1
|
Nawaz MA, Blay-Roger R, Saif M, Meng F, Bobadilla LF, Reina TR, Odriozola JA. Redefining the Symphony of Light Aromatic Synthesis Beyond Fossil Fuels: A Journey Navigating through a Fe-Based/HZSM-5 Tandem Route for Syngas Conversion. ACS Catal 2024; 14:15150-15196. [PMID: 39444526 PMCID: PMC11494843 DOI: 10.1021/acscatal.4c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
The escalating concerns about traditional reliance on fossil fuels and environmental issues associated with their exploitation have spurred efforts to explore eco-friendly alternative processes. Since then, in an era where the imperative for renewable practices is paramount, the aromatic synthesis industry has embarked on a journey to diversify its feedstock portfolio, offering a transformative pathway toward carbon neutrality stewardship. This Review delves into the dynamic landscape of aromatic synthesis, elucidating the pivotal role of renewable resources through syngas/CO2 utilization in reshaping the industry's net-zero carbon narrative. Through a meticulous examination of recent advancements, the current Review navigates the trajectory toward admissible aromatics production, highlighting the emergence of Fischer-Tropsch tandem catalysis as a game-changing approach. Scrutinizing the meliorated interplay of Fe-based catalysts and HZSM-5 molecular sieves would uncover the revolutionary potential of rationale design and optimization of integrated catalytic systems in driving the conversion of syngas/CO2 into aromatic hydrocarbons (especially BTX). In essence, the current Review would illuminate the path toward cutting-edge research through in-depth analysis of the transformative power of tandem catalysis and its capacity to propel carbon neutrality goals by unraveling the complexities of renewable aromatic synthesis and paving the way for a carbon-neutral and resilient tomorrow.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Rubén Blay-Roger
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Maria Saif
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Fanhui Meng
- State
Key Laboratory of Clean and Efficient Coal Utilization, College of
Chemical Engineering and Technology, Taiyuan
University of Technology, Taiyuan 030024, China
| | - Luis F. Bobadilla
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Tomas Ramirez Reina
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - J. A. Odriozola
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
2
|
Wu X, Wang C, Zhao S, Wang Y, Zhang T, Yao J, Gao W, Zhang B, Arakawa T, He Y, Chen F, Tan M, Yang G, Tsubaki N. Dual-engine-driven realizing high-yield synthesis of Para-Xylene directly from CO 2-containing syngas. Nat Commun 2024; 15:8064. [PMID: 39277588 PMCID: PMC11401844 DOI: 10.1038/s41467-024-52482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
The direct synthesis of light aromatics, especially para-xylene (p-X), from syngas/CO2 is drawing strong interest, but improving the space-time yield (STY) of p-X is a significant challenge. Here, a dynamic "dual-engine-driven" (DED) catalytic system is designed by combining two partners of ZnCr and FeMn (named "dual-engine") with Z5@SiO2 capsule zeolite. The DED catalyst of 1.0%FeMn&[ZnCr&Z5@SiO2] shows an extremely higher p-X STY of 36.1 gp-x·kgcat-1·h-1, about eight times higher than that of [ZnCr&Z5]. DED manipulates ZnCr engine for methanol formation and drives FeMn engine for light olefins generation together, and then the formed methanol and light olefins are coordinately converted in situ into p-X-rich aromatics over Z5@SiO2. The DED model boosts the driving force for syngas/CO2 conversion, simultaneously concerting the cooperation of "dual-engine" for p-X generation, resulting in extremely high STY of p-X. This study achieves non-petroleum p-X production at industrial-relevant level and advances knowledge in designing innovative heterogeneous catalysts.
Collapse
Affiliation(s)
- Xuemei Wu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengwei Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Shengying Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China.
| | - Tao Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Jie Yao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Weizhe Gao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Baizhang Zhang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Taiki Arakawa
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Yingluo He
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Fei Chen
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Minghui Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.
| |
Collapse
|
3
|
Mykhailovych V, Caruntu G, Graur A, Mykhailovych M, Fochuk P, Fodchuk I, Rotaru GM, Rotaru A. Fabrication and Characterization of Dielectric ZnCr 2O 4 Nanopowders and Thin Films for Parallel-Plate Capacitor Applications. MICROMACHINES 2023; 14:1759. [PMID: 37763922 PMCID: PMC10534308 DOI: 10.3390/mi14091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
We report here the successful shape-controlled synthesis of dielectric spinel-type ZnCr2O4 nanoparticles by using a simple sol-gel auto-combustion method followed by successive heat treatment steps of the resulting powders at temperatures from 500 to 900 °C and from 5 to 11 h, in air. A systematic study of the dependence of the morphology of the nanoparticles on the annealing time and temperature was performed by using field effect scanning electron microscopy (FE-SEM), powder X-ray diffraction (PXRD) and structure refinement by the Rietveld method, dynamic lattice analysis and broadband dielectric spectrometry, respectively. It was observed for the first time that when the aerobic post-synthesis heat treatment temperature increases progressively from 500 to 900 °C, the ZnCr2O4 nanoparticles: (i) increase in size from 10 to 350 nm and (ii) develop well-defined facets, changing their shape from shapeless to truncated octahedrons and eventually pseudo-octahedra. The samples were found to exhibit high dielectric constant values and low dielectric losses with the best dielectric performance characteristics displayed by the 350 nm pseudo-octahedral nanoparticles whose permittivity reaches a value of ε = 1500 and a dielectric loss tan δ = 5 × 10-4 at a frequency of 1 Hz. Nanoparticulate ZnCr2O4-based thin films with a thickness varying from 0.5 to 2 μm were fabricated by the drop-casting method and subsequently incorporated into planar capacitors whose dielectric performance was characterized. This study undoubtedly shows that the dielectric properties of nanostructured zinc chromite powders can be engineered by the rational control of their morphology upon the variation of the post-synthesis heat treatment process.
Collapse
Affiliation(s)
- Vasyl Mykhailovych
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, 13, University St., No. 13, 720229 Suceava, Romania
- Department of General Chemistry and Material Science, Yuriy Fedkovych Chernivtsi National University, 2, Kotsjubynskyi St., 58012 Chernivtsi, Ukraine
- Physical, Technical and Computer Science Institute, Yuriy Fedkovych Chernivtsi National University, 2, Kotsjubynskyi St., 58012 Chernivtsi, Ukraine
| | - Gabriel Caruntu
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, 13, University St., No. 13, 720229 Suceava, Romania
- Department of Chemistry and Biochemistry, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI 48859, USA
- Science of Advanced Materials Program, Central Michigan University, 1200 S. Franklin St., Mount Pleasant, MI 48859, USA
| | - Adrian Graur
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, 13, University St., No. 13, 720229 Suceava, Romania
| | - Mariia Mykhailovych
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, 13, University St., No. 13, 720229 Suceava, Romania
- Department of General Chemistry and Material Science, Yuriy Fedkovych Chernivtsi National University, 2, Kotsjubynskyi St., 58012 Chernivtsi, Ukraine
| | - Petro Fochuk
- Department of General Chemistry and Material Science, Yuriy Fedkovych Chernivtsi National University, 2, Kotsjubynskyi St., 58012 Chernivtsi, Ukraine
| | - Igor Fodchuk
- Physical, Technical and Computer Science Institute, Yuriy Fedkovych Chernivtsi National University, 2, Kotsjubynskyi St., 58012 Chernivtsi, Ukraine
| | - Gelu-Marius Rotaru
- Faculty of Mechanical Engineering Mechatronics and Management & Research Center MANSiD, Stefan cel Mare University, 720229 Suceava, Romania
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, Stefan cel Mare University of Suceava, 13, University St., No. 13, 720229 Suceava, Romania
| |
Collapse
|
4
|
Gong X, Ye Y, Chowdhury AD. Evaluating the Role of Descriptor- and Spectator-Type Reaction Intermediates During the Early Phases of Zeolite Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuan Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Yiru Ye
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| | - Abhishek Dutta Chowdhury
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei People’s Republic of China
| |
Collapse
|
5
|
Tian G, Zhang C, Wei F. CO x conversion to aromatics: a mini-review of nanoscale performance. NANOSCALE HORIZONS 2022; 7:1478-1487. [PMID: 36102797 DOI: 10.1039/d2nh00307d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The conversion of COx into value-added green aromatics is considered as a promising route to achieve the world's decarbonization due to its considerable thermodynamic driving force and atomic economy where low H/C ratio aromatics are chosen as a product. It is enabled by bifunctional nano-catalysts composed of metal oxides with abundant oxygen vacancies and acid zeolites, thus realizing superior selectivity in hydrocarbons at the single pass of COx conversion. In this mini-review, we mainly provide some thought-provoking insights at the nanoscale of this complicated process including the proximity of active sites, reaction mechanism, asymmetric desorption behavior of intermediates and final products and overall thermodynamic analysis. The facile surface diffusion of intermediates owing to the proximity of active sites stimulates the reaction, which follows an autocatalytic process. This positive feedback attributed to the autocatalytic cycle accelerates the transformation of energy and materials in the thermodynamically optimal direction, making the reaction highly selective towards the final products. This complicated coupling process, like a nano-maze constituted by these micro-environment factors, is complicated in terms of the reaction pathway but highly selective to a fixed direction guided by overall thermodynamics. Deep understanding of such an autocatalytic cycle at the nanoscale paves the way for the rational design of next-generation high-performance catalysts.
Collapse
Affiliation(s)
- Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Shang X, Liu G, Su X, Huang Y, Zhang T. Preferential Synthesis of Toluene and Xylene from CO 2 Hydrogenation in the Presence of Benzene through an Enhanced Coupling Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Shang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Guodong Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
| | - Xiong Su
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
| | - Yanqiang Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
| | - Tao Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian116023, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr 2O 4 spinel. Nat Commun 2022; 13:5567. [PMID: 36138013 PMCID: PMC9500042 DOI: 10.1038/s41467-022-33217-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Spontaneous monodispersion of reducible active species (e.g., Fe, Co) and their stabilization in reductive atmospheres remain a key challenge in catalytic syngas chemistry. In this study, we present a series of catalysts including spontaneously monodispersed and enriched Fe on ZnCr2O4. Deep investigation shows remarkable performance in the syngas-to-aromatic reaction only when monodispersed Fe coupled with a H-ZSM-5 zeolite. Monodispersed Fe increases the turnover frequency from 0.14 to 0.48 s−1 without sacrificing the record high selectivity of total aromatics (80–90%) at a single pass. The increased activity is ascribed to more efficient activation of CO and H2 at oxygen vacancy nearest to the isolated Fe site and the prevention of carbide formation. Atomic precise characterization and theoretical calculations shed light on the origin and implications of spontaneous Fe monodispersion, which provide guidance to the design of next-generation catalyst for upgrading small molecules to synthetic fuels and chemicals. Spontaneous monodispersion of active species and their stabilization in reductive atmospheres remain a challenge in catalytic syngas chemistry. Here the authors demonstrate that syngas-to-aromatic conversion can be significantly accelerated by the spontaneously monodispersed Fe in ZnCr2O4 spinel.
Collapse
|
8
|
Amoo C, Xing C, Tsubaki N, Sun J. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. ACS CENTRAL SCIENCE 2022; 8:1047-1062. [PMID: 36032758 PMCID: PMC9413433 DOI: 10.1021/acscentsci.2c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Syngas conversion can play a vital role in providing energy and chemical supplies while meeting environmental requirements as the world gradually shifts toward a net-zero. While prospects of this process cannot be doubted, there is a lingering challenge in distinct product selectivity over the bulk transitional metal catalysts. To advance research in this respect, composite catalysts comprising traditional metal catalysts and zeolites have been deployed to distinct product selectivity while suppressing side reactions. Zeolites are common but highly efficient materials used in the chemical industry for hydroprocessing. Combining the advantages of zeolites and some transition metal catalysts has promoted the catalytic production of various hydrocarbons (e.g., light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from syngas. In this outlook, a thorough revelation on recent progress in syngas conversion to various products over metal-zeolite composite catalysts is validated. The strategies adopted to couple the metal species and zeolite material into a composite as well as the consequential morphologies for specific product selectivity are highlighted. The key zeolite descriptors that influence catalytic performance, such as framework topologies, proximity and confinement effects, acidities and cations, pore systems, and particle sizes are discussed to provide a deep understanding of the significance of zeolites in syngas conversion. Finally, an outlook regarding challenges and opportunities for syngas conversion using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Cederick
Cyril Amoo
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Xing
- School
of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Noritatsu Tsubaki
- Department
of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Jian Sun
- Dalian
National Laboratory for Clean Energy, Dalian Institute of Chemical
Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
Zhou Z, Gao P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
|
11
|
Han H, Zhang A, Ren L, Nie X, Liu M, Liu Y, Shi C, Yang H, Song C, Guo X. Coke-resistant (Pt + Ni)/ZSM-5 catalyst for shape-selective alkylation of toluene with methanol to para-xylene. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Han X, Zuo J, Wen D, Yuan Y. Toluene methylation with syngas to para-xylene by bifunctional ZnZrO -HZSM-5 catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Liu Z, Ni Y, Gao M, Wang L, Fang X, Liu J, Chen Z, Wang N, Tian P, Zhu W, Liu Z. Simultaneously Achieving High Conversion and Selectivity in Syngas-to-Propane Reaction via a Dual-Bed Catalyst System. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhaopeng Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youming Ni
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Mingbin Gao
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Linying Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Xudong Fang
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyang Chen
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Nan Wang
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Tian
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Wenliang Zhu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhongmin Liu
- National Engineering Laboratory for Methanol to Olefins, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Liu Z, Ni Y, Hu Z, Fu Y, Fang X, Jiang Q, Chen Z, Zhu W, Liu Z. Insights into effects of ZrO2 crystal phase on syngas-to-olefin conversion over ZnO/ZrO2 and SAPO-34 composite catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63908-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Yang L, Wang C, Dai W, Wu G, Guan N, Li L. Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites. FUNDAMENTAL RESEARCH 2022; 2:184-192. [PMID: 38933155 PMCID: PMC11197791 DOI: 10.1016/j.fmre.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/23/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the complete reaction network and mechanism of methanol-to-hydrocarbons remains a key challenge in the field of zeolite catalysis and C1 chemistry. Inspired by the identification of the reactive surface methoxy species on solid acids, several direct mechanisms associated with the formation of the first C-C bond in methanol conversion have been recently disclosed. Identifying the stepwise involvement of the initial intermediates containing the first C-C bond in the whole reaction process of methanol-to-hydrocarbons conversion becomes possible and attractive for the further development of this important reaction. Herein, several initial unsaturated aldehydes/ketones containing the C-C bond are identified via complementary spectroscopic techniques. With the combination of kinetic and spectroscopic analyses, a complete roadmap of the zeolite-catalyzed methanol-to-hydrocarbons conversion from the initial C-C bonds to the hydrocarbon pool species via the oxygen-containing unsaturated intermediates is clearly illustrated. With the participation of both Brønsted and Lewis acid sites in H-ZSM-5 zeolite, an initial aldol-cycle is proposed, which can be closely connected to the well-known dual-cycle mechanism in the methanol-to-hydrocarbons conversion.
Collapse
Affiliation(s)
- Liu Yang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chang Wang
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weili Dai
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guangjun Wu
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Naijia Guan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Frontiers Science Center for New Organic Matter and Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Landong Li
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
- Frontiers Science Center for New Organic Matter and Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Arslan MT, Tian G, Ali B, Zhang C, Xiong H, Li Z, Luo L, Chen X, Wei F. Highly Selective Conversion of CO2 or CO into Precursors for Kerosene-Based Aviation Fuel via an Aldol–Aromatic Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Muhammad Tahir Arslan
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Guo Tian
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Babar Ali
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center of Fluid Syngas to Aromatics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Xiong
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhengwen Li
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Liqiang Luo
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center of Fluid Syngas to Aromatics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Wen D, Han XQ, Zuo J, Liu J, Ye L, Yuan Y. Synthesis of durene by methylation of 1,2,4-trimethylbenzene with syngas over bifunctional CuZnZrOx–HZSM-5 catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00037g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2,4,5-Tetramethylbenzene (durene) is a value-added aromatic used in producing high-end polyesters. The known synthesis routes of durene by 1,2,4-trimethylbenzene (1,2,4-TriMB) methylation with methanol or direct conversion from syngas suffer from...
Collapse
|
18
|
Wei J, Yao R, Han Y, Ge Q, Sun J. Towards the development of the emerging process of CO 2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem Soc Rev 2021; 50:10764-10805. [PMID: 34605829 DOI: 10.1039/d1cs00260k] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The emerging process of CO2 hydrogenation through heterogenous catalysis into important bulk chemicals provides an alternative strategy for sustainable and low-cost production of valuable chemicals, and brings an important chance for mitigating CO2 emissions. Direct synthesis of the family of unsaturated heavy hydrocarbons such as α-olefins and aromatics via CO2 hydrogenation is more attractive and challenging than the production of short-chain products to modern society, suffering from the difficult control between C-O activation and C-C coupling towards long-chain hydrocarbons. In the past several years, rapid progress has been achieved in the development of efficient catalysts for the process and understanding of their catalytic mechanisms. In this review, we provide a comprehensive, authoritative and critical overview of the substantial progress in the synthesis of α-olefins and aromatics from CO2 hydrogenation via direct and indirect routes. The rational fabrication and design of catalysts, proximity effects of multi-active sites, stability and deactivation of catalysts, reaction mechanisms and reactor design are systematically discussed. Finally, current challenges and potential applications in the development of advanced catalysts, as well as opportunities of next-generation CO2 hydrogenation techniques for carbon neutrality in future are proposed.
Collapse
Affiliation(s)
- Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ruwei Yao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
19
|
Wang Y, Wang G, Wal LI, Cheng K, Zhang Q, Jong KP, Wang Y. Visualizing Element Migration over Bifunctional Metal‐Zeolite Catalysts and its Impact on Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Lars I. Wal
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Krijn P. Jong
- Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University 3584 CG Utrecht The Netherlands
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
20
|
Wang Y, Wang G, van der Wal LI, Cheng K, Zhang Q, de Jong KP, Wang Y. Visualizing Element Migration over Bifunctional Metal-Zeolite Catalysts and its Impact on Catalysis. Angew Chem Int Ed Engl 2021; 60:17735-17743. [PMID: 34101971 DOI: 10.1002/anie.202107264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 11/11/2022]
Abstract
The catalytic performance of composite catalysts is not only affected by the physicochemical properties of each component, but also the proximity and interaction between them. Herein, we employ four representative oxides (In2 O3 , ZnO, Cr2 O3 , and ZrO2 ) to combine with H-ZSM-5 for the hydrogenation of CO2 to hydrocarbons directed by methanol intermediate and clarify the correlation between metal migration and the catalytic performance. The migration of metals to zeolite driven by the harsh reaction conditions can be visualized by electron microscopy, meanwhile, the change of zeolite acidity is also carefully characterized. The protonic sites of H-ZSM-5 are neutralized by mobile indium and zinc species via a solid ion-exchange mechanism, resulting in a drastic decrease of C2+ hydrocarbon products over In2 O3 /H-ZSM-5 and ZnO/H-ZSM-5. While, the thermomigration ability of chromium and zirconium species is not significant, endowing Cr2 O3 /H-ZSM-5 and ZrO2 /H-ZSM-5 catalysts with high selectivity of C2+ hydrocarbons.
Collapse
Affiliation(s)
- Yuhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Genyuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lars I van der Wal
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Kang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Krijn P de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
21
|
The carboxylates formed on oxides promoting the aromatization in syngas conversion over composite catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63691-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Han Y, Fang C, Ji X, Wei J, Ge Q, Sun J. Interfacing with Carbonaceous Potassium Promoters Boosts Catalytic CO2 Hydrogenation of Iron. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03215] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu Han
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyan Fang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xuewei Ji
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Wei
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qingjie Ge
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Sun
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
23
|
Wang H, Hou Y, Sun W, Hu Q, Xiong H, Wang T, Yan B, Qian W. Insight into the Effects of Water on the Ethene to Aromatics Reaction with HZSM-5. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huiqiu Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yilin Hou
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Wenjing Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, People’s Republic of China
| | - Qikun Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Hao Xiong
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tiefeng Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Binhang Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Weizhong Qian
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|