Adesina AS, Świderek K, Luk LYP, Moliner V, Allemann RK. Electric Field Measurements Reveal the Pivotal Role of Cofactor-Substrate Interaction in Dihydrofolate Reductase Catalysis.
ACS Catal 2020;
10:7907-7914. [PMID:
32905264 PMCID:
PMC7467645 DOI:
10.1021/acscatal.0c01856]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Indexed: 12/31/2022]
Abstract
![]()
The
contribution of ligand–ligand electrostatic interaction
to transition state formation during enzyme catalysis has remained
unexplored, even though electrostatic forces are known to play a major
role in protein functions and have been investigated by the vibrational
Stark effect (VSE). To monitor electrostatic changes along important
steps during catalysis, we used a nitrile probe (T46C-CN) inserted
proximal to the reaction center of three dihydrofolate reductases
(DHFRs) with different biophysical properties, Escherichia
coli DHFR (EcDHFR), its conformationally impaired variant
(EcDHFR-S148P), and Geobacillus stearothermophilus DHFR (BsDHFR). Our combined experimental and computational approach
revealed that the electric field projected by the substrate toward
the probe negates those exerted by the cofactor when both are bound
within the enzymes. This indicates that compared to previous models
that focus exclusively on subdomain reorganization and protein–ligand
contacts, ligand–ligand interactions are the key driving force
to generate electrostatic environments conducive for catalysis.
Collapse