1
|
Tungkamani S, Intarasiri S, Sumarasingha W, Ratana T, Phongaksorn M. Enhancement of Ni-NiO-CeO 2 Interaction on Ni-CeO 2/Al 2O 3-MgO Catalyst by Ammonia Vapor Diffusion Impregnation for CO 2 Reforming of CH 4. Molecules 2024; 29:2803. [PMID: 38930868 PMCID: PMC11206949 DOI: 10.3390/molecules29122803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ni-based catalysts have been widely used for the CO2 reforming of methane (CRM) process, but deactivation is their main problem. This study created an alternative electronic Ni-NiO-CeO2 interaction on the surface of 5 wt% Ni-5 wt% CeO2/Al2O3-MgO (5Ni5Ce(xh)/MA) catalysts to enhance catalytic potential simultaneously with coke resistance for the CRM process. The Ni-NiO-CeO2 network was developed on Al2O3-MgO through layered double hydroxide synthesis via our ammonia vapor diffusion impregnation method. The physical properties of the fresh catalysts were analyzed employing FESEM, N2 physisorption, and XRD. The chemical properties on the catalyst surface were analyzed employing H2-TPR, XPS, H2-TPD, CO2-TPD, and O2-TPD. The CRM performances of reduced catalysts were evaluated at 600 °C under ambient pressure. Carbon deposits on spent catalysts were determined quantitatively and qualitatively by TPO, FESEM, and XRD. Compared to 5 wt% Ni-5 wt% CeO2/Al2O3-MgO prepared by the traditional impregnation method, the electronic interaction of the Ni-NiO-CeO2 network with the Al2O3-MgO support was constructed along the time of ammonia diffusion treatment. The electronic interaction in the Ni-NiO-CeO2 nanostructure of the treated catalyst develops surface hydroxyl sites with an efficient pathway of OH* and O* transfer that improves catalytic activities and coke oxidation.
Collapse
Affiliation(s)
- Sabaithip Tungkamani
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
- Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Saowaluk Intarasiri
- Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Rayong 21120, Thailand;
| | - Wassachol Sumarasingha
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
| | - Tanakorn Ratana
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
- Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Monrudee Phongaksorn
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand; (S.T.); (W.S.); (T.R.)
- Research and Development Center for Chemical Engineering Unit Operation and Catalyst Design (RCC), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
2
|
Mebrahtu C, Krebs F, Giorgianni G, Abate S, Perathoner S, Centi G, Large AI, Held G, Arrigo R, Palkovits R. Insights by in-situ studies on the nature of highly-active hydrotalcite-based Ni-Fe catalysts for CO2 methanation. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
El‐Salamony RA. Catalytic Steam Reforming of Ethanol to Produce Hydrogen: Modern and Efficient Catalyst Modification Strategies. ChemistrySelect 2023. [DOI: 10.1002/slct.202203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Radwa A. El‐Salamony
- Process Development Department Egyptian petroleum research institute (EPRI) Cairo Egypt
| |
Collapse
|
4
|
Regulation of product distribution in CO2 hydrogenation by modifying Ni/CeO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Song M, Shi L, Xu X, Du X, Chen Y, Zhuang W, Tao X, Sun L, Xu Y. Ni/M/SiO2 catalyst (M=La, Ce or Mg) for CO2 methanation: Importance of the Ni active sites. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Weber D, Wadlinger KM, Heinlein MM, Franken T. Modifying Spinel Precursors for Highly Active and Stable Ni‐based CO2 Methanation Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dennis Weber
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Technische Fakultat Department of Chemical and Bioengineering, Institute of Chemical Reaction Engineering Egerlandstraße 3 91058 Erlangen GERMANY
| | - Katja Marion Wadlinger
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Technische Fakultat Department of Chemical and Bioengineering, Institute of Chemical Reaction Engineering Egerlandstraße 3 91058 Erlangen GERMANY
| | - Maximilian Michael Heinlein
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Department of Chemical and Bioengineering, Institute of Chemical Reaction Engineering Egerlandstraße 3 91056 Erlangen GERMANY
| | - Tanja Franken
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Technische Fakultat Department of Chemical and Bioengineering, Institute of Chemical Reaction Engineering Egerlandstraße 3 91058 Erlangen GERMANY
| |
Collapse
|
7
|
Yeetsorn R, Tungkamani S, Maiket Y. Fabrication of a Ceramic Foam Catalyst Using Polymer Foam Scrap via the Replica Technique for Dry Reforming. ACS OMEGA 2022; 7:4202-4213. [PMID: 35155913 PMCID: PMC8829922 DOI: 10.1021/acsomega.1c05841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Megapores with spherical-like cells connected through windows and high porosities make up catalyst supports in the form of ceramic foams. These characteristics provide significant benefits for catalytic processes that are limited by mass or heat transport. This study focuses on the manufacture of ceramic foam using a polymeric sponge replica process and polymer foams as a template for catalyst supports, which are industrial waste from the packaging sector. To make ceramic foam catalysts, they were dipped in a catalyst solution, followed by a breakdown stage and a sintering process. Experiments focused on determinants that affect the desired characteristics of ceramic foams, such as the types of polymer foams that affect foam morphology, the rheology of catalyst solution that affects catalyst dispersion, and the polymer decomposition rate that affects catalytic performance during dry reforming of the methane process. The cell architectures of polyurethane and polyvinyl alcohol foams are attractive for catalyst support preparation because they have 98-99% porosity and typical cell sizes of 200 and 50 μm, respectively. The polyurethane performance was superior to the performance of polyvinyl alcohol in terms of higher porosity and better catalytic-solution absorption offering high catalyst active areas. The catalyst prepared from concentrated 10 wt % Ni/Al2O3-MgO (10NAM) slurry had the highest surface area (59.18 m2/g) and the highest metal oxide dispersion (5.65%). These results are relevant to the flow behavior of catalyst slurry which plays a key role in coating the catalyst gel on the polymer template. The thermal decomposition rate used to remove the polymer template from the catalyst structure is proportional to the ceramic foam structure (catalyst support structure). The slow decomposition rate bent and fractured foam-cell struts more than the faster rate. On the other hand, achieving good catalyst dispersion on catalyst supports necessitated a high sintering rate. When sintering was adjusted at a high sintering rate, the metal-particle dispersion was relatively high, around 7.44%, and the surface area of ceramic foam catalysts was 64.61 m2/g. Finally, the catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions.
Collapse
Affiliation(s)
- Rungsima Yeetsorn
- The
Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut’s University of Technology North
Bangkok, Bangkok 10800, Thailand
| | - Sabaithip Tungkamani
- Research
and Development Center for Chemical Engineering Unit Operation and
Catalyst Design (RCC), King Mongkut’s
University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Yaowaret Maiket
- Thai-French
Innovation Institute, King Mongkut’s
University of Technology North Bangkok, Bangkok 10800, Thailand
| |
Collapse
|
8
|
Alqarni DS, Lee CW, Knowles GP, Vogt C, Marshall M, Gengenbach TR, Chaffee AL. Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Bao X, Behrens M, Ertl G, Fu Q, Knop-Gericke A, Lunkenbein T, Muhler M, Schmidt CM, Trunschke A. A Career in Catalysis: Robert Schlögl. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Malte Behrens
- Institute of Inorganic Chemistry, Solid State Chemistry and Catalysis, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Gerhard Ertl
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian 116023, People’s Republic of China
| | - Axel Knop-Gericke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim, Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Muhler
- Industrial Chemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Christoph M. Schmidt
- RWI - Leibniz-Institut für Wirtschaftsforschung, Hohenzollernstraße 1-3, 45128 Essen, Germany
| | - Annette Trunschke
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Departments of Physical Chemistry and Inorganic Chemistry, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
10
|
Mohammadi MM, Shah C, Dhandapani SK, Chen J, Abraham SR, Sullivan W, Buchner RD, Kyriakidou EA, Lin H, Lund CRF, Swihart MT. Single-Step Flame Aerosol Synthesis of Active and Stable Nanocatalysts for the Dry Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17618-17628. [PMID: 33821611 DOI: 10.1021/acsami.1c02180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We introduce a flame-based aerosol process for producing supported non-noble metal nanocatalysts from inexpensive aqueous metal salt solutions, using catalysts for the dry reforming of methane (DRM) as a prototype. A flame-synthesized nickel-doped magnesia (MgO) nanocatalyst (NiMgO-F) was fully physicochemically characterized and tested in a flow reactor system, where it showed stable DRM activity from 500 to 800 °C. A kinetic study was conducted, and apparent activation energies were extracted for the temperature range of 500-650 °C. It was then compared with a Ni-decorated MgO nanopowder prepared by wet impregnation of (1) flame-synthesized MgO (NiMgO-FI) and (2) a commercial MgO nanopowder (NiMgO-CI) and with (3) a NiMgO catalyst prepared by co-precipitation (NiMgO-CP). NiMgO-F showed the highest catalytic activity per mass and per metallic surface area and was stable for continuous H2 production at 700 °C for 50 h. Incorporation of potential promoters and co-catalysts was also demonstrated, but none showed significant performance improvement. More broadly, nanomaterials produced by this approach could be used as binary or multicomponent catalysts for numerous catalytic processes.
Collapse
Affiliation(s)
- Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Chintan Shah
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Sandeep Kumar Dhandapani
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Junjie Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Shema Rachel Abraham
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - William Sullivan
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Raymond D Buchner
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Eleni A Kyriakidou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Carl R F Lund
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
11
|
Deng L, Ai X, Xie F, Zhou G. Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction. Chem Asian J 2021; 16:949-958. [PMID: 33646609 DOI: 10.1002/asia.202100100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Indexed: 11/05/2022]
Abstract
CO2 hydrogenation for syngas can alleviate the pressure of un-controlled emissions of CO2 and bring enormous economic benefits. Advantageous Ni-catalysts have good CO2 hydrogenation activity and high CO selectivity merely over 700 °C. Herein, we introduced Cu into Ni catalysts, which were evaluated by H2 -TPR, XRD, BET, in-situ XPS and CO2 -TPD, and their CO2 hydrogenation activity and CO selectivity were significantly affected by the Ni/Cu ratios, which was rationalized by the synergistic effect of bimetallic catalysts. In addition, the reduction temperatures of studied catalysts apparently affected the CO2 hydrogenation, which were caused by the number and dispersion of the active species. It's found that the Ni1 Cu1 -400 had good stability, high CO selectivity (up to 90%), and fast formation rate (1.81×10-5 mol/gcat /s) at 400 °C, which demonstrated a good potential as a superior catalyst for reverse water-gas shift (RWGS) reaction.
Collapse
Affiliation(s)
- Lidan Deng
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.,Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Xin Ai
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Fengqiong Xie
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Guilin Zhou
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering, Chongqing Technology and Business University, Chongqing, 400067, P. R. China.,Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| |
Collapse
|
12
|
Huynh HL, Zhu J, Zhang G, Shen Y, Tucho WM, Ding Y, Yu Z. Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation. Catalysts 2020. [DOI: 10.3390/catal10050523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mesoporous Ni-based catalysts with Ni confined in nanochannels are widely used in CO2 methanation. However, when Ni loadings are high, the nanochannels are easily blocked by nickel particles, which reduces the catalytic performance. In this work, three-dimensional mesoporous Ni-CeO2-CSC catalysts with high Ni loadings (20−80 wt %) were prepared using a colloidal solution combustion method, and characterized by nitrogen adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and H2 temperature programmed reduction (H2-TPR). Among the catalysts with different Ni loadings, the 50% Ni-CeO2-CSC with 50 wt % Ni loading exhibited the best catalytic performance in CO2 methanation. Furthermore, the 50% Ni-CeO2-CSC catalyst was stable for 50 h at 300° and 350 °C in CO2 methanation. The characterization results illustrate that the 50% Ni-CeO2-CSC catalyst has Ni particles smaller than 5 nm embedded in the pore walls, and the Ni particles interact with CeO2. On the contrary, the 50% Ni-CeO2-CP catalyst, prepared using the traditional coprecipitation method, is less active and selective for CO2 methanation due to the larger size of the Ni and CeO2 particles. The special three-dimensional mesoporous embedded structure in the 50% Ni-CeO2-CSC can provide more metal–oxide interface and stabilize small Ni particles in pore walls, which makes the catalyst more active and stable in CO2 methanation.
Collapse
|
14
|
Solid solutions in reductive environment – A case study on improved CO2 hydrogenation to methane on cobalt based catalysts derived from ternary mixed metal oxides by modified reducibility. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Naeem MA, Abdala PM, Armutlulu A, Kim SM, Fedorov A, Müller CR. Exsolution of Metallic Ru Nanoparticles from Defective, Fluorite-Type Solid Solutions Sm2RuxCe2–xO7 To Impart Stability on Dry Reforming Catalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04555] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muhammad A. Naeem
- Department of Mechanical and Process Engineering, ETH Zürich, CH 8092 Zürich, Switzerland
| | - Paula M. Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, CH 8092 Zürich, Switzerland
| | - Andac Armutlulu
- Department of Mechanical and Process Engineering, ETH Zürich, CH 8092 Zürich, Switzerland
| | - Sung Min Kim
- Department of Mechanical and Process Engineering, ETH Zürich, CH 8092 Zürich, Switzerland
| | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zürich, CH 8092 Zürich, Switzerland
| | - Christoph R. Müller
- Department of Mechanical and Process Engineering, ETH Zürich, CH 8092 Zürich, Switzerland
| |
Collapse
|