1
|
Ingram AA, Wang D, Schwaneberg U, Okuda J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. J Inorg Biochem 2024; 258:112616. [PMID: 38833874 DOI: 10.1016/j.jinorgbio.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsaturated six- and seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
3
|
Kinugawa T, Matsuo T. Reactivity regulation for olefin metathesis-catalyzing ruthenium complexes with sulfur atoms at the terminal of 2-alkoxybenzylidene ligands. Dalton Trans 2023. [PMID: 37368438 DOI: 10.1039/d3dt01471a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
For regulating the olefin metathesis (OM) activity of the Hoveyda-Grubbs second-generation complex (HG-II), the structural modification of the benzylidene ligand is a useful strategy. This paper reports the effect of a chalcogen atom placed at the end of the benzylidene group on the catalytic properties of HG-II derivatives, using complexes with a thioether or ether component in the benzylidene ligand (ortho-Me-E-(CH2)2O-styrene; E = S, O). Nuclear magnetic resonance and X-ray crystallographic analyses of the complex with a thioether moiety (E = S) proved the (O,S)-bidentate and trans-dichlorido coordination for the complex. A stoichiometric ligand exchange between HG-II and the benzylidene ligand (E = S) produced the corresponding complex with an 86% yield, confirming higher stability of the complex (E = S) than that of HG-II. Despite the bidentate chelation, the complex (E = S) exhibited OM catalytic activity, indicating the exchangeability of the S-chelating ligand with an olefinic substrate. The green solution color, a characteristic of HG-II derivatives, was retained after the complex (E = S)-mediated OM reactions, indicating high catalyst durability. Conversely, the complex (E = O) rapidly initiated OM reactions; however, it showed low catalyst durability. In the OM reactions conducted in the presence of methanol, the complex (E = S) exhibited higher yields than the complex (E = O) and HG-II: the S-coordination increased the catalyst tolerance to methanol. A coordinative atom (such as sulfur) placed at the terminal of the benzylidene ligand can precisely regulate the reactivity of HG-II derivatives.
Collapse
Affiliation(s)
- Tsubasa Kinugawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan.
| | - Takashi Matsuo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
4
|
Młodzikowska-Pieńko K, Trzaskowski B. Decomposition of Ruthenium Metathesis Catalysts: Unsymmetrical N-Heterocyclic Carbenes versus Cyclic Alkyl Amino Carbenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Katarzyna Młodzikowska-Pieńko
- Centre of New Technologies, University of Warsaw, Banacha 2C St., 02-097 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1 St., 02-093 Warsaw, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2C St., 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Occhipinti G, Nascimento DL, Foscato M, Fogg DE, Jensen VR. The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chem Sci 2022; 13:5107-5117. [PMID: 35655574 PMCID: PMC9093171 DOI: 10.1039/d2sc00855f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022] Open
Abstract
Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits β-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cβ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting β-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts. In ruthenium catalysts for olefin metathesis, carbene ligands of high trans influence/effect suppress decomposition via β-H elimination, but increase susceptibility to bimolecular decomposition.![]()
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Daniel L Nascimento
- Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Marco Foscato
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| | - Deryn E Fogg
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway .,Center for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Canada K1N 6N5
| | - Vidar R Jensen
- Department of Chemistry, University of Bergen Allégaten 41 N-5007 Bergen Norway
| |
Collapse
|
6
|
Wang Q, Lan J, Liang R, Xia Y, Qin L, Chung LW, Zheng Z. New Tricks for an Old Dog: Grubbs Catalysts Enable Efficient Hydrogen Production from Aqueous-Phase Methanol Reforming. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qian Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rong Liang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yihao Xia
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lei Qin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lung Wa Chung
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Aharon S, Meyerstein D, Tzur E, Shamir D, Albo Y, Burg A. Advanced sol-gel process for efficient heterogeneous ring-closing metathesis. Sci Rep 2021; 11:12506. [PMID: 34131206 PMCID: PMC8206332 DOI: 10.1038/s41598-021-92043-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Olefin metathesis, a powerful synthetic method with numerous practical applications, can be improved by developing heterogeneous catalysts that can be recycled. In this study, a single-stage process for the entrapment of ruthenium-based catalysts was developed by the sol-gel process. System effectiveness was quantified by measuring the conversion of the ring-closing metathesis reaction of the substrate diethyl diallylmalonate and the leakage of the catalysts from the matrix. The results indicate that the nature of the precursor affects pore size and catalyst activity. Moreover, matrices prepared with tetraethoxysilane at an alkaline pH exhibit a better reaction rate than in the homogenous system under certain reaction conditions. To the best of our knowledge, this is the first study to present a one-step process that is simpler and faster than the methods reported in the literature for catalyst entrapment by the sol-gel process under standard conditions.
Collapse
Affiliation(s)
- Shiran Aharon
- Chemical Sciences Dept, Ariel University, Ariel, Israel
- Chemical Engineering Dept, Sami Shamoon College of Engineering, Beer Sheva, Ashdod, Israel
| | - Dan Meyerstein
- Chemical Sciences Dept, Ariel University, Ariel, Israel
- Chemistry Dept, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eyal Tzur
- Chemical Engineering Dept, Sami Shamoon College of Engineering, Beer Sheva, Ashdod, Israel.
| | - Dror Shamir
- Nuclear Research Centre Negev, Beer-Sheva, Israel
| | - Yael Albo
- Chemical Engineering Dept, Ariel University, Ariel, Israel
| | - Ariela Burg
- Chemical Engineering Dept, Sami Shamoon College of Engineering, Beer Sheva, Ashdod, Israel.
| |
Collapse
|
8
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
9
|
Dai SS, Yang L, Zhou L, Gao Y, Fang R, Kirillov AM, Yang L. DFT Quest of the Active Species of the Gallium-Mediated Coupling of Methylidenemalonates and Acetylenes. Inorg Chem 2021; 60:995-1006. [PMID: 33390011 DOI: 10.1021/acs.inorgchem.0c03113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, three different Ga-containing systems based on GaCl3, Ga2Cl6, or ionic [Ga(L)3][GaCl4]3 (L = methylidenemalonate) complex were screened to elucidate the mechanism, regioselectivity, chemoselectivity, and role of Ga mediator in the reaction between two types of acetylenes (phenylacetylene and but-1-yn-1-ylbenzene) and methylidenemalonates, i.e., the 1,2-zwitterionic precursors that are similar to intermediates derived from donor-acceptor cyclopropanes (DACs). Our DFT calculation results clearly show that the ionic gallium complex [Ga(L)3][GaCl4]3 represents the key mediator in the title reaction. After the formation of such a complex, the first reaction step is the nucleophilic addition of phenylacetylene or but-1-yn-1-ylbenzene to [Ga(L)3][GaCl4]3, generating an unstable vinyl cation intermediate. In the phenylacetylene system, this vinyl cation intermediate accepts a chlorine atom from [GaCl4]- to give E-configuration intermediate. Then, the above process occurs to other two ligands of the Ga(III) complex to furnish a final product. On the other hand, in the but-1-yn-1-ylbenzene system, the vinyl cation intermediate prefers to undergo Friedel-Crafts (F-C) alkylation to generate a five-membered ring intermediate. This process is repeated on the other two methylidenemalonate ligands, giving rise to a final cyclization product. The distortion/interaction analysis shows that in the nucleophilic addition step the distortion energy of the Ga complex part is the main factor that influences the activation energy. Furthermore, the global reactivity index (GRI) analysis indicates that the Ga-complex model has the highest electrophilicity index ω, thus leading to the lowest energy barrier among three Ga-based models. In addition, DFT results reveal that the regioselectivity (E-configuration preference) and chemoselectivity (chloration or F-C alkylation) are mainly controlled by the steric effect rather than the electronic effect. The main findings of the present work provide a new way to analyze and rationalize various Ga-mediated reactions, which might also be extrapolated to organic transformations undergoing in the presence of aluminum and indium complexes.
Collapse
Affiliation(s)
- Song-Shan Dai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lin Zhou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - YuanYuan Gao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
10
|
Blanco CO, Sims J, Nascimento DL, Goudreault AY, Steinmann SN, Michel C, Fogg DE. The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. ACS Catal 2021; 11:893-899. [PMID: 33614193 PMCID: PMC7886052 DOI: 10.1021/acscatal.0c04279] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Ruthenium catalysts for olefin metathesis are widely viewed as water-tolerant. Evidence is presented, however, that even low concentrations of water cause catalyst decomposition, severely degrading yields. Of 11 catalysts studied, fast-initiating examples (e.g., the Grela catalyst RuCl2(H2IMes)(=CHC6H4-2-O i Pr-5-NO2) were most affected. Maximum water tolerance was exhibited by slowly initiating iodide and cyclic (alkyl)(amino)carbene (CAAC) derivatives. Computational investigations indicated that hydrogen bonding of water to substrate can also play a role, by retarding cyclization relative to decomposition. These results have important implications for olefin metathesis in organic media, where water is a ubiquitous contaminant, and for aqueous metathesis, which currently requires superstoichiometric "catalyst" for demanding reactions.
Collapse
Affiliation(s)
- Christian O. Blanco
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Joshua Sims
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Daniel L. Nascimento
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Alexandre Y. Goudreault
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
| | - Stephan N. Steinmann
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Carine Michel
- Univ. Lyon, ENS de Lyon,
CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratorie de Chimie, F-69342
Lyon, France
| | - Deryn E. Fogg
- Center for Catalysis Research & Innovation, and
Department of Chemistry and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N57, Canada
- Department of Chemistry, University of
Bergen, Allégaten 41, N-5007 Bergen,
Norway
| |
Collapse
|
11
|
Nienałtowski T, Krzesiński P, Baumert ME, Skoczeń A, Suska-Kauf E, Pawłowska J, Kajetanowicz A, Grela K. 4-Methyltetrahydropyran as a Convenient Alternative Solvent for Olefin Metathesis Reaction: Model Studies and Medicinal Chemistry Applications. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:18215-18223. [PMID: 33344098 PMCID: PMC7739489 DOI: 10.1021/acssuschemeng.0c06668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Indexed: 05/03/2023]
Abstract
A number of metathesis reactions were successfully conducted in 4-methyltetrahydropyran, including both standard model dienes, as well as more complex substrates, such as analogues of biologically active compounds and active pharmaceutical ingredients. To place this solvent in a context of pharmaceutical R + D, larger-scale syntheses of SUAM 1221, a prolyl endopeptidase inhibitor with potential application in Alzheimer disease treatment, and a derivative of sildenafil, an analogue of the popular Viagra drug, were executed. In the latter case, despite all the setup being made in air, the metathesis reaction at a 33 g scale proceeded very well with relatively low catalyst loading and without need of aqueous workup or column chromatography.
Collapse
Affiliation(s)
- Tomasz Nienałtowski
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Pharmaceutical
Works Polpharma SA, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Paweł Krzesiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Marcel E. Baumert
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Aleksandra Skoczeń
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Suska-Kauf
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jolanta Pawłowska
- Pharmaceutical
Works Polpharma SA, Pelplińska 19, 83-200 Starogard Gdański, Poland
| | - Anna Kajetanowicz
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
12
|
Foster JC, Grocott MC, Arkinstall LA, Varlas S, Redding MJ, Grayson SM, O’Reilly RK. It is Better with Salt: Aqueous Ring-Opening Metathesis Polymerization at Neutral pH. J Am Chem Soc 2020; 142:13878-13885. [PMID: 32673484 PMCID: PMC7426906 DOI: 10.1021/jacs.0c05499] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Aqueous ring-opening metathesis polymerization (ROMP) is a powerful tool for polymer synthesis under environmentally friendly conditions, functionalization of biomacromolecules, and preparation of polymeric nanoparticles via ROMP-induced self-assembly (ROMPISA). Although new water-soluble Ru-based metathesis catalysts have been developed and evaluated for their efficiency in mediating cross metathesis (CM) and ring-closing metathesis (RCM) reactions, little is known with regards to their catalytic activity and stability during aqueous ROMP. Here, we investigate the influence of solution pH, the presence of salt additives, and catalyst loading on ROMP monomer conversion and catalyst lifetime. We find that ROMP in aqueous media is particularly sensitive to chloride ion concentration and propose that this sensitivity originates from chloride ligand displacement by hydroxide or H2O at the Ru center, which reversibly generates an unstable and metathesis inactive complex. The formation of this Ru-(OH)n complex not only reduces monomer conversion and catalyst lifetime but also influences polymer microstructure. However, we find that the addition of chloride salts dramatically improves ROMP conversion and control. By carrying out aqueous ROMP in the presence of various chloride sources such as NaCl, KCl, or tetrabutylammonium chloride, we show that diblock copolymers can be readily synthesized via ROMPISA in solutions with high concentrations of neutral H2O (i.e., 90 v/v%) and relatively low concentrations of catalyst (i.e., 1 mol %). The capability to conduct aqueous ROMP at neutral pH is anticipated to enable new research avenues, particularly for applications in biological media, where the unique characteristics of ROMP provide distinct advantages over other polymerization strategies.
Collapse
Affiliation(s)
- Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Marcus C. Grocott
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Lucy A. Arkinstall
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - McKenna J. Redding
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
13
|
Abstract
Ruthenium olefin metathesis catalysts are one of the most commonly used class of catalysts. There are multiple reviews on their uses in various branches of chemistry and other sciences but a detailed review of their decomposition is missing, despite a large number of recent and important advances in this field. In particular, in the last five years several new mechanism of decomposition, both olefin-driven as well as induced by external agents, have been suggested and used to explain differences in the decomposition rates and the metathesis activities of both standard, N-heterocyclic carbene-based systems and the recently developed cyclic alkyl amino carbene-containing complexes. Here we present a review which explores the last 30 years of the decomposition studied on ruthenium olefin metathesis catalyst driven by both intrinsic features of such catalysts as well as external chemicals.
Collapse
|
14
|
Church DC, Takiguchi L, Pokorski JK. Optimization of Ring-Opening Metathesis Polymerization (ROMP) under Physiologically Relevant Conditions. Polym Chem 2020; 11:4492-4499. [PMID: 33796158 PMCID: PMC8009303 DOI: 10.1039/d0py00716a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly under ambient conditions and is highly functional group tolerant when performed in organic solvents. However, achieving the same level of success in aqueous media has proved to be challenging, often requiring an organic co-solvent or a very low pH to obtain fast initiation and high monomer conversion. The ability to efficiently conduct ROMP under neutral pH aqueous conditions would mark an important step towards utilizing aqueous ROMP with acid-sensitive functional groups or within a biological setting. Herein we describe our efforts to optimize ROMP in an aqueous environment under neutral pH conditions. Specifically, we found that the presence of excess chloride in solution as well as relatively small changes in pH near physiological conditions have a profound effect on molecular weight control, polymerization rate and overall monomer conversion. Additionally, we have applied our optimized conditions to polymerize a broad scope of water-soluble monomers and used this methodology to produce nanostructures via ring opening metathesis polymerization induced self-assembly (ROMPISA) under neutral pH aqueous conditions.
Collapse
Affiliation(s)
- Derek C. Church
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lauren Takiguchi
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Smit W, Foscato M, Occhipinti G, Jensen VR. Ethylene-Triggered Formation of Ruthenium Alkylidene from Decomposed Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Wietse Smit
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Giovanni Occhipinti
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|