1
|
Liu LC, Lin S, Xu K, Qian J, Wu R, Li Q, Wang H. NHC-Au-Catalyzed Isomerization of Propargylic B(MIDA)s to Allenes and Double Isomerization of Alkynes to 1,3-Dienes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308710. [PMID: 38477453 DOI: 10.1002/advs.202308710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 03/14/2024]
Abstract
The synthesis of allenyl boronates is an important yet challenging topic in organic synthesis. Reported herein is an NHC-gold-catalyzed 1,3-H shift toward allenyl boronates synthesis from simple propargylic B(MIDA)s. Mechanistic studies suggest dual roles of the boryl moiety in the reaction: to activate the substrate for isomerization and at the same time, to prevent the allene product from further isomerization. These effects should be a result of α-anion stabilization and α-cation destabilization conferred by the B(MIDA) moiety, respectively. The NHC-Au catalyst, which is commercially available, is also found to be reactive in alkyne-to-1,3-diene isomerization reactions in an atom-economic and base-free manner.
Collapse
Affiliation(s)
- Li-Cai Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kangwei Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiasheng Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Wang Z, Cao T, Zhu S. Gold-Catalyzed Enynal and Enynol Coupling by Selectively Steering Two Transient Vinyl-Gold Intermediates. Org Lett 2022; 24:9296-9300. [PMID: 36484517 DOI: 10.1021/acs.orglett.2c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vinyl-gold bond is easily accessible but less exploited in homogeneous gold catalysis, which possesses weak nucleophilicity and would be likely to undergo protodemetalation. Herein, a gold-catalyzed enynal and enynol coupling by selectively steering two transient vinyl-gold intermediates is realized under mild conditions. It exhibits high atom economy and good tolerance of functional groups with the added benefit of operational simplicity. The control experiments indicated that the in situ formed vinyl-gold accounts for the reactivity.
Collapse
Affiliation(s)
- Zipeng Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
Li T, Dong S, Tang C, Zhu M, Wang N, Kong W, Gao W, Zhu J, Zhang L. Asymmetric Construction of α,γ-Disubstituted α,β-Butenolides Directly from Allylic Ynoates Using a Chiral Bifunctional Phosphine Ligand Enables Cooperative Au Catalysis. Org Lett 2022; 24:4427-4432. [PMID: 35696656 DOI: 10.1021/acs.orglett.2c01652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient construction of chiral γ-substituted α-allyl-α,β-butenolides with up to >99% enantiomeric excess from readily available allylic ynoates is realized. In this asymmetric gold catalysis, the cationic gold(I) catalyst featuring a bifunctional phosphine ligand enables a four-step cascade which permits the conversion of a diverse array of allylic ynoates into valuable chiral α,γ-disubstituted α,β-butenolides.
Collapse
Affiliation(s)
- Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P.R. China.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 P.R. China
| | - Conghui Tang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Meiling Zhu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Nan Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Wenchao Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P.R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChem), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 P.R. China
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Lu F, Chen Y, Song X, Yu C, Li T, Zhang K, Yao C. NHC-Catalyzed [2 + 4] Annulation of Alkynyl Ester with Chalcone. J Org Chem 2022; 87:6902-6909. [PMID: 35486449 DOI: 10.1021/acs.joc.2c00022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed [2 + 4] cyclization of alkynyl ester with α,β-unsaturated ketone to form a pyran scaffold was developed successfully. The cheap and easily available starting materials, mild reaction conditions, moderate to excellent yields, and high atom economy make this strategy attractive for the syntheses of highly substituted 4H-pyran derivatives.
Collapse
Affiliation(s)
- Fangfang Lu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yangxu Chen
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xue Song
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Tuanjie Li
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
5
|
Abstract
Carbon–carbon bond formation by [3,3]-sigmatropic rearrangement is a fundamental and powerful method that has been used to build organic molecules for a long time. Initially, Claisen and Cope rearrangements proceeded at high temperatures with limited scopes. By introducing catalytic systems, highly functionalized substrates have become accessible for forming complex structures under mild conditions, and asymmetric synthesis can be achieved by using chiral catalytic systems. This review describes recent breakthroughs in catalytic [3,3]-sigmatropic rearrangements since 2016. Detailed reaction mechanisms are discussed to enable an understanding of the reactivity and selectivity of the reactions. Finally, this review is inspires the development of new cascade reaction pathways employing catalytic [3,3]-sigmatropic rearrangement as related methodologies for the synthesis of complex functional molecules.
Collapse
|
6
|
Li T, Cheng X, Qian P, Zhang L. Gold-catalysed asymmetric net addition of unactivated propargylic C-H bonds to tethered aldehydes. Nat Catal 2021; 4:164-171. [PMID: 34755042 PMCID: PMC8574197 DOI: 10.1038/s41929-020-00569-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The asymmetric one-step net addition of unactivated propargylic C-H bond to aldehyde leads to an atom-economic construction of versatile chiral propargylic alcohols but has not been realized previously. Here we show its implementation in an intramolecular manner under mild reaction conditions. Via cooperative gold catalysis enabled by a chiral bifunctional phosphine ligand, this chemistry achieves asymmetric catalytic deprotonation of propargylic C-H (pKa > 30) by a tertiary amine group (pKa ~ 10) of the ligand in the presence of much more acidic aldehydic α-hydrogens (pKa ~ 17). The reaction exhibits a broad scope and readily accommodates various functional groups. The 5-/6-membered ring fused homopropargylic alcohol products are formed with excellent enantiomeric excesses and high trans-selectivities with or without a preexisting substrate chiral center. DFT studies of the reaction support the conceived reaction mechanism and the calculated energetics corroborate the observed stereoselectivity and confirm an additional metal-ligand cooperation.
Collapse
Affiliation(s)
- Ting Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.,Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, College of Chemistry & Materials Engineering, Institute of New Materials& Industry Technology, Wenzhou University, Wenzhou 325000, China
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Pengcheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, College of Chemistry & Materials Engineering, Institute of New Materials& Industry Technology, Wenzhou University, Wenzhou 325000, China
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Zuccarello G, Escofet I, Caniparoli U, Echavarren AM. New-Generation Ligand Design for the Gold-Catalyzed Asymmetric Activation of Alkynes. Chempluschem 2021; 86:1283-1296. [PMID: 34472729 PMCID: PMC8457203 DOI: 10.1002/cplu.202100232] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Indexed: 01/01/2023]
Abstract
Gold(I) catalysts are ideal for the activation of alkynes under very mild conditions. However, unlike allenes or alkenes, the triple bond of alkynes cannot be prochiral. In addition, the linear coordination displayed by gold(I) complexes places the chiral ligand far away from the substrate resulting in an inefficient transfer of chiral information. This poses a significant challenge for the achievement of high enantiocontrol in gold(I)-catalyzed reactions of alkynes. Although considerable progress on enantioselective gold(I)-catalyzed transformations has recently been achieved, the asymmetric activation of non-prochiral alkyne-containing small molecules still represents a great challenge. Herein we summarize recent advances in intra- and intermolecular enantioselective gold(I)-catalyzed reactions involving alkynes, discussing new chiral ligand designs that lie at the basis of these developments. We also focus on the mode of action of these catalysts, their possible limitations towards a next-generation of more efficient ligand designs. Finally, square planar chiral gold(III) complexes, which offer an alternative to chiral gold(I) complexes, are also discussed.
Collapse
Affiliation(s)
- Giuseppe Zuccarello
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Ulysse Caniparoli
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/Marcel⋅lí Domingo s/n43007TarragonaSpain
| |
Collapse
|
8
|
Guo H, Zhang S, Yu X, Feng X, Yamamoto Y, Bao M. [3 + 2] Cycloaddition of α-Aryl-α-diazoacetates with Terminal Alkynes via the Cooperative Catalysis of Palladium and Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hongyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
9
|
Cheng X, Li T, Gutman K, Zhang L. Chiral Bifunctional Phosphine Ligand-Enabled Cooperative Cu Catalysis: Formation of Chiral α,β-Butenolides via Highly Enantioselective γ-Protonation. J Am Chem Soc 2021; 143:10876-10881. [PMID: 34264076 DOI: 10.1021/jacs.1c05781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α,β-Butenolides with ≥96% enantiomeric excess are synthesized from β,γ-butenolides via a novel Cu(I)-ligand cooperative catalysis. The reaction is enabled by a chiral biphenyl-2-ylphosphine ligand featuring a remote tertiary amino group. Density functional theory studies support the cooperation between the metal center and the ligand basic amino group during the initial soft deprotonation and the key asymmetric γ-protonation. Remarkably, other coinage metals, that is, Ag and Au, can readily assume the same role as Cu in this asymmetric isomerization chemistry.
Collapse
Affiliation(s)
- Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Bao M, Xie X, Hu W, Xu X. Gold‐Catalyzed Carbocyclization/C=N Bond Formation Cascade of Alkyne‐Tethered Diazo Compounds with Benzo[
c
]isoxazoles for the Assembly of 4‐Iminonaphthalenones and Indenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Xiongda Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou Guangdong 510006 China
| |
Collapse
|
11
|
Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Divergent Gold Catalysis: Unlocking Molecular Diversity through Catalyst Control. Chem Rev 2021; 121:8478-8558. [PMID: 33555193 DOI: 10.1021/acs.chemrev.0c00903] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The catalyst-directed divergent synthesis, commonly termed as "divergent catalysis", has emerged as a promising technique as it allows chartering of structurally distinct products from common substrates simply by modulating the catalyst system. In this regard, gold complexes emerged as powerful catalysts as they offer unique reactivity profiles as compared to various other transition metal catalysts, primarily due to their salient electronic and geometrical features. Owing to the tunable soft π-acidic nature, gold catalysts not only evolved as superior contenders for catalyzing the reactions of alkynes, alkenes, and allenes but also, more intriguingly, have been found to provide divergent reaction pathways over other π-acid catalysts such as Ag, Pt, Pd, Rh, Cu, In, Sc, Hg, Zn, etc. The recent past has witnessed a renaissance in such examples wherein, by choosing gold catalysts over other transition metal catalysts or by fine-tuning the ligands, counteranions or oxidation states of the gold catalyst itself, a complete reactivity switch was observed. However, reviews documenting such examples are sporadic; as a result, most of the reports of this kind remained scattered in the literature, thereby hampering further development of this burgeoning field. By conceptualizing the idea of "Divergent Gold Catalysis (DGC)", this review aims to consolidate all such reports and provide a unified approach necessary to pave the way for further advancement of this exciting area. Based on the factors governing the divergence in product formation, an explicit classification of DGC has been provided. To gain a fundamental understanding of the divergence in observed reactivities and selectivities, the review is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Amit K Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Shashank P Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
12
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
13
|
Hendrich CM, Sekine K, Koshikawa T, Tanaka K, Hashmi ASK. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chem Rev 2020; 121:9113-9163. [DOI: 10.1021/acs.chemrev.0c00824] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takumi Koshikawa
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Im Neuenheimer Feld 270, Heidelberg University, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Li T, Yang Y, Luo B, Li B, Zong L, Kong W, Yang H, Cheng X, Zhang L. A Bifunctional Ligand Enables Gold-Catalyzed Hydroarylation of Terminal Alkynes under Soft Reaction Conditions. Org Lett 2020; 22:6045-6049. [DOI: 10.1021/acs.orglett.0c02130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Yuhan Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Baomin Luo
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Luyi Zong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Weiguang Kong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Hao Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, P. R. China
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Hu X, Zhou B, Jin H, Liu Y, Zhang L. Bifunctional phosphine ligand-enabled gold-catalyzed direct cycloisomerization of alkynyl ketones to 2,5-disubstituted furans. Chem Commun (Camb) 2020; 56:7297-7300. [PMID: 32478356 DOI: 10.1039/d0cc01238f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient synthesis of 2,5-disubstituted furans directly from alkynyl ketones has been developed via tandem gold(i)-catalyzed isomerization of alkynyl ketones to allenyl ketones and cycloisomerization. The key to the success of this chemistry is the use of a biphenyl-2-ylphosphine ligand featuring a critical remote tertiary amino group.
Collapse
Affiliation(s)
- Xiaojun Hu
- State Key Laboratory Breeding Base of Green Chemistry - Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry - Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry - Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry - Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China. and Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Giuseppe Zuccarello
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Margherita Zanini
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i Virgili C/ Marcel⋅lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|