by a chiral nickel catalyst and a commercially available organophotocatalyst with a radical relay strategy through sulfur dioxide insertion. Such design leads to the development of three-component asymmetric sulfonylation involving direct functionalization of cycloalkanes, alkanes, toluene derivatives or ethers. The photochemical reaction of a C(sp3)-H precursor, a SO2 surrogate and a common α,β-unsaturated carbonyl compound proceeds smoothly under mild conditions, delivering a wide range of biologically interesting α-C chiral sulfones with high regio- and enantioselectivity (>50 examples, up to >50:1 rr and 95% ee). This method is applicable to late-stage functionalization of bioactive molecules, and provides an appealing access to enantioenriched compounds starting from the abundant hydrocarbon compounds.
Collapse
|
43
|
McMillan AJ, Sieńkowska M, Di Lorenzo P, Gransbury GK, Chilton NF, Salamone M, Ruffoni A, Bietti M, Leonori D. Practical and Selective sp 3 C-H Bond Chlorination via Aminium Radicals. Angew Chem Int Ed Engl 2021; 60:7132-7139. [PMID: 33458924 PMCID: PMC8048631 DOI: 10.1002/anie.202100030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Indexed: 12/12/2022]
Abstract
The introduction of chlorine atoms into organic molecules is fundamental to the manufacture of industrial chemicals, the elaboration of advanced synthetic intermediates and also the fine-tuning of physicochemical and biological properties of drugs, agrochemicals and polymers. We report here a general and practical photochemical strategy enabling the site-selective chlorination of sp3 C-H bonds. This process exploits the ability of protonated N-chloroamines to serve as aminium radical precursors and also radical chlorinating agents. Upon photochemical initiation, an efficient radical-chain propagation is established allowing the functionalization of a broad range of substrates due to the large number of compatible functionalities. The ability to synergistically maximize both polar and steric effects in the H-atom transfer transition state through appropriate selection of the aminium radical has provided the highest known selectivity in radical sp3 C-H chlorination.
Collapse
Affiliation(s)
| | - Martyna Sieńkowska
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Piero Di Lorenzo
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gemma K. Gransbury
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Nicholas F. Chilton
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata”Via della Ricerca Scientifica00133RomeItaly
| | - Alessandro Ruffoni
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata”Via della Ricerca Scientifica00133RomeItaly
| | - Daniele Leonori
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
44
|
McMillan AJ, Sieńkowska M, Di Lorenzo P, Gransbury GK, Chilton NF, Salamone M, Ruffoni A, Bietti M, Leonori D. Practical and Selective sp
3
C−H Bond Chlorination via Aminium Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alastair J. McMillan
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martyna Sieńkowska
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Piero Di Lorenzo
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gemma K. Gransbury
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F. Chilton
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandro Ruffoni
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniele Leonori
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
45
|
Lee W, Jung S, Kim M, Hong S. Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. J Am Chem Soc 2021; 143:3003-3012. [DOI: 10.1021/jacs.1c00549] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
46
|
Aly AA, Hassan AA, Makhlouf MM, Alshammari MB, Mohamed Naguib Abdel Hafez S, Refaie MMM, Bräse S, Nieger M, Ramadan M. Design and synthesis of hydrazinecarbothioamide sulfones as potential antihyperglycemic agents. Arch Pharm (Weinheim) 2021; 354:e2000336. [PMID: 33410162 DOI: 10.1002/ardp.202000336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
New hydrazinecarbothioamides with a phenylsulfonyl group were synthesized and their structures were identified by different spectroscopic data (1 H NMR, 13 C NMR, two-dimensional NMR, mass spectrometry, elemental analysis, and single-crystal X-ray analysis). The mechanism describing the formation of the products was also discussed. The antidiabetic activity of the isolated products was investigated histochemically. The synthesized sulfonylalkylthiosemicarbazide exhibited antihyperglycemic activity in streptozotocin-induced diabetic mice. Compounds 5a and 5c significantly lowered the blood glucose level to 103.3 ± 1.8 and 102 ± 3.9 mg/dl, respectively. Also, they caused a significant decrease in malondialdehyde levels and normalized the glutathione levels in streptozotocin-induced diabetic mice, compared with the diabetic group. The results suggest that the synthesized hydrazinocarbothioamides may effectively inhibit the development of oxidative stress in diabetes.
Collapse
Affiliation(s)
- Ashraf A Aly
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, Egypt
| | - Alaa A Hassan
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, Egypt
| | - Maysa M Makhlouf
- Department of Chemistry, Faculty of Science, Minia University, El-Minia, Egypt
| | - Mohammed B Alshammari
- Prince Sattam bin Abdulaziz Department of Chemistry, College of Sciences and Humanities, Alkharj, Saudi Arabia
| | | | - Marwa M M Refaie
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, Helsinki 00014, Helsinki, A. I. Virtasen aukio I, Finland
| | - Mohamed Ramadan
- Department of Pharmaceutical Organic Chemistry, Faculty Pharmacy, Al-Azahr University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
47
|
Zhao ZW, Dong YJ, Geng Y, Li RH, Guan W, Su ZM. Superiority of Iridium Photocatalyst and Role of Quinuclidine in Selective α-C(sp 3)-H Alkylation: Theoretical Insights. J Org Chem 2021; 86:484-492. [PMID: 33295780 DOI: 10.1021/acs.joc.0c02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent experimental work reported that visible-light photoredox catalysis coupled with primary sulfonamides and electron-deficient alkenes could efficiently construct C-C bonds at the α-position of primary amine derivatives under mild conditions. Here, a systematic study was conducted to explore the non-negligible excited-state single-electron-transfer (SET) processes and the catalytic cycle. Hydrogen atom transfer (HAT) catalysis containing different site-selective functionalization, involved as a critical process during the reaction, was computationally characterized. The superiorities of iridium-based photoredox catalysts in terms of photoabsorption properties, phosphorescence rates, and electron-transfer rates for SET processes were focused on. In addition, the function of quinuclidine in the entire photocatalytic reaction was also probed. These intrinsic properties and detailed insights into the mechanism are supposed to be helpful to the understanding of the C-C bond functionalization reaction and the future application of the iridium-based photoredox catalyst.
Collapse
Affiliation(s)
- Zhi-Wen Zhao
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yu-Jiao Dong
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Run-Han Li
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, P. R. China.,School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China
| |
Collapse
|
48
|
Ma ZY, Li M, Guo LN, Liu L, Wang D, Duan XH. Sulfonamide as Photoinduced Hydrogen-Atom Transfer Catalyst for Regioselective Alkylation of C(sp 3)-H Bonds Adjacent to Heteroatoms. Org Lett 2020; 23:474-479. [PMID: 33373258 DOI: 10.1021/acs.orglett.0c03992] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Based on the DFT calculations, the sulfonamide was explored as an efficient hydrogen-atom transfer catalyst for the C(sp3)-H alkylation. The combination of a metal-free photoredox catalyst and a sulfonamide catalyst enables highly regioselective alkylation of the C-H bonds adjacent to heteroatoms, which features broad substrate scope and excellent functional group compatibility. Remarkably, the sulfonamide catalyst was also applicable to the C(sp3)-C(sp3) couplings through the merger of photoredox, nickel, and HAT catalysis.
Collapse
Affiliation(s)
- Zhi-Yong Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Mengyang Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Dongdong Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, P.R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
49
|
Panferova LI, Zubkov MO, Kokorekin VA, Levin VV, Dilman AD. Using the Thiyl Radical for Aliphatic Hydrogen-Atom Transfer: Thiolation of Unactivated C-H Bonds. Angew Chem Int Ed Engl 2020; 60:2849-2854. [PMID: 33146419 DOI: 10.1002/anie.202011400] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Indexed: 12/18/2022]
Abstract
A metal- and catalyst-free thiyl-radical-mediated activation of alkanes is described. Tetrafluoropyridinyl disulfide is used to perform thiolation of the C-H bonds under irradiation with 400 nm light-emitting diodes. The key C-H activation step is believed to proceed via hydrogen-atom abstraction effected by the fluorinated thiyl radical. Secondary, tertiary, and heteroatom-substituted C-H bonds can be involved in the thiolation reaction. The resulting sulfides have wide potential as photoredox-active radical precursors in reactions with alkenes and heteroarenes.
Collapse
Affiliation(s)
- Liubov I Panferova
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Vladimir A Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| |
Collapse
|
50
|
Panferova LI, Zubkov MO, Kokorekin VA, Levin VV, Dilman AD. Using the Thiyl Radical for Aliphatic Hydrogen‐Atom Transfer: Thiolation of Unactivated C−H Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liubov I. Panferova
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O. Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Vladimir A. Kokorekin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Vitalij V. Levin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| | - Alexander D. Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|