1
|
Zhou L, An Y, Ma J, Hao G, Li Z, Chen J, Chou LY. A highly efficient synthetic strategy for de novo NP encapsulation into metal-organic frameworks: enabling further modulated control of catalytic properties. Chem Sci 2023; 14:13126-13133. [PMID: 38023511 PMCID: PMC10664540 DOI: 10.1039/d3sc05179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
De novo encapsulation is a prevalent method to prepare composite materials where the structure-tunable metal nanoparticles (NPs) are holistically coated with metal-organic frameworks (MOFs). This method has been demonstrated to have promise in various fields but the extensive application of this approach is still challenging. This study proposed, for the first time, leveraging a specific surface-energy-dominated (SED) mechanism to achieve a highly efficient synthetic strategy for de novo NP encapsulation. The generality of this strategy is proved in applying to various MOFs, reaction conditions and the use of capping agents. By applying the strategy, Pd NPs with different morphologies are encapsulated in UiO-67, which is prone to self-assembly without coating, and an interesting enhancement is investigated in the selective semihydrogenation of alkynes on different Pd surfaces. These results demonstrate that the control of surface energy is a feasible method for efficient NP encapsulation which sheds light on the rational design of MOF-based composites for future applications.
Collapse
Affiliation(s)
- Li Zhou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yuanyuan An
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Jialong Ma
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Guoxiu Hao
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Zhehui Li
- Department of Chemistry Merkert Chemistry, Boston College, Chestnut Hill Massachusetts 02467 USA
| | - Junchen Chen
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
2
|
Kang H, Wu J, Lou B, Wang Y, Zhao Y, Liu J, Zou S, Fan J. Controllable Deposition of Bi onto Pd for Selective Hydrogenation of Acetylene. Molecules 2023; 28:molecules28052335. [PMID: 36903580 PMCID: PMC10005703 DOI: 10.3390/molecules28052335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The rational regulation of catalyst active sites at atomic scale is a key approach to unveil the relationship between structure and catalytic performance. Herein, we reported a strategy for the controllable deposition of Bi on Pd nanocubes (Pd NCs) in the priority order from corners to edges and then to facets (Pd NCs@Bi). The spherical aberration-corrected scanning transmission electron microscopy (ac-STEM) results indicated that Bi2O3 with an amorphous structure covers the specific sites of Pd NCs. When only the corners and edges of the Pd NCs were covered, the supported Pd NCs@Bi catalyst exhibited an optimal trade-off between high conversion and selectivity in the hydrogenation of acetylene to ethylene under ethylene-rich conditions (99.7% C2H2 conversion and 94.3% C2H4 selectivity at 170 °C) with remarkable long-term stability. According to the H2-TPR and C2H4-TPD measurements, the moderate hydrogen dissociation and the weak ethylene adsorption are responsible for this excellent catalytic performance. Following these results, the selectively Bi-deposited Pd nanoparticle catalysts showed incredible acetylene hydrogenation performance, which provides a feasible perspective to design and develop highly selective hydrogenation catalysts for industrial applications.
Collapse
Affiliation(s)
- Hongquan Kang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jianzhou Wu
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baohui Lou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yue Wang
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yilin Zhao
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Juanjuan Liu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310036, China
| | - Shihui Zou
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Correspondence: (S.Z.); (J.F.)
| | - Jie Fan
- Key Laboratory of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
- Correspondence: (S.Z.); (J.F.)
| |
Collapse
|
3
|
Ge X, Cao Y, Yan K, Li Y, Zhou L, Dai S, Zhang J, Gong X, Qian G, Zhou X, Yuan W, Duan X. Increasing the Distance of Adjacent Palladium Atoms for Configuration Matching in Selective Hydrogenation. Angew Chem Int Ed Engl 2022; 61:e202215225. [PMID: 36269685 DOI: 10.1002/anie.202215225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Precisely tailoring the distance between adjacent metal sites to match adsorption configurations of key species for the targeted reaction pathway is a great challenge in heterogeneous catalysis. Here, we report a proof-of-concept study on the atomically sites-tailored pathway in Pd-catalyzed acetylene hydrogenation, i.e., increasing the distance of adjacent Pd atoms (dPd-a-Pd ) for configuration matching in acetylene semi-hydrogenation against coupling. dPd-a-Pd is identified as a structural descriptor for describing the competitiveness for reaction pathways, and the increased dPd-a-Pd prefers the semi-hydrogenation pathway due to simultaneously promoted C2 H4 desorption and the destabilized transition state of the C2 H3 * coupling. Spectroscopic, kinetics and electronic structure studies reveal that increasing dPd-a-Pd to 3.31 Å delivers superior selectivity and stability due to energy matching and appropriate hybridization of Pd 4d with In 2s and, especially, 2p orbitals.
Collapse
Affiliation(s)
- Xiaohu Ge
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yurou Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Wang X, Chu M, Wang M, Zhong Q, Chen J, Wang Z, Cao M, Yang H, Cheng T, Chen J, Sham TK, Zhang Q. Unveiling the Local Structure and Electronic Properties of PdBi Surface Alloy for Selective Hydrogenation of Propyne. ACS NANO 2022; 16:16869-16879. [PMID: 36250595 DOI: 10.1021/acsnano.2c06834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Building a reliable relationship between the electronic structure of alloyed metallic catalysts and catalytic performance is important but remains challenging due to the interference from many entangled factors. Herein, a PdBi surface alloy structural model, by tuning the deposition rate of Bi atoms relative to the atomic interdiffusion rate at the interface, realizes a continuous modulation of the electronic structure of Pd. Using advanced X-ray characterization techniques, we provide a precise depiction of the electronic structure of the PdBi surface alloy. As a result, the PdBi catalysts show enhanced propene selectivity compared with the pure Pd catalyst in the selective hydrogenation of propyne. The prevented formation of saturated β-hydrides in the subsurface layers and weakened propene adsorption on the surface contribute to the high selectivity. Our work provides in-depth understanding of the electronic properties of surface alloy structure and underlies the study of the electronic structure-performance relationship in bimetallic catalysts.
Collapse
Affiliation(s)
- Xuchun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Mengwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Jiatang Chen
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Zhiqiang Wang
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| | - Tsun-Kong Sham
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, OntarioN6A5B7, Canada
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'Ai Road, Suzhou215123, China
| |
Collapse
|
5
|
Li Y, Yan K, Cao Y, Ge X, Zhou X, Yuan W, Chen D, Duan X. Mechanistic and Atomic-Level Insights into Semihydrogenation Catalysis to Light Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Zhao J, Jiang J, Wen S, Zhang J, Zhang C, Sheng N, Liang W, Sun B, Xu W, Yang Z, Pan Y. Research on alkali metal-modified Pd catalyst for oxygen removal from propylene. Front Chem 2022; 10:987556. [PMID: 36186586 PMCID: PMC9524148 DOI: 10.3389/fchem.2022.987556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
A series of alkali metal (Li, Na, and K)-modified Pd catalysts and Pd/Al2O3 were prepared and used to remove oxygen in a propylene flow with hydrogen’s existence. The results showed that the alkali metals could enhance the performance of the Pd catalysts and the effect followed the order of K > Na > Li. X-Ray diffraction (XRD), N2-physisorption, transmission electron microscopy (TEM), hydrogen temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were carried out to investigate the alkali metal-modified Pd catalysts and the promotional effect mechanism was explained. The results showed that alkali metal modification increased the electron density of Pd atoms to induce the negatively charged Pd species, which could enhance the adsorption of oxygen while weakening the adsorption of propylene, and then enhance the performance of the modified catalysts for oxygen removal from unsaturated hydrocarbon. The Pd-K/A catalyst performed the best on both oxygen removal and propylene hydrogenation inhibition.
Collapse
Affiliation(s)
- Jinchong Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- *Correspondence: Jie Jiang, ; Wei Xu,
| | - Song Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Jing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Changsheng Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Nan Sheng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Wei Liang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- *Correspondence: Jie Jiang, ; Wei Xu,
| | - Zhe Yang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
7
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Chen M, Yan K, Cao Y, Li Y, Ge X, Zhang J, Gong X, Qian G, Zhou X, Duan X. Thermodynamics Insights into the Selective Hydrogenation of Alkynes in C 2 and C 3 Streams. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingming Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kelin Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueqiang Cao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yurou Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaohu Ge
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jing Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
9
|
Luo Q, Wang Z, Chen Y, Mao S, Wu K, Zhang K, Li Q, Lv G, Huang G, Li H, Wang Y. Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31775-31784. [PMID: 34227385 DOI: 10.1021/acsami.1c09682] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Selective hydrogenation of alkynes plays a pivotal role in the field of chemical production but still suffers from restrained catalytic activity and low alkene selectivity. Herein, a dynamic modification strategy was utilized by preferentially attaching diethylenetriamine (DETA) to the surface of the support to modify the Pd catalyst. The DETA-modified Pd catalyst demonstrates unprecedented reactivity (14,412 h-1) and selectivity as high as 94% for the semihydrogenation of 2-methyl-3-butyn-2-ol at 35 °C, presenting a 36-fold higher reactivity than the Lindlar catalyst. Moreover, the yield exceeds 98.2% at full conversion under no solvent and organic adsorbate conditions, indicating the potential applications for industrial production. Systematic studies reveal that flexible DETA serves in a reversible "breathing pattern" for the molecular discrimination by constructing dynamic metal-support interaction (DMSI), enabling selective exclusion of alkenes from the Pd surface. DETA is competent to dynamically adjust the adsorption behaviors of reactants and effectively boost the intrinsic activity of the modified catalyst. Impressively, the DETA-modified Pd catalyst exhibits exceptional stability even after being recycled 20 times. This work sheds light on a novel and applicable method for the rational design of heterogeneous catalysts via DMSI.
Collapse
Affiliation(s)
- Qian Luo
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Zhe Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuzhuo Chen
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Kejun Wu
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Kaichao Zhang
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Qichuan Li
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Guofeng Lv
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Guodong Huang
- Zhejiang NHU Company Ltd, Xinchang County 312500, Zhejiang Province, P. R. China
| | - Haoran Li
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Center of Chemistry for Frontier Technolgies, Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
10
|
Han Y, Zhang X, Cai W, Zhao H, Zhang Y, Sun Y, Hu Z, Li S, Lai J, Wang L. Facet-controlled palladium nanocrystalline for enhanced nitrate reduction towards ammonia. J Colloid Interface Sci 2021; 600:620-628. [PMID: 34034122 DOI: 10.1016/j.jcis.2021.05.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Electrochemical nitrate reduction reaction (NO3-RR) is considered an appealing way for producing ammonia (NH3) under ambient conditions and solving environmental problems caused by nitrate, whereas the lack of adequate catalysts hampers the development of NO3-RR. Here, we firstly demonstrate that the Pd nanocrystalline with a well-desired facet can act as a highly efficient NO3-RR electrocatalyst for ambient ammonia synthesis. Pd (1 1 1) exhibits excellent activity and selectivity in reducing NO3- to NH4+ with a Faradaic efficiency of 79.91% and an NH4+ production of 0.5485 mmol h-1 cm-2 (2.74 mmol h-1 mg-1) in 0.1 M Na2SO4 (containing 0.1 M NO3-), which is 1.4 times higher than Pd (1 0 0) and 1.9 times higher than Pd (1 1 0), respectively. Density functional theory (DFT) calculation reveals that the superior NO3-RR activity of Pd (1 1 1) originates from its optimized activity of NO3- adsorption, smaller free energy change of the rate-limiting step (*NH3 to NH3), and poorer hydrogen evolution reaction activity (HER, competitive reaction). This work not only highlights the potentials of Pd-based nanocatalysts for NO3-RR but also provides new insight for the applications in NO3-RR of other facet-orientation nanomaterials.
Collapse
Affiliation(s)
- Yi Han
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinyi Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Wenwen Cai
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huan Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yanyun Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuyao Sun
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhiqiang Hu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
11
|
Gong J, Chu M, Guan W, Liu Y, Zhong Q, Cao M, Xu Y. Regulating the Interfacial Synergy of Ni/Ga 2O 3 for CO 2 Hydrogenation toward the Reverse Water–Gas Shift Reaction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jin Gong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Mingyu Chu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Wenhao Guan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Yu Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Qixuan Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Muhan Cao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
| | - Yong Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, China
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
12
|
Xu Y, Chu M, Liu F, Wang X, Liu Y, Cao M, Gong J, Luo J, Lin H, Li Y, Zhang Q. Revealing the Correlation between Catalytic Selectivity and the Local Coordination Environment of Pt Single Atom. NANO LETTERS 2020; 20:6865-6872. [PMID: 32786220 DOI: 10.1021/acs.nanolett.0c02940] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single atom catalysts (SACs) have recently attracted great attention in heterogeneous catalysis and have been regarded as ideal models for investigating the strong interaction between metal and support. Despite the huge progress over the past decade, the deep understanding on the structure-performance correlation of SACs at a single atom level still remains to be a great challenge. In this study, we demonstrate that the variation in the coordination number of the Pt single atom can significantly promote the propylene selectivity during propyne semihydrogenation (PSH) for the first time. Specifically, the propylene selectivity greatly increases from 65.4% to 94.1% as the coordination number of Pt-O increases from ∼3.4 to ∼5, whereas the variation in the coordination number of Pt-O slightly influences the turnover frequency values of SACs. We anticipate that the present work may deepen the understanding on the structure-performance of SACs and also promote the fundamental research in single atom catalysis.
Collapse
Affiliation(s)
- Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Mingyu Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Fangfang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Xuchun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Yu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Jin Gong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haiping Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University Jiangsu 215123, China
| |
Collapse
|
13
|
Chen J, Chu M, Lyu F, Gong J, Wu L, Liu L, Xu Y, Zhang Q. Strong Synergy between Ti3C2 and N-Doped Co Nanoparticles Boosts the Selective Hydrogenation of Propyne. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jianian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Mingyu Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Jin Gong
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Linzhong Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Lijia Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Yong Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren’ai Road, Suzhou 215123, Jiangsu, People’s Republic of China
| |
Collapse
|