1
|
Li S, Feng L, Wang H, Lin Y, Sun Z, Xu L, Xu Y, Liu X, Li WX, Wei S, Liu JX, Lu J. Atomically intimate assembly of dual metal-oxide interfaces for tandem conversion of syngas to ethanol. NATURE NANOTECHNOLOGY 2025; 20:255-264. [PMID: 39587351 DOI: 10.1038/s41565-024-01824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Selective conversion of syngas to value-added higher alcohols (containing two or more carbon atoms), particularly to a specific alcohol, is of great interest but remains challenging. Here we show that atomically intimate assembly of FeOx-Rh-ZrO2 dual interfaces by selectively architecting highly dispersed FeOx on ultrafine raft-like Rh clusters supported on tetragonal zirconia enables highly efficient tandem conversion of syngas to ethanol. The ethanol selectivity in oxygenates reached ~90% at CO conversion up to 51%, along with a markedly high space-time yield of ethanol of 668.2 mg gcat-1 h-1. In situ spectroscopic characterization and theoretical calculations reveal that Rh-ZrO2 interface promotes dissociative CO activation into CHx through a formate pathway, while the adjacent Rh-FeOx interface accelerates subsequent C-C coupling via nondissociative CO insertion. Consequently, these dual interfaces in atomic-scale proximity with complementary functionalities synergistically boost the exclusive formation of ethanol with exceptional productivity in a tandem manner.
Collapse
Affiliation(s)
- Shang Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Hengwei Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Lulu Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Yuxing Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | | | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China.
| | - Junling Lu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
- Suzhou Laboratory, Suzhou, China.
| |
Collapse
|
2
|
Zhu P, Wang C, Zhong H, Yang Y, Jin F. Promoting nonsymmetric C-C coupling to valuable oxygenates without metal catalysts in alkali aqueous medium. Chem Commun (Camb) 2024; 60:682-685. [PMID: 38054857 DOI: 10.1039/d3cc04383e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Efficient conversion of C1 molecules into multicarbon oxygenates is a promising avenue for energy storage. Herein, we synthesize adjustable alkanoic acids/alcohols from formate C1 molecules via a hydrothermal reaction without any metal catalyst participation. This is achieved via HCO* and HCOO- nonsymmetric C-C coupling by alkali catalysis in aqueous medium.
Collapse
Affiliation(s)
- Peidong Zhu
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Chunling Wang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Heng Zhong
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Fangming Jin
- School of Environmental Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| |
Collapse
|
3
|
Lin T, An Y, Yu F, Gong K, Yu H, Wang C, Sun Y, Zhong L. Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caiqi Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
4
|
Liu G, Yang G, Peng X, Wu J, Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev 2022; 51:5606-5659. [PMID: 35705080 DOI: 10.1039/d0cs01003k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, as one of the important bulk chemicals, is widely used in modern society. It can be produced by fermentation of sugar, petroleum refining, or conversion of syngas (CO/H2). Among these approaches, conversion of syngas to ethanol (STE) is the most environmentally friendly and economical process. Although considerable progress has been made in STE conversion, control of CO activation and C-C growth remains a great challenge. This review highlights recent advances in the routes and catalysts employed in STE technology. The catalyst designs and pathway designs are summarized and analysed for the direct and indirect STE routes, respectively. In the direct STE routes (i.e., one-step synthesis of ethanol from syngas), modified catalysts of methanol synthesis, modified catalysts of Fischer-Tropsch synthesis, Mo-based catalysts, noble metal catalysts and multifunctional catalysts are systematically reviewed based on their catalyst designs. Further, in the indirect STE routes (i.e., multi-step processes for ethanol synthesis from syngas via methanol/dimethyl ether as intermediates), carbonylation of methanol/dimethyl ether followed by hydrogenation, and coupling of methanol with CO to form dimethyl oxalate followed by hydrogenation, are outlined according to their pathway designs. The goal of this review is to provide a comprehensive perspective on STE technology and inspire the invention of new catalysts and pathway designs in the near future.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xiaobo Peng
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Jinhu Wu
- Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
5
|
Wang Y, Xu D, Zhang X, Hong X, Liu G. Selective C2+ alcohol synthesis by CO2 hydrogenation via a reaction-coupling strategy. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02196f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synergy of primary and promoting catalysts in close proximity facilitates the migration and insertion of CO*/CHxO* species, thus accelerating HA productivity over a multifunctional catalyst.
Collapse
Affiliation(s)
- Yanqiu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Di Xu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Xinxin Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
6
|
Li Y, Zhao Z, Lu W, Jiang M, Li C, Zhao M, Gong L, Wang S, Guo L, Lyu Y, Yan L, Zhu H, Ding Y. Highly Selective Conversion of Syngas to Higher Oxygenates over Tandem Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yihui Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Wei Lu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Miao Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Cunyao Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Min Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Leifeng Gong
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Shiyi Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, P. R. China
| | - Luyao Guo
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, P. R. China
| | - Yuan Lyu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Li Yan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, P. R. China
| |
Collapse
|
7
|
Wang Y, Wang K, Zhang B, Peng X, Gao X, Yang G, Hu H, Wu M, Tsubaki N. Direct Conversion of CO 2 to Ethanol Boosted by Intimacy-Sensitive Multifunctional Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01504] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Wang
- Institute of New Energy, College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Kangzhou Wang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Baizhang Zhang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Xiaobo Peng
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Xinhua Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Guohui Yang
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Han Hu
- Institute of New Energy, College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- Institute of New Energy, College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| |
Collapse
|
8
|
Xu D, Yang H, Hong X, Liu G, Edman Tsang SC. Tandem Catalysis of Direct CO 2 Hydrogenation to Higher Alcohols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Di Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hengquan Yang
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guoliang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford Oxford OX1 3QR, United Kingdom
| |
Collapse
|
9
|
Huang C, Zhu C, Zhang M, Lu Y, Wang Q, Qian H, Chen J, Fang K. Direct Conversion of Syngas to Higher Alcohols over a CuCoAl|t‐ZrO
2
Multifunctional Catalyst. ChemCatChem 2021. [DOI: 10.1002/cctc.202100293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Huang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 Shanxi P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Can Zhu
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 Shanxi P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mingwei Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 Shanxi P. R. China
| | - Yongwu Lu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 P. R. China
| | - Qianhao Wang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 Shanxi P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Heming Qian
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 P. R. China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 Shanxi P. R. China
| | - Kegong Fang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 Shanxi P. R. China
| |
Collapse
|
10
|
Lin T, Yu F, An Y, Qin T, Li L, Gong K, Zhong L, Sun Y. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Acc Chem Res 2021; 54:1961-1971. [PMID: 33599477 DOI: 10.1021/acs.accounts.0c00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Syngas conversion is a key platform for efficient utilization of various carbon-containing resources including coal, natural gas, biomass, organic wastes, and even CO2. One of the most classic routes for syngas conversion is Fischer-Tropsch synthesis (FTS), which is already available for commercial application. However, it still remains a grand challenge to tune the product distribution from paraffins to value-added chemicals such as olefins and higher alcohols. Breaking the selectivity limitation of the Anderson-Schulz-Flory (ASF) distribution has been one of the hottest topics in syngas chemistry.Metallic Co0 is a well-known active phase for Co-catalyzed FTS, and the products are dominated by paraffins with a small amount of chemicals (i.e., olefins or alcohols). Specifically, a cobalt carbide (Co2C) phase is typically viewed as an undesirable compound that could lead to deactivation with low activity and high methane selectivity. Although iron carbide (FexC) can produce olefins with selectivity up to ∼60%, the fraction of methane is still rather high, and the required high reaction temperature (300-350 °C) typically causes coke deposition and fast deactivation. Recently, we discovered that Co2C nanoprisms with preferentially exposed facets of (020) and (101) can effectively produce olefins from syngas conversion under mild reaction conditions with high selectivity. The methane fraction was limited within 5%, and the product distribution deviated greatly from ASF statistic law. The catalytic performances of Co2C nanoprisms are completely different from that reported for the traditional FT process, exhibiting promising potential industrial application.This Account summarizes our progress in the development of Co2C nanoprisms for Fischer-Tropsch synthesis to olefins (FTO) with remarkable efficiencies and stability. The underlying mechanism for the observed unique catalytic behaviors was extensively explored by combining DFT calculation, kinetic measurements, and various spectroscopic and microscopic investigation. We also emphasize the following issues: particle size effect of Co2C, the promotional effect of alkali and Mn promoters, and the role of metal-support interaction (SMI) in fabricating supported Co2C nanoprisms. Specially, we briefly review the synthetic methods for different Co2C nanostructures. In addition, Co2C can also be applied as a nondissociative adsorption center for higher alcohol synthesis (HAS) via syngas conversion. We also discuss the construction of a Co0/Co2C interfacial catalyst for HAS and demonstrate how to tune the reaction network and strengthen CO nondissociative adsorption ability for efficient production of higher alcohols. We believe that the advances in the development of Co2C nanocatalysts described here present a critic step to produce chemicals through the FTS process.
Collapse
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Tingting Qin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liusha Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201203, P. R. China
| |
Collapse
|
11
|
Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang SCE. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021. [DOI: 10.1016/j.chempr.2020.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Damma D, Smirniotis PG. Recent advances in the direct conversion of syngas to oxygenates. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00813g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct synthesis of oxygenates from syngas is a promising way to utilize non-petroleum carbon resources because the oxygenate products serve as precursors for the downstream production of fuels and value-added chemicals.
Collapse
Affiliation(s)
- Devaiah Damma
- Chemical Engineering
- College of Engineering and Applied Science
- University of Cincinnati
- Cincinnati
- USA
| | - Panagiotis G. Smirniotis
- Chemical Engineering
- College of Engineering and Applied Science
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
13
|
Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel Heterogeneous Catalysts for CO 2 Hydrogenation to Liquid Fuels. ACS CENTRAL SCIENCE 2020; 6:1657-1670. [PMID: 33145406 PMCID: PMC7596863 DOI: 10.1021/acscentsci.0c00976] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/27/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to liquid fuels including gasoline, jet fuel, diesel, methanol, ethanol, and other higher alcohols via heterogeneous catalysis, using renewable energy, not only effectively alleviates environmental problems caused by massive CO2 emissions, but also reduces our excessive dependence on fossil fuels. In this Outlook, we review the latest development in the design of novel and very promising heterogeneous catalysts for direct CO2 hydrogenation to methanol, liquid hydrocarbons, and higher alcohols. Compared with methanol production, the synthesis of products with two or more carbons (C2+) faces greater challenges. Highly efficient synthesis of C2+ products from CO2 hydrogenation can be achieved by a reaction coupling strategy that first converts CO2 to carbon monoxide or methanol and then conducts a C-C coupling reaction over a bifunctional/multifunctional catalyst. Apart from the catalytic performance, unique catalyst design ideas, and structure-performance relationship, we also discuss current challenges in catalyst development and perspectives for industrial applications.
Collapse
Affiliation(s)
- Peng Gao
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Lina Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Zixuan Zhou
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Shanghai
Institute of Clean Technology, Shanghai 201620, P.R.
China
| |
Collapse
|
14
|
Shen J, Li M, Li W, Lin S, Hao Z, Chang X, Lv J, Ma X. Enhanced production of C 2–C 4 alkanes from syngas via a metal sulfide–support interaction over Ni–MoS 2/Ce 1−xLa xO 2−δ. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00629g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metal sulfide–support interaction and dual active sites over Ni–MoS2/Ce1−xLaxO2−δ facilitated selective conversion of syngas to C2–C4 alkanes.
Collapse
Affiliation(s)
- Jindong Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| | - Wei Li
- Ningbo Key Laboratory of Specialty Polymers
- School of Material Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Shuangxi Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| | - Ziwen Hao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| | - Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
| |
Collapse
|