1
|
Liu L, Shi Y, Rong J, Wang Q, Zhong M. Adsorption Property and Morphology Evolution of C Deposited on HCP Co Nanoparticles. Molecules 2024; 29:4760. [PMID: 39407687 PMCID: PMC11478246 DOI: 10.3390/molecules29194760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Despite extensive studies of deposited carbon in Fischer-Tropsch synthesis (FTS), an atomic-level comprehension of the effect of carbon on the morphology of cobalt-based FTS catalysts remains elusive. The adsorption configurations of carbon atoms on different crystal facets of hexagonal close-packed (hcp) Co nanoparticles were studied using density functional theory (DFT) calculations to explore the interaction mechanism between C and Co surfaces. The weaker adsorption strength of C atoms on Co(0001), Co(10-10), and Co(11-20) surfaces accounted for lower diffusion energy, leading to the facile formation of C dimers. Electronic property analysis shows that more electrons are transferred from Co surfaces to C atoms on corrugated facets than on flat facets. The deposition of carbon atoms on Co nanoparticles affects surface energy by forming strong Co-C bonds, which causes the system to reach a more energetically favorable morphology with an increased proportion of exposed Co(10-12) and Co(11-20) areas as the carbon content increases slightly. This transformation in morphology implies that C deposition plays a crucial role in determining the facet proportion and stability of exposed Co surfaces, contributing to the optimization of cobalt-based catalysts with improved performance.
Collapse
Affiliation(s)
- Lili Liu
- School of Semiconductor and Physics, North University of China, Taiyuan 030051, China; (Y.S.); (J.R.)
| | - Yujia Shi
- School of Semiconductor and Physics, North University of China, Taiyuan 030051, China; (Y.S.); (J.R.)
| | - Jiamin Rong
- School of Semiconductor and Physics, North University of China, Taiyuan 030051, China; (Y.S.); (J.R.)
| | - Qiang Wang
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
| | - Min Zhong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China;
| |
Collapse
|
2
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Golder KM, Wintterlin J. In Situ/Operando STM of the Fischer–Tropsch Synthesis on a Co(101̅15) Surface─A Study to Bridge the Materials Gap between Single-Crystal Models and Supported Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katharina M. Golder
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Joost Wintterlin
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for NanoScience, Schellingstr. 4, 80799 Munich, Germany
| |
Collapse
|
4
|
Tamura T, Ohyama J, Sawabe K, Satsuma A. Enhanced CO oxidation by reversible structural variation of supported Ag nanoparticle catalyst from single to twin by CO treatment. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
CO adsorption on Co(0001) revisited: high-coverage CO superstructures on the close-packed surface of cobalt. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yue S, Shen Y, Deng Z, Yuan W, Xi W. Coalescence and shape oscillation of Au nanoparticles in CO 2 hydrogenation to methanol. NANOSCALE 2021; 13:18218-18225. [PMID: 34709260 DOI: 10.1039/d1nr01272j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, there has been renewed interest in Au nanoparticle (Au NP) catalysts owing to their high selectivity for CO2 hydrogenation to methanol. However, there is still limited knowledge on the main factors of the catalytic activity and product selectivity of Au NPs. To address this issue, we utilized in situ transmission electron microscopy to observe the evolution of Au NP catalysts during CO2 hydrogenation to methanol at 260 °C under ambient pressure. During the reaction, Au NPs sized ≤5 nm coalesced rapidly, forming stable Au NPs sized 5-10 nm with oscillating shapes. The first-principles calculations demonstrated that the adsorption of the reactant gas CO2 is the main factor in inducing the coalescence of Au NPs, and CO and/or H2O adsorption generated by the reaction caused the oscillation of the Au NP shape. Furthermore, the adsorption of various gas molecules resulted in continuous changes in the structure of the catalyst active center. In this study, the in situ observation of the dynamic evolution of the Au NP morphology is important in understanding the structural transformation of Au NP catalysts at the nanometer scale and determining the active site motifs under the reaction conditions. Moreover, this would allow us to further understand the size effect and the dynamic evolution behavior of the active center of Au NP catalysts, thereby providing a new idea for the development and application of new catalysts and strong theoretical support for heterogeneous catalytic reaction mechanisms.
Collapse
Affiliation(s)
- Shengnan Yue
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Yongli Shen
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ziliang Deng
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wenjuan Yuan
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Wei Xi
- Center for Electron Microscopy and Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
8
|
Plodinec M, Nerl HC, Farra R, Willinger MG, Stotz E, Schlögl R, Lunkenbein T. Versatile Homebuilt Gas Feed and Analysis System for Operando TEM of Catalysts at Work. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:220-228. [PMID: 32115001 DOI: 10.1017/s143192762000015x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding how catalysts work during chemical reactions is crucial when developing efficient catalytic materials. The dynamic processes involved are extremely sensitive to changes in pressure, gas environment and temperature. Hence, there is a need for spatially resolved operando techniques to investigate catalysts under working conditions and over time. The use of dedicated operando techniques with added detection of catalytic conversion presents a unique opportunity to study the mechanisms underlying the catalytic reactions systematically. Herein, we report on the detailed setup and technical capabilities of a modular, homebuilt gas feed system directly coupled to a quadrupole mass spectrometer, which allows for operando transmission electron microscopy (TEM) studies of heterogeneous catalysts. The setup is compatible with conventional, commercially available gas cell TEM holders, making it widely accessible and reproducible by the community. In addition, the operando functionality of the setup was tested using CO oxidation over Pt nanoparticles.
Collapse
Affiliation(s)
- Milivoj Plodinec
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Hannah C Nerl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Ramzi Farra
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Marc G Willinger
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Eugen Stotz
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
9
|
Plodinec M, Nerl HC, Girgsdies F, Schlögl R, Lunkenbein T. Insights into Chemical Dynamics and Their Impact on the Reactivity of Pt Nanoparticles during CO Oxidation by Operando TEM. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03692] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Milivoj Plodinec
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Hannah C. Nerl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Frank Girgsdies
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Robert Schlögl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| |
Collapse
|