1
|
Song Y, Yu Y, Jin M, Hou C, Wang J, Wang X, Zhou X, Chen J, Shen Z, Zhang Y. Sulfadiazine removal efficiency with persulfate driven by electron-rich Cu-beta zeolites. CHEMOSPHERE 2023; 344:140300. [PMID: 37777089 DOI: 10.1016/j.chemosphere.2023.140300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Surface electron transport and transfer of catalysts have important consequences for persulfate (PS) activation in PS system. In this paper, an electron-rich Cu-beta zeolites catalyst was synthesized utilizing a straightforward solid-state ion exchange technique to efficiently degrade sulfadiazine. The X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed that Cu element substitutes Al element and enters the beta molecular sieve framework smoothly. Furthermore, the X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the Cu-beta catalyst is primarily Cu0. Cu-beta zeolites catalyst can exhibit excellent catalytic activity to degrade sulfadiazine with the oxidant of PS. The optimal sulfadiazine removal performance was explored by adjusting reaction parameters, including sulfadiazine concentration, catalyst dosage, oxidant dosage, and solution pH. The sulfadiazine removal efficiency in the Cu-beta zeolites/PS system could reach 90.5% at the optimal reaction condition ([PS]0 = 0.5 g/L, [Cu-beta zeolites]0 = 1.0 g/L, pH = 7.0) with 50 mg/L of sulfadiazine. Meanwhile, The degradation efficiency was less affected by anionic interference (Cl-, SO4-, HCO3-). The surface electron transport and transfer of the Cu-beta zeolites catalyst were significant causes for the remarkable degradation performance. According to electron paramagnetic resonance (EPR) and quenching studies, the Cu-beta zeolites/PS system was mostly dominated by SO4•- in the degradation of sulfadiazine. Furthermore, two possible pathways for sulfadiazine degradation were proposed according to the analysis of intermediate products detected by the liquid chromatography-mass spectrometry (LC-MS).
Collapse
Affiliation(s)
- Yuanbo Song
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Yibiao Yu
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Mengyu Jin
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Cheng Hou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiaqi Wang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaoxia Wang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zheng Shen
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yalei Zhang
- Institute of New Rural Development, School of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
2
|
Gan Y, Dai W, Huang P, Zhang B, Cui S. Preparation of Denitrification Materials with Nickel Slag for Nitric Oxide Decomposition in Cement Kilns. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5859. [PMID: 37687552 PMCID: PMC10489123 DOI: 10.3390/ma16175859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
NOx emission from the cement industry have received much attention. In order to reduce the NOx emission in cement kilns, nickel slag was used to prepare the non-ammonia denitrification material, and a denitrification mechanism was proposed in this study. The results showed that the denitrification material prepared at pH 7 exhibited the best denitrification performance. At low temperature, the highest denitrification performance was achieved between 200 and 300 °C with a NO decomposition rate of approximately 40%. Then, the NO decomposition rate increased as the temperature increased, reaching over 95% above 700 °C. The physicochemical characteristics showed that the material had the highest specific surface area and the highest relative Fe content, which benefited the denitrification performance. The divalent iron of the denitrification material was considered the active site for the reaction, and trivalent iron was not conducive to denitrification performance at a low temperature range. After the denitrification reaction, the Fe3+/Fe2+ increased from 0.89 to 1.31. The proposed denitrification mechanism was the redox process between divalent iron and trivalent iron. This study not only recycles industrial waste to reduce solid waste pollution but also efficiently removes nitrogen oxides from cement kilns without ammonia.
Collapse
Affiliation(s)
- Yanling Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, No. 855 Xingye Avenue East, Guangzhou 511443, China
- College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Wenjing Dai
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
| | - Pingli Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
| | - Boge Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China; (W.D.); (P.H.); (B.Z.)
| | - Suping Cui
- College of Materials Science and Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
3
|
Zhang C, Liu X, Jiang M, Wen Y, Zhang J, Qian G. A review on identification, quantification, and transformation of active species in SCR by EPR spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28550-28562. [PMID: 36708481 DOI: 10.1007/s11356-023-25467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Electron paramagnetic resonance (EPR) is the only technique that provides direct detection of free radicals and samples that contain unpaired electrons. Thus, EPR had an important potential application in the field of selective catalytic reduction of nitrogen oxide (SCR). For the first time, this work reviewed recent developments of EPR in charactering SCR. First, qualitative analysis focused on recognizing Cu, Fe, V, Ti, Mn, and free-radical (oxygen vacancy and superoxide radical) species. Second, quantification of the active species was obtained by a double-integral and calibration method. Third, the active species evolved because of different thermal treatments and redox-thermal processes under reductants (NH3 and NO). The coordination information of the active species in catalysts and their effects on SCR performances were concluded from mechanism viewpoints. Finally, potential perspectives were put forward for EPR developments in characterizing the SCR processes in the future. After all, EPR characterization will help to have a deep understanding of structure-activity relationship in one catalyst.
Collapse
Affiliation(s)
- Chenchen Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Xinyu Liu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Meijia Jiang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China
| | - Yuling Wen
- Shanghai SUS Environment Co., LTD, Shanghai, 201703, China
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road., Shanghai, 200444, People's Republic of China.
| | - Guangren Qian
- MGI of Shanghai University, Xiapu Town, Xiangdong District, Pingxiang City, Jiangxi, 337022, People's Republic of China
| |
Collapse
|
4
|
Cheng J, Zheng D, Yu G, Xu R, Dai C, Liu N, Wang N, Chen B. N 2O Catalytic Decomposition and NH 3-SCR Coupling Reactions over Fe-SSZ-13 Catalyst: Mechanisms and Interactions Unraveling via Experiments and DFT Calculations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jie Cheng
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Dahai Zheng
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
5
|
Enhanced SO2 Resistance of Cs-Modified Fe-HZSM-5 for NO Decomposition. Catalysts 2022. [DOI: 10.3390/catal12121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Direct decomposition of NO into N2 and O2 is an ideal technology for NOx removal. Catalyst deactivation by sulfur poisoning is the major obstacle for practical application. This paper focuses on strengthening the SO2 resistance of metal-exchanged HZSM-5 catalysts, by investigating the metals, promoters, preparation methods, metal-to-promoter molar ratios, Si/Al ratios and metal loadings. The results show that in the presence of SO2 (500 ppm), Fe is the best compared with Co, Ni and Cu. Cs, Ba and K modification enhanced the low-temperature activity of the Fe-HZSM-5 catalyst for NO decomposition, which can be further improved by increasing the exchanged-solution concentration and Fe/Cs molar ratio or decreasing the Si/Al molar ratio. Interestingly, Cs-doped Fe-HZSM-5 exhibited a high NO conversion and low NO2 selectivity but a high SO2 conversion within 10 h of continuous operation. This indicates that Cs-Fe-HZSM-5 has a relatively high SO2 resistance. Combining the characterization results, including N2 physisorption, XRD, ICP, XRF, UV–Vis, XPS, NO/SO2-TPD, H2-TPR and HAADF-STEM, SO42− was found to be the major sulfur species deposited on the catalyst’s surface. Cs doping inhibited the SO2 adsorption on Fe-HZSM-5, enhanced the Fe dispersion and increased the isolated Fe and Fe-O-Fe species. These findings could be the primary reasons for the high activity and SO2 resistance of Cs-Fe-HZSM-5.
Collapse
|
6
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Yasumura S, Qian Y, Kato T, Mine S, Toyao T, Maeno Z, Shimizu KI. In Situ/ Operando Spectroscopic Studies on the NH 3–SCR Mechanism over Fe–Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Taisetsu Kato
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- School of Advanced Engineering, KKogakuin University, Tokyo 192-0015, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|
8
|
Wang F, Wang P, Lan T, Shen Y, Ren W, Zhang D. Ultralow-Temperature NO x Reduction over SmMn 2O 5 Mullite Catalysts Via Modulating the Superficial Dual-Functional Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
9
|
Kurbanova A, Zákutná D, Gołąbek K, Mazur M, Přech J. Preparation of Fe@MFI and CuFe@MFI composite hydrogenation catalysts by reductive demetallation of Fe-zeolites. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Liu J, Cheng H, Zheng H, Zhang L, Liu B, Song W, Liu J, Zhu W, Li H, Zhao Z. Insight into the Potassium Poisoning Effect for Selective Catalytic Reduction of NOx with NH3 over Fe/Beta. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jixing Liu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huifang Cheng
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huiling Zheng
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Lu Zhang
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering and Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People’s Republic of China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum, Beijing 102249, People’s Republic of China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People’s Republic of China
| |
Collapse
|
11
|
Xie C, Zhu B, Sun Y. A DFT-D study on the reaction mechanism of selective catalytic reduction of NO by NH3 over the Fe2O3/Ni(111) surface. NEW J CHEM 2021. [DOI: 10.1039/d1nj00406a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption and SCR reaction mechanism of NH3, NO, and O2 molecules on the Fe2O3/Ni(111) catalyst surface was revealed.
Collapse
Affiliation(s)
- Chaoyue Xie
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Baozhong Zhu
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Yunlan Sun
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| |
Collapse
|
12
|
Xie C, Sun Y, Zhu B, Song W, Xu M. Adsorption mechanism of NH3, NO, and O2 molecules over the FexOy/AC catalyst surface: a DFT-D3 study. NEW J CHEM 2021. [DOI: 10.1039/d0nj05628f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The surface model of the FexOy/AC catalyst was constructed and the adsorption mechanism of gas molecules on its surface was revealed.
Collapse
Affiliation(s)
- Chaoyue Xie
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Yunlan Sun
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Baozhong Zhu
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Weiyi Song
- School of Petroleum Engineering
- Changzhou University
- Changzhou
- China
| | - Minggao Xu
- Center for Advanced Combustion and Energy
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|