1
|
Liu Z, Hu Y, Wang S, Ding Y, Zhang Z, Qiu YF, Liu Z, Lei J. Visible-light-driven catalyst-free C-S cross-coupling of thiol derivatives and aryl halides. Org Biomol Chem 2024. [PMID: 39420589 DOI: 10.1039/d4ob01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A mild, scalable, and high-yielding visible-light-promoted C-S cross-coupling between alkyl thiol derivatives and (hetero)aryl halides without the need for metals, ligands, or photocatalysts is reported, offering advantages over traditional C-S bond forming strategies. The formation of an electron donor-acceptor (EDA) complex is supported by experimental and computational mechanistic studies, which undergoes visible-light-induced charge transfer to initiate C-S bond formation in the absence of a photoredox catalyst.
Collapse
Affiliation(s)
- Zhiqiang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yansong Hu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Shutao Wang
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yating Ding
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 East Anning Road, Lanzhou 730070, P. R. China
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
2
|
Yuan Y, Han Y, Zhang ZK, Sun S, Wu K, Yang J, Zhang J. Enantioselective Arylation of Sulfenamides to Access Sulfilimines Enabled by Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409541. [PMID: 38935325 DOI: 10.1002/anie.202409541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Sulfur-containing functional groups have garnered considerable attention due to their common occurrence in ligands, pharmaceuticals, and insecticides. Nevertheless, enantioselective synthesis of sulfilimines, particularly diaryl sulfilimines remains a challenging and persistent goal. Herein we report a highly enantio- and chemoselective cross-coupling of sulfenamides with aryl diazonium salt to construct diverse S(IV) stereocenters by Pd catalysis. Bisphosphine ligands bearing sulfinamide groups play a crucial role in achieving high reactivity and selectivity. This approach provides a general, modular and divergent framework for quickly synthesizing chiral sulfilimines and sulfoximines that are otherwise challenging to access. In addition, the origins of the high chemoselectivity and enantioselectivity were extensively investigated using density functional theory calculations.
Collapse
Affiliation(s)
- Yin Yuan
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Yidan Han
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, China
| | - Zhi-Kun Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Shijin Sun
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Ke Wu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Junfeng Yang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
3
|
Ma S, Cao Y, Shi YF, Shang C, He L, Liu ZP. Data-driven discovery of active phosphine ligand space for cross-coupling reactions. Chem Sci 2024; 15:13359-13368. [PMID: 39183919 PMCID: PMC11339946 DOI: 10.1039/d4sc02327g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
The design of highly active catalysts is a main theme in organic chemistry, but it still relies heavily on expert experience. Herein, powered by machine-learning global structure exploration, we forge a Metal-Phosphine Catalyst Database (MPCD) with a meticulously designed ligand replacement energy metric, a key descriptor to describe the metal-ligand interactions. It pushes the rational design of organometallic catalysts to a quantitative era, where a ±10 kJ mol-1 window of relative ligand binding strength, a so-called active ligand space (ALS), is identified for highly effective catalyst screening. We highlight the chemistry interpretability and effectiveness of ALS for various C-N, C-C and C-S cross-coupling reactions via a Sabatier-principle-based volcano plot and demonstrate its predictive power in discovering low-cost ligands in catalyzing Suzuki cross-coupling involving aryl chloride. The advent of the MPCD provides a data-driven new route for speeding up organometallic catalysis and other applications.
Collapse
Affiliation(s)
- Sicong Ma
- State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Yanwei Cao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 China
| | - Yun-Fei Shi
- Collaborative Innovation Center of Chemistry for Energy Materials (IChem), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Materials (IChem), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences Lanzhou 730000 China
| | - Zhi-Pan Liu
- State Key Laboratory of Metal Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- Collaborative Innovation Center of Chemistry for Energy Materials (IChem), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Chen W, Shaikh I, Ahmed F, Karkoub S, AlRawashdeh M, Zhou H, Madrahimov S. Phosphine-incorporated Metal-Organic Framework for Palladium Catalyzed Heck Coupling Reaction. ChemistryOpen 2024; 13:e202300249. [PMID: 38593358 PMCID: PMC11319216 DOI: 10.1002/open.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Indexed: 04/11/2024] Open
Abstract
As an emerging material with the potential to combine the high efficiency of homogeneous catalysts and high stability and recyclability of heterogeneous catalysts, metal-organic frameworks (MOFs) have been viewed as one of the candidates to produce catalysts of the next generation. Herein, we heterogenized the highly active mono(phosphine)-Pd complex on surface of UiO-66 MOF, as a catalyst for Suzuki and Heck cross coupling reactions. The successful immobilization of these Pd-monophosphine complexes on MOF surface to form UiO-66-PPh2-Pd was characterized and confirmed via comprehensive set of analytical methods. UiO-66-PPh2-Pd showed high activity and selectivity for both Suzuki and Heck Cross Coupling Reactions. This strategy enabled facile access to mono(phosphine) complexes which are challenging to design and require multistep synthesis in homogeneous systems, paving the way for future MOF catalysts applications by similar systems.
Collapse
Affiliation(s)
- Wenmiao Chen
- Department of ScienceTexas A&M University at QatarEducation City, P.O. Box23874DohaQatar
- Department of ChemistryTexas A&M UniversityCollege StationTexas77843–3255United States
| | - Insha Shaikh
- Department of Chemical EngineeringTexas A&M University at QatarEducation City, P.O. Box23874DohaQatar
| | - Fatma Ahmed
- Department of Chemical EngineeringTexas A&M University at QatarEducation City, P.O. Box23874DohaQatar
| | - Sahar Karkoub
- Department of Chemical EngineeringTexas A&M University at QatarEducation City, P.O. Box23874DohaQatar
| | - Mamoun AlRawashdeh
- Department of Chemical EngineeringTexas A&M University at QatarEducation City, P.O. Box23874DohaQatar
| | - Hongcai Zhou
- Department of ChemistryTexas A&M UniversityCollege StationTexas77843–3255United States
| | - Sherzod Madrahimov
- Department of ScienceTexas A&M University at QatarEducation City, P.O. Box23874DohaQatar
| |
Collapse
|
5
|
Liu W, Jin X, Ma D. Nucleophilic Aromatic Substitution of Heteroaryl Halides with Thiols. J Org Chem 2024; 89:8745-8758. [PMID: 38825771 DOI: 10.1021/acs.joc.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The nucleophilic aromatic substitution (SNAr) between heteroaryl halides (Cl, Br) and thiols proceeds smoothly in DMAc under the action of K2CO3 at rt-100 °C. For most electron-deficient heteroarenes, reaction takes place without introducing an additional electron-withdrawing group. For electron-rich heteroarenes, an additional electron-withdrawing group such as a simple ester, keto, cyano, and nitro group is required to ensure the reaction completes. The reactivity trend of heteroaryl halides is highly dependent on the electronic nature of the heteroarenes and orientation of halogens. Besides thiols, a couple of functionalized thioureas and thioamides are compatible with these conditions, providing the corresponding heteroaryl thioethers in good yields.
Collapse
Affiliation(s)
- Weiqi Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Lu, Hefei 230026, China
| | - Xinghao Jin
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
6
|
Hao X, Feng D, Chen H, Huang P, Guo F. Mechanochemical Nickel-Catalyzed Carbon-Sulfur Bond Formation between Aryl Iodides and Aromatic Sulfur Surrogates. Chemistry 2023; 29:e202302119. [PMID: 37556506 DOI: 10.1002/chem.202302119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
The formation of aromatic thioethers from C-S coupling is of great importance in synthetic chemistry. Traditional solution strategies through transition-metal catalysis generally require bulk solution, heat, and longer reaction time. Herein, a mechano-promoted sulfenylation of aryl iodides with nickel catalysis is described. The active aromatic sulfide agents are in-situ generated from aromatic thiol or disulfide and subsequently adapted in the nickel catalytic cycle, with a tolerance of broad substituted groups under optimized conditions. In addition to the gram-scale synthesis that reveals the application potential of the method, the radical trapping and competitive experiments are also conducted for the mechanistic study, thus providing a plausible mechanism rationally. Furthermore, the proposed methodology is certificated as being versatile and following the green principles with ideal calculated values of green chemistry metrics, and the comparison with other approaches for C-S bond formation is also demonstrated.
Collapse
Affiliation(s)
- Xiujia Hao
- College of Chemistry, Liaoning University, 110036, Shenyang, Liaoning, China
| | - Daming Feng
- College of Chemistry, Liaoning University, 110036, Shenyang, Liaoning, China
| | - Hongguang Chen
- College of Chemistry, Liaoning University, 110036, Shenyang, Liaoning, China
| | - Peng Huang
- College of Chemistry, Liaoning University, 110036, Shenyang, Liaoning, China
- Judicial Authentication & Forensic Sciences Institute, Liaoning University, 110036, Shenyang, Liaoning, China
| | - Fang Guo
- College of Chemistry, Liaoning University, 110036, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Bugaenko DI, Volkov AA, Karchava AV. A Thiol-Free Route to Alkyl Aryl Thioethers. J Org Chem 2023; 88:9968-9972. [PMID: 37432044 DOI: 10.1021/acs.joc.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Most existing methods for the synthesis of alkyl aryl thioethers require the use of mercaptans as the starting materials, which comes with practical limitations. Reactions of diaryliodonium salts with xanthate salts, easily prepared from the corresponding alcohols and CS2, under the developed conditions represent an operationally simple, thiol-free method for the synthesis of these valuable compounds. The protocol features high functional group tolerance and can be applied to the late-stage C-H functionalization and for the introduction of a CD3S group.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Alexey A Volkov
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | | |
Collapse
|
8
|
Pierce JK, Hiatt LD, Howard JR, Hu H, Qu F, Shaughnessy KH. Amines as Activating Ligands for Phosphine Palladium(II) Precatalysts: Effect of Amine Ligand Identity on the Catalyst Efficiency. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordan K. Pierce
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Lindsey D. Hiatt
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - James R. Howard
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Huaiyuan Hu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Kevin H. Shaughnessy
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
9
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
10
|
Behera PK, Choudhury P, Behera P, Swain A, Pradhan AK, Rout L. Transition Metal Catalysed
C‐S
Cross‐Coupling Reactions at Room Temperature. ChemistrySelect 2022. [DOI: 10.1002/slct.202202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Papita Behera
- Dept. of Chemistry Berhampur University Odisha India- 760007
| | - Amlan Swain
- Dept. of Chemistry Berhampur University Odisha India- 760007
| | | | - Laxmidhar Rout
- Dept. of Chemistry Berhampur University Odisha India- 760007
| |
Collapse
|
11
|
Ganie MA, Bhat MUS, Rizvi MA, Raheem S, Shah BA. Photoredox-Promoted Selective Synthesis of C-5 Thiolated 2-Aminothiazoles from Terminal Alkynes. Org Lett 2022; 24:7757-7762. [PMID: 36240126 DOI: 10.1021/acs.orglett.2c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild photoredox approach enabling the first one-step synthesis of thiolated 2-aminothiazoles has been reported. Notably, the incorporation of thio group on electron-rich heteroarenes such as aminothiazoles via conventional nucleophilic aromatic substitution (SNAr) presents a significant challenge owing to polarity mismatch. Herein, we present a remarkable site-selective installation of thio group at the C-5 position of the electron-rich aminothiazole skeleton and successfully used them for the postfunctionalization of drugs and natural products.
Collapse
Affiliation(s)
- Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
12
|
Beletskaya IP, Ananikov VP. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formations via Cross-Coupling and Atom-Economic Addition Reactions. Achievements and Challenges. Chem Rev 2022; 122:16110-16293. [DOI: 10.1021/acs.chemrev.1c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Irina P. Beletskaya
- Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
13
|
Hopkins BA, Zavesky B, White D. Thioetherification of Aryl Halides with Thioacetates. J Org Chem 2022; 87:7547-7550. [PMID: 35580300 DOI: 10.1021/acs.joc.2c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed cross-coupling of thioacetates and aryl halides is described herein. Using a catalyst screening kit, tBuBrettPhos Pd G3 was found to be a unique catalyst for this reaction, affording the desired thioarene products in high yields under mild reaction conditions. The thioacetate starting materials are readily available, allowing for quick access to these more lab friendly reagents. Reactions described herein range from the late-stage coupling of complex thioacetates to the first report of a mild set of conditions for thiomethylation of aryl halides.
Collapse
Affiliation(s)
- Brett Andrew Hopkins
- Corteva Agriscience Discovery Chemistry, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Blane Zavesky
- Corteva Agriscience Discovery Chemistry, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Derick White
- Corteva Agriscience Discovery Chemistry, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
14
|
Newar R, Begum W, Akhtar N, Antil N, Chauhan M, Kumar A, Gupta P, Malik J, Kumar B, Manna K. Mono‐Phosphine Metal‐Organic Framework‐Supported Cobalt Catalyst for Efficient Borylation Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajashree Newar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Wahida Begum
- Indian Institute of Technology Delhi Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| | - Naved Akhtar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Neha Antil
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Manav Chauhan
- Indian Institute of Technology Delhi Chemistry Hauz KhasIIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| | - Ajay Kumar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Poorvi Gupta
- Indian Institute of Technology Delhi Chemistry HAUZ KHAS 110016 New Delhi INDIA
| | - Jaideep Malik
- Indian Institute of Technology Roorkee Chemistry Roorkee 247667 Roorkee INDIA
| | - Balendra Kumar
- Sri Venkateswara College Chemistry University of Delhi 110021 New Delhi INDIA
| | - Kuntal Manna
- Indian Institute of Technology Delhi Department of Chemistry CHEMISTRY IIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| |
Collapse
|
15
|
Iraqui S, Rashid MH. Magnetically recyclable CoFe 2O 4 nanoparticles as stable and efficient catalysts for the synthesis of aryl thioethers via C–S coupling reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj04847g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An odourless and ligand-free protocol for the synthesis of aryl thioethers via a CoFe2O4 NP catalysed coupling reaction between benzyl halides and aryl halides in the presence of thiourea as a sulphur source is reported.
Collapse
Affiliation(s)
- Saddam Iraqui
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
| | - Md. Harunar Rashid
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791 112, Arunachal Pradesh, India
| |
Collapse
|
16
|
Liu C, Szostak M. Forging C-S Bonds Through Decarbonylation: New Perspectives for the Synthesis of Privileged Aryl Sulfides. ChemCatChem 2021; 13:4878-4881. [PMID: 36213423 PMCID: PMC9534384 DOI: 10.1002/cctc.202101206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/07/2023]
Abstract
Aryl thioethers are tremendously important motifs in various facets of chemical science. Traditional technologies for the precise assembly of aryl thioethers rely on transition-metal-catalyzed cross-coupling of aryl halides; however, despite the continuous advances, the scope of these methods remains limited. Recently a series of reports has advanced an alternative manifold in which thio(esters) are subject to transition-metal-catalyzed decarbonylation, which (1) permits to exploit ubiquitous carboxylic acids as highly desirable and orthogonal precursors to aryl halides; (2) overcomes the issues of high concentration of thiolate anion leading to catalyst poisoning; (3) enables for novel disconnections not easily available from aryl halides; and (4) introduces new concepts in catalysis.
Collapse
Affiliation(s)
- Chengwei Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
17
|
Vera G, Mangeant R, Stiebing S, Berhault Y, Fabis F, Cailly T, Collot V. Thiofunctionalization of Electron‐Rich Heteroarenes through Magnesiation and Trapping with Octasulfur. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gonzalo Vera
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Reynald Mangeant
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Silvia Stiebing
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Yohann Berhault
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Frédéric Fabis
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Thomas Cailly
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
- Normandie Univ UNICAEN IMOGERE 14000 Caen France
- CHU Côte de Nacre Department of Nuclear Medicine 14000 Caen France
- Institut Blood and Brain@Caen-Normandie (BB@C) Boulevard Henri Becquerel 14074 Caen France
| | - Valérie Collot
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| |
Collapse
|
18
|
Chatterjee T, Ranu BC. Synthesis of Organosulfur and Related Heterocycles under Mechanochemical Conditions. J Org Chem 2021; 86:13895-13910. [PMID: 34351760 DOI: 10.1021/acs.joc.1c01454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last few decades, ball-milling has received tremendous attention as a "green tool" for conducting various challenging organic transformations under transition-metal-free and solvent-free conditions. Organosulfur and related heterocycles are ubiquitous in numerous biologically active molecules with potential applications, and those molecules could be synthesized from readily available starting materials under mechanochemical conditions without using any hazardous chemical or solvent. This synopsis highlights the green strategies developed in recent times to synthesize organosulfur and related heterocycles under ball-milling conditions.
Collapse
Affiliation(s)
- Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Brindaban C Ranu
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
19
|
Wang CY, Tian R, Zhu YM. Ni-catalyzed C–S bond cleavage of aryl 2-pyridyl thioethers coupling with alkyl and aryl thiols. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Li Q, Guo L, Shi J, Xiang T, Li Q, He K, Wang B, Feng C, Pan F. Nickel‐Catalyzed Deaminative Cross‐Coupling of Disulfides with Katritzky Pryidium Salts to Construct Sulfides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiu‐Li Li
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Li‐Yun Guo
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Jie Shi
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Tong‐Xu Xiang
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Qing Li
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Ke‐Han He
- School of Science Xichang University 1 Xuefu Road Liangshan Yi Autonomous Prefecture Xichang 615000 P. R. China
| | - Bi‐Qin Wang
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Chun Feng
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| | - Fei Pan
- College of Chemistry and Materials Science Sichuan Normal University 5 Jingan Road Chengdu 610068 P. R. China
| |
Collapse
|
21
|
Martín MT, Marín M, Maya C, Prieto A, Nicasio MC. Ni(II) Precatalysts Enable Thioetherification of (Hetero)Aryl Halides and Tosylates and Tandem C-S/C-N Couplings. Chemistry 2021; 27:12320-12326. [PMID: 34191385 PMCID: PMC8456787 DOI: 10.1002/chem.202101906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Ni‐catalyzed C−S cross‐coupling reactions have received less attention compared with other C‐heteroatom couplings. Most reported examples comprise the thioetherification of most reactive aryl iodides with aromatic thiols. The use of C−O electrophiles in this context is almost uncharted. Here, we describe that preformed Ni(II) precatalysts of the type NiCl(allyl)(PMe2Ar’) (Ar’=terphenyl group) efficiently couple a wide range of (hetero)aryl halides, including challenging aryl chlorides, with a variety of aromatic and aliphatic thiols. Aryl and alkenyl tosylates are also well tolerated, demonstrating, for the first time, to be competent electrophilic partners in Ni‐catalyzed C−S bond formation. The chemoselective functionalization of the C−I bond in the presence of a C−Cl bond allows for designing site‐selective tandem C−S/C−N couplings. The formation of the two C‐heteroatom bonds takes place in a single operation and represents a rare example of dual electrophile/nucleophile chemoselective process.
Collapse
Affiliation(s)
- M Trinidad Martín
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071, Sevilla, Spain
| | - Mario Marín
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071, Sevilla, Spain
| | - Celia Maya
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Sevilla, Spain
| | - Auxiliadora Prieto
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Campus de El Carmen s/n, Universidad de Huelva, 21007, Huelva, Spain
| | - M Carmen Nicasio
- Departamento de Química Inorgánica, Universidad de Sevilla, Aptdo 1203, 41071, Sevilla, Spain
| |
Collapse
|
22
|
Christian AH. Metallaphotoredox-Catalyzed C-S Cross-Coupling between Heteroaryl Bromides and α-Thioacetic Acids to Access Biaryl Thioethers. J Org Chem 2021; 86:10914-10920. [PMID: 34260227 DOI: 10.1021/acs.joc.1c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metallaphotoredox-catalyzed C-S cross-coupling between heteroaryl bromides and α-thioacetic acids to form biaryl thioethers is described herein. This transformation allows for cross-coupling between building blocks containing reactive functional groups, nitrogen heterocycles, and pharmaceutically relevant scaffolds. Mechanistic experiments indicate a unique means by which this C-S cross-coupling occurs.
Collapse
Affiliation(s)
- Alec H Christian
- Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Zhang N, Ma W, Li J, Liu Y, Zeng M. Solvent‐Free Ruthenium‐Catalyzed Direct Coupling of Phosphines and Aryl Chlorides via C−H Activation: An Efficient and Straight Access to Aryl‐Substituted Biarylphosphines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ni‐Juan Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Wen‐Tao Ma
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Jia‐Wei Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Yue‐Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
| | - Ming‐Hua Zeng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules College of Chemistry and Chemical Engineering Hubei University 430062 Wuhan P. R. China
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal University 541004 Guilin P. R. China
| |
Collapse
|
24
|
Monti A, Rama RJ, Gómez B, Maya C, Álvarez E, Carmona E, Nicasio MC. N-substituted aminobiphenyl palladacycles stabilized by dialkylterphenyl phosphanes: Preparation and applications in C N cross-coupling reactions. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Zhang L, Wu Y, Wang N, Gao X, Yan Z, Xu B, Liu N, Wang B, Xing Y. Methylthiolation for Electron‐Rich Heteroarenes with DMSO‐TsCl. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lei‐Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yue‐Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Nai‐Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Xue‐Wang Gao
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Bao‐Cai Xu
- School of Food and Chemical Engineering Beijing Technology and Business University Beijing 100048 China
| | - Ning Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Bo‐Zhou Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals Xi'an Modern Chemistry Research Institute Xi'an 710065 China
| | - Yalan Xing
- Department of Chemistry William Paterson University of New Jersey New Jersey 07470 United States
| |
Collapse
|
26
|
Hanaya K, Ohtsu H, Kawano M, Higashibayashi S, Sugai T. Nickel(II)‐Mediated C−S Cross‐Coupling Between Thiols and
ortho
‐Substituted Arylboronic Acid. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000724] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kengo Hanaya
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| | - Hiroyoshi Ohtsu
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masaki Kawano
- Department of Chemistry School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | | | - Takeshi Sugai
- Faculty of Pharmacy Keio University 1-5-30 Shibakoen, Minato-ku Tokyo Japan
| |
Collapse
|
27
|
Yu TY, Pang H, Cao Y, Gallou F, Lipshutz BH. Safe, Scalable, Inexpensive, and Mild Nickel-Catalyzed Migita-Like C-S Cross-Couplings in Recyclable Water. Angew Chem Int Ed Engl 2021; 60:3708-3713. [PMID: 33095957 DOI: 10.1002/anie.202013017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Indexed: 01/20/2023]
Abstract
A new approach to C-S couplings is reported that relies on nickel catalysis under mild conditions, enabled by micellar catalysis in recyclable water as the reaction medium. The protocol tolerates a wide range of heteroaromatic halides and thiols, including alkyl and heteroaryl thiols, leading to a variety of thioethers in good isolated yields. The method is scalable, results in low residual metal in the products, and is applicable to syntheses of targets in the pharmaceutical area. The procedure also features an associated low E Factor, suggesting a far more attractive entry than is otherwise currently available, especially those based on unsustainable loadings of Pd catalysts.
Collapse
Affiliation(s)
- Tzu-Yu Yu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Haobo Pang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yilin Cao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
28
|
One-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions: Atom-economic synthesis of selenocarbamates and allyl sulfones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Talukder MM, Miller JT, Cue JMO, Udamulle CM, Bhadran A, Biewer MC, Stefan MC. Mono- and Dinuclear α-Diimine Nickel(II) and Palladium(II) Complexes in C–S Cross-Coupling. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Md Muktadir Talukder
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Justin T. Miller
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - John Michael O. Cue
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chinthaka M. Udamulle
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C. Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
30
|
Yu T, Pang H, Cao Y, Gallou F, Lipshutz BH. Safe, Scalable, Inexpensive, and Mild Nickel‐Catalyzed Migita‐Like C−S Cross‐Couplings in Recyclable Water. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Tzu‐Yu Yu
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Haobo Pang
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Yilin Cao
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | | | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
31
|
Hu H, Burlas CE, Curley SJ, Gruchala T, Qu F, Shaughnessy KH. Effect of Aryl Ligand Identity on Catalytic Performance of Trineopentylphosphine Arylpalladium Complexes in N-Arylation Reactions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huaiyuan Hu
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Corrie E. Burlas
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Sabrina J. Curley
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Tomasz Gruchala
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Fengrui Qu
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kevin H. Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
32
|
Zhu F, Chen Z, Walczak MA. Ligand-Free Copper(I)-Mediated Cross-Coupling Reactions of Organostannanes with Sulfur Electrophiles. J Org Chem 2020; 85:11942-11951. [PMID: 32902269 DOI: 10.1021/acs.joc.0c01399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The synthesis of aryl thioether through the cross-coupling of C-S bond is a highly attractive area of research due to the prevalence of aryl thioether in bioactive natural products, functional materials, agrochemicals, and pharmaceutically active compounds. Herein, we report a ligand-free Cu(I) mediated electrophilic thiolation of organostannanes with sulfur electrophiles. A selective transfer of alkyl groups was achieved in reactions with alkyl carbastannatranes affording congested thioethers. This study offers a unified method to access diaryl and aryl alkyl thioethers and was demonstrated in the context of late-stage modifications..
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Zhenhao Chen
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
33
|
Jones AC, Nicholson WI, Smallman HR, Browne DL. A Robust Pd-Catalyzed C–S Cross-Coupling Process Enabled by Ball-Milling. Org Lett 2020; 22:7433-7438. [DOI: 10.1021/acs.orglett.0c02418] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew C. Jones
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - William I. Nicholson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Harry R. Smallman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- School of Pharmacy, UCL, 29-39 Brunswick Square, London WC1X 1AX, U.K
| | - Duncan L. Browne
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
- School of Pharmacy, UCL, 29-39 Brunswick Square, London WC1X 1AX, U.K
| |
Collapse
|
34
|
McCann SD, Reichert EC, Arrechea PL, Buchwald SL. Development of an Aryl Amination Catalyst with Broad Scope Guided by Consideration of Catalyst Stability. J Am Chem Soc 2020; 142:15027-15037. [PMID: 32786769 DOI: 10.1021/jacs.0c06139] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have developed a new dialkylbiaryl monophosphine ligand, GPhos, that supports a palladium catalyst capable of promoting carbon-nitrogen cross-coupling reactions between a variety of primary amines and aryl halides; in many cases, these reactions can be carried out at room temperature. The reaction development was guided by the idea that the productivity of catalysts employing BrettPhos-like ligands is limited by their lack of stability at room temperature. Specifically, it was hypothesized that primary amine and N-heteroaromatic substrates can displace the phosphine ligand, leading to the formation of catalytically dormant palladium complexes that reactivate only upon heating. This notion was supported by the synthesis and kinetic study of a putative off-cycle Pd complex. Consideration of this off-cycle species, together with the identification of substrate classes that are not effectively coupled at room temperature using previous catalysts, led to the design of a new dialkylbiaryl monophosphine ligand. An Ot-Bu substituent was added ortho to the dialkylphosphino group of the ligand framework to improve the stability of the most active catalyst conformer. To offset the increased size of this substituent, we also removed the para i-Pr group of the non-phosphorus-containing ring, which allowed the catalyst to accommodate binding of even very large α-tertiary primary amine nucleophiles. In comparison to previous catalysts, the GPhos-supported catalyst exhibits better reactivity both under ambient conditions and at elevated temperatures. Its use allows for the coupling of a range of amine nucleophiles, including (1) unhindered, (2) five-membered-ring N-heterocycle-containing, and (3) α-tertiary primary amines, each of which previously required a different catalyst to achieve optimal results.
Collapse
Affiliation(s)
- Scott D McCann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elaine C Reichert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pedro Luis Arrechea
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Kopp K, Schiemann O, Fleck N. Improved, Odorless Access to Benzo[1,2-d;4,5-d']- bis[1,3]dithioles and Tert-butyl Arylsulfides via C-S Cross Coupling. Molecules 2020; 25:molecules25163666. [PMID: 32806560 PMCID: PMC7464442 DOI: 10.3390/molecules25163666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022] Open
Abstract
Benzo[1,2-d;4,5-d′]bis[1,3]dithioles are important building blocks within a range of functional materials such as fluorescent dyes, conjugated polymers, and stable trityl radicals. Access to these is usually gained via tert-butyl aryl sulfides, the synthesis of which requires the use of highly malodorous tert-butyl thiol and relies on SNAr-chemistry requiring harsh reaction conditions, while giving low yields. In the present work, S-tert-butyl isothiouronium bromide is successfully applied as an odorless surrogate for tert-butyl thiol. The C-S bond formation is carried out under palladium catalysis with the thiolate formed in situ resulting in high yields of tert-butyl aryl sulfides. The subsequent formation of benzo[1,2-d;4,5-d′]bis[1,3]dithioles is here achieved with scandium(III)triflate, a less harmful reagent than the usually used Lewis acids, e.g., boron trifluoride or tetrafluoroboric acid. This enables a convenient and environmentally more compliant access to high yields of benzo[1,2-d;4,5-d′]bis[1,3]dithioles.
Collapse
|
36
|
Landarani-Isfahani A, Mohammadpoor-Baltork I, Mirkhani V, Moghadam M, Tangestaninejad S, Amiri Rudbari H. Palladium nanoparticles immobilized on a nano-silica triazine dendritic polymer: a recyclable and sustainable nanoreactor for C-S cross-coupling. RSC Adv 2020; 10:21198-21205. [PMID: 35518753 PMCID: PMC9054393 DOI: 10.1039/d0ra00719f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022] Open
Abstract
Dendrimers are of great interest due to their special structural topology and chemical versatility. Owing to their properties, dendrimers have found practical applications in catalytic processes as efficient nanoreactors. Therefore, we herein report an environmentally attractive strategy and highly efficient route for the synthesis of a wide variety of diaryl sulfides using palladium nanoparticles immobilized on a nano-silica triazine dendritic polymer (Pdnp-nSTDP) as a nanoreactor. In this manner, different diaryl or aryl heteroaryl sulfides and bis(aryl/heteroarylthio)benzene/anthracene/pyridine derivatives were prepared via C-S cross-coupling reactions of aryl halides with diaryl/diheteroaryl disulfides under thermal conditions and microwave irradiation. The catalyst could be easily recovered and reused several times without any significant loss of its activity.
Collapse
Affiliation(s)
| | | | - Valiollah Mirkhani
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran +98 031 36689732
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran +98 031 36689732
| | | | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran +98 031 36689732
| |
Collapse
|
37
|
Khalaj M. Synthesis of carbamothioate derivatives via a copper catalyzed thiocarboxamidation of aryl iodides. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02613-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Eseola AO, Görls H, Orighomisan Woods JA, Plass W. Single monodentate N-donor ligands versus multi-ligand analogues in Pd(II)-catalysed C–C coupling at reduced temperatures. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Abstract
A reactor capable of efficiently collecting kinetic data in flow is presented. Conversion over time data is obtained by cycling a discrete reaction slug back and forth between two residence coils, with analysis performed each time the solution is passed between the two. In contrast to a traditional steady-state continuous flow system, which requires upward of 5× the total reaction time to obtain reaction progress data, this design achieves much higher efficiency by collecting all data during a single reaction. In combination with minimal material consumption (reactions performed in 300 μL slugs), this represents an improvement in efficiency for typical kinetic experimentation in batch as well. Application to kinetic analysis of a wide variety of transformations (acylation, SNAr, silylation, solvolysis, Pd catalyzed C-S cross-coupling and cycloadditions) is demonstrated, highlighting both the versatility of the reactor and the benefits of performing kinetic analysis as a routine part of reaction optimization/development. Extension to the monitoring of multiple reactions simultaneously is also realized by operating the reactor with multiple reaction slugs at the same time.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
40
|
Sandfort F, Knecht T, Pinkert T, Daniliuc CG, Glorius F. Site-Selective Thiolation of (Multi)halogenated Heteroarenes. J Am Chem Soc 2020; 142:6913-6919. [PMID: 32237706 DOI: 10.1021/jacs.0c01630] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A general and simple strategy for the site-selective thiolation of various pharmaceutically relevant electron-rich heteroarenes with thiols is reported. This mild and reliable photocatalytic protocol enables C-S coupling at the most electron-rich position of the (multi)halogenated substrates, complementing established methodologies. Experimental and computational studies suggest a radical chain mechanism with the key step being a homolytic aromatic substitution of the heteroaryl halide by an electrophilic thiyl radical, highlighting an underdeveloped reactivity mode.
Collapse
Affiliation(s)
- Frederik Sandfort
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tobias Knecht
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
41
|
Sun R, Qin Y, Nocera DG. General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
42
|
Sun R, Qin Y, Nocera DG. General Paradigm in Photoredox Nickel‐Catalyzed Cross‐Coupling Allows for Light‐Free Access to Reactivity. Angew Chem Int Ed Engl 2020; 59:9527-9533. [DOI: 10.1002/anie.201916398] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Sun
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
43
|
Liu RY, Dennis JM, Buchwald SL. The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C-N Cross-Coupling. J Am Chem Soc 2020; 142:4500-4507. [PMID: 32040909 DOI: 10.1021/jacs.0c00286] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palladium-catalyzed amination reactions using soluble organic bases have provided a solution to the many issues associated with heterogeneous reaction conditions. Still, homogeneous C-N cross-coupling approaches cannot yet employ bases as weak and economical as trialkylamines. Furthermore, organic base-mediated methods have not been developed for Ni(0/II) catalysis, despite some advantages of such systems over those employing Pd-based catalysts. We designed a new air-stable and easily prepared Ni(II) precatalyst bearing an electron-deficient bidentate phosphine ligand that enables the cross-coupling of aryl triflates with aryl amines using triethylamine (TEA) as base. The method is tolerant of sterically congested coupling partners, as well as those bearing base- and nucleophile-sensitive functional groups. With the aid of density functional theory (DFT) calculations, we determined that the electron-deficient auxiliary ligands decrease both the pKa of the Ni-bound amine and the barrier to reductive elimination from the resultant Ni(II)-amido complex. Moreover, we determined that the preclusion of Lewis acid-base complexation between the Ni catalyst and the base, due to steric factors, is important for avoiding catalyst inhibition.
Collapse
Affiliation(s)
- Richard Y Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Joseph M Dennis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
44
|
Wang Y, Deng J, Chen J, Cao F, Hou Y, Yang Y, Deng X, Yang J, Wu L, Shao X, Shi T, Wang Z. Dechalcogenization of Aryl Dichalcogenides to Synthesize Aryl Chalcogenides via Copper Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04931] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yongqiang Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jiedan Deng
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jinhong Chen
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yongsheng Hou
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Jinru Yang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Lingxi Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, West Donggang Road, No. 199, Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
45
|
Fan J, Zhao Y, Zhang J, Xie M, Zhang Y. Acid-Controlled Access to β-Sulfenyl Ketones and α,β-Disulfonyl Ketones by Pummerer Reaction of β-Keto Sulfones and Sulfoxides. J Org Chem 2020; 85:691-701. [PMID: 31790239 DOI: 10.1021/acs.joc.9b02766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A convenient acid-mediated reaction of β-keto sulfones with sulfoxides under metal-free conditions has been developed, thereby delivering the acid-controlled synthesis of β-sulfenyl ketones and α,β-disulfonyl ketones in good to excellent yields. The mechanism of the transformations has been studied carefully, which suggested the involvement of a radical process in the formation of α,β-disulfonyl ketones.
Collapse
Affiliation(s)
- Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Yuzhong Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| |
Collapse
|
46
|
Panigrahi R, Sahu SK, Behera PK, Panda S, Rout L. CuMoO 4 Bimetallic Nanoparticles, An Efficient Catalyst for Room Temperature C-S Cross-Coupling of Thiols and Haloarenes. Chemistry 2020; 26:620-624. [PMID: 31702851 DOI: 10.1002/chem.201904801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Indexed: 11/09/2022]
Abstract
CuII catalyst is less efficient at room temperature for C-S cross-coupling. C-S cross-coupling by CuII catalyst at room temperature is not reported; however, doping of copper with molybdenum metal has been realized here to be more efficient for C-S cross-coupling in comparison to general CuII catalyst. The doped catalyst CuMoO4 nanoparticle is found to be more efficient than copper. The catalyst works under mild conditions without any ligand at room temperature and is recyclable and effective for a wide range of thiols and haloarenes (ArI, ArBr, ArF) from milligram to gram scale. The copper-based bimetallic catalyst is developed and recognized for C-S cross-coupling of haloarenes with alkyl and aryl thiols.
Collapse
Affiliation(s)
- Reba Panigrahi
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| | - Santosh Kumar Sahu
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| | | | - Subhalaxmi Panda
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| | - Laxmidhar Rout
- Department of Chemistry, Berhampur University, Bhanjabihar, 760007, India
| |
Collapse
|
47
|
Bhowmik A, Yadav M, Fernandes RA. Room temperature nickel-catalyzed cross-coupling of aryl-boronic acids with thiophenols: synthesis of diarylsulfides. Org Biomol Chem 2020; 18:2447-2458. [DOI: 10.1039/d0ob00244e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and easy to operate NiCl2/2,2′-bipyridine-catalyzed cross-coupling of thiophenols with arylboronic acids has been developed for the synthesis of symmetric and unsymmetric diarylsulfides at room temperature and in air.
Collapse
Affiliation(s)
- Amit Bhowmik
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Mahesh Yadav
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| |
Collapse
|
48
|
Fernandes RA, Bhowmik A, Yadav SS. Advances in Cu and Ni-catalyzed Chan–Lam-type coupling: synthesis of diarylchalcogenides, Ar2–X (X = S, Se, Te). Org Biomol Chem 2020; 18:9583-9600. [DOI: 10.1039/d0ob02035d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Advances in the Cu and Ni-catalyzed Chan–Lam-type coupling of aryl/heteroarylboronic acids with various chalcogen sources for diarylsulfide, diarylselenide and diaryltelluride synthesis are covered in this review.
Collapse
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Amit Bhowmik
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| | - Sandhya S. Yadav
- Department of Chemistry
- Indian Institute of Technology Bombay Powai
- Mumbai 400076
- India
| |
Collapse
|