1
|
Hu J, Yang F, Liu C, Wang N, Xiao Y, Zhai Y, Wang X, Zhang R, Gao L, Xu M, Wang J, Liu Z, Huang S, Liu W, Hu Y, Liu F, Guo Y, Wang L, Yuan J, Zhang Z, Chu J. UFObow: A single-wavelength excitable Brainbow for simultaneous multicolor ex-vivo and in-vivo imaging of mammalian cells. Commun Biol 2024; 7:394. [PMID: 38561421 PMCID: PMC10984974 DOI: 10.1038/s42003-024-06062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.
Collapse
Affiliation(s)
- Jiahong Hu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Fangfang Yang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chong Liu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Nengzhi Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yinghan Xiao
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yujie Zhai
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinru Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ren Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Lulu Gao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Mengli Xu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Jialu Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng Liu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Songlin Huang
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Wenfeng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yajing Hu
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Feng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuqi Guo
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Yuan
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Zhihong Zhang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, Hainan, 570228, China.
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Kumar V, Turnbull WB, Kumar A. Review on Recent Developments in Biocatalysts for Friedel–Crafts Reactions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vajinder Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, Punjab 151302, India
| |
Collapse
|
3
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Klein AS, Zeymer C. Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis. Protein Eng Des Sel 2021; 34:6150309. [PMID: 33635315 DOI: 10.1093/protein/gzab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
Metalloproteins are essential to sustain life. Natural evolution optimized them for intricate structural, regulatory and catalytic functions that cannot be fulfilled by either a protein or a metal ion alone. In order to understand this synergy and the complex design principles behind the natural systems, simpler mimics were engineered from the bottom up by installing de novo metal sites in either natural or fully designed, artificial protein scaffolds. This review focuses on key challenges associated with this approach. We discuss how proteins can be equipped with binding sites that provide an optimal coordination environment for a metal cofactor of choice, which can be a single metal ion or a complex multinuclear cluster. Furthermore, we highlight recent studies in which artificial metalloproteins were engineered towards new functions, including electron transfer and catalysis. In this context, the powerful combination of de novo protein design and directed evolution is emphasized for metalloenzyme development.
Collapse
Affiliation(s)
- Andreas S Klein
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| | - Cathleen Zeymer
- Department of Chemistry, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
5
|
Zhou L, Li CL, Gao RT, Kang SM, Xu L, Xu XH, Liu N, Wu ZQ. Highly Regioselective and Helix-Sense Selective Living Polymerization of Phenyl and Alkoxyallene Using Chiral Nickel(II) Catalysts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02198] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Chong-Long Li
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021 Ningxia Hui Autonomous Region, China
| | - Run-Tan Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Shu-Ming Kang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009 Anhui Province, China
| |
Collapse
|
6
|
Brewster RC, Klemencic E, Jarvis AG. Palladium in biological media: Can the synthetic chemist's most versatile transition metal become a powerful biological tool? J Inorg Biochem 2020; 215:111317. [PMID: 33310459 DOI: 10.1016/j.jinorgbio.2020.111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Palladium catalysed reactions are ubiquitous in synthetic organic chemistry in both organic solvents and aqueous buffers. The broad reactivity of palladium catalysis has drawn interest as a means to conduct orthogonal transformations in biological settings. Successful examples have been shown for protein modification, in vivo drug decaging and as palladium-protein biohybrid catalysts for selective catalysis. Biological media represents a challenging environment for palladium chemistry due to the presence of a multitude of chelators, catalyst poisons and a requirement for milder reaction conditions e.g. lower temperatures. This review looks to identify successful examples of palladium-catalysed reactions in the presence of proteins or cells and analyse solutions to help to overcome the challenges of working in biological systems.
Collapse
Affiliation(s)
- Richard C Brewster
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Eva Klemencic
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
| |
Collapse
|
7
|
Ghattas W, Mahy JP, Réglier M, Simaan AJ. Artificial Enzymes for Diels-Alder Reactions. Chembiochem 2020; 22:443-459. [PMID: 32852088 DOI: 10.1002/cbic.202000316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.
Collapse
Affiliation(s)
- Wadih Ghattas
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, 91405 Cedex 8, France
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), UMR 8182 CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, 91405 Cedex 8, France
| | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Avenue Escadrille Normandie Niemen, Service 342, Marseille, 13397, France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Avenue Escadrille Normandie Niemen, Service 342, Marseille, 13397, France
| |
Collapse
|
8
|
Jarvis AG. Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis. Curr Opin Chem Biol 2020; 58:63-71. [PMID: 32768658 DOI: 10.1016/j.cbpa.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 02/09/2023]
Abstract
Combining organometallics and biology has generated broad interest from scientists working on applications from in situ drug release to biocatalysis. Engineered enzymes and biohybrid catalysts (also referred to as artificial enzymes) have introduced a wide range of abiotic chemistry into biocatalysis. Predominantly, this work has concentrated on using these catalysts for single step in vitro reactions. However, the promise of using these hybrid catalysts in vivo and combining them with synthetic biology and metabolic engineering is vast. This report will briefly review recent advances in artificial metalloenzyme design, followed by summarising recent studies that have looked at the use of these hybrid catalysts in vivo and in enzymatic cascades, therefore exploring their potential for synthetic biology.
Collapse
Affiliation(s)
- Amanda G Jarvis
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
9
|
Jeong WJ, Yu J, Song WJ. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chem Commun (Camb) 2020; 56:9586-9599. [DOI: 10.1039/d0cc03137b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have extracted and categorized the desirable properties of proteins that are adapted as the scaffolds for artificial metalloenzymes.
Collapse
Affiliation(s)
- Woo Jae Jeong
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jaeseung Yu
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Woon Ju Song
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|