1
|
Cheshmedzhieva D, Atanasov I, Ilieva S, Galabov B, Schaefer Iii HF. Reactivity in Friedel-Crafts aromatic benzylation: the role of the electrophilic reactant. Phys Chem Chem Phys 2024; 27:103-111. [PMID: 39474664 DOI: 10.1039/d4cp03181d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Density functional theory is employed in understanding the reactivity in the TiCl4 catalyzed Friedel-Crafts benzylation of benzene with substituted benzyl chlorides in nitromethane solvent. A series of ten substituted (in the aromatic ring) benzyl chlorides are characterized by theoretical reactivity indices. The theoretical parameters are juxtaposed to experimental relative rates of benzylation. It is established that the carbon-chlorine ionic bond dissociation energy and the Hirshfeld charge at the chlorine atom for the benzyl chlorides reactants - describe quite satisfactorily the reactivity trends. These results provide further insights into the factors governing reactivity in EAS reactions, which so far have been mostly focused on rate variations induced by changes in the structure of the aromatic substrate. The EAS benzylation investigated is quite unusual since, in contrast to most EAS reactions, the latest experimental kinetic results suggest that the aromatic substrate does not participate in the kinetic equation of the process. To shed more light on this unexpected result, we also conducted a theoretical study on the mechanistic pathway by applying M06-2X density functional computations combined with several basis sets: 6-311+G(d,p), 6-311+G(2df,2p), and def2-TZVPP. Because of the well-known difficulties in evaluating realistic free energy barriers for organic reactions, we tested two solvent models in determining the barrier for the TiCl4-catalyzed Friedel-Crafts benzylation of benzene by benzyl chloride. Since all methods employed did not provide satisfactory results for the free energy barriers, we used a combination of theoretically estimated enthalpy barriers and the available (from kinetic experiments) entropy contribution. This approach enabled us to verify that indeed the rate of this EAS reaction does not depend on the nature of the aromatic substrate. The computations revealed the structure and relative energies of the critical structures along the mechanistic pathway. Four intermediates were established along the reaction route.
Collapse
Affiliation(s)
- Diana Cheshmedzhieva
- Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria.
| | - Ivan Atanasov
- Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria.
| | - Sonia Ilieva
- Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria.
| | - Boris Galabov
- Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria.
| | - Henry F Schaefer Iii
- Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Shi X, Zhao Y, Zhou Y, Li Z, Tang Y, Fu H, Liu Y, Zhang ZG, Pu M, Lei M. The GaCl 3-Catalyzed Knoevenagel Condensation To Achieve Acceptor-Donor-Acceptor Small-Molecule Acceptors: A DFT Mechanistic Study. J Org Chem 2024; 89:14408-14417. [PMID: 39311017 DOI: 10.1021/acs.joc.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Herein, the reaction mechanism for the GaCl3-catalyzed Knoevenagel condensation of 2-formylindacenodithieno[3,2-b]thiophene (ITIC-CHO) and active methylene compound 1,1-dicyanomethylene-3-indanone (IC) to synthesize ITIC in the presence of acetic anhydride was investigated using the density functional theory (DFT) method. The calculated results indicate that this reaction follows a bimolecular GaCl3 catalytic mechanism. The free energy span for the monomolecular GaCl3 catalytic mechanism is the highest (31.8 kcal/mol), followed by the trimolecular GaCl3 catalytic mechanism (26.4 kcal/mol) and the bimolecular GaCl3 catalytic mechanism (26.3 kcal/mol). The trimolecular GaCl3 path and bimolecular GaCl3 path are competitive, but the former path is limited by the concentration of GaCl3. The inclusion of GaCl3 could stabilize the transition states of C-H activation. Compared to the GaCl3-catalyzed Knoevenagel condensation, that catalyzed by pyridine is not advantageous, owning a high energy span of 31.7 kcal/mol. These agree well with experimental results. This work could provide a novel theoretical understanding of the Knoevenagel condensation, which could inspire the development of a synthesis strategy for electron acceptor materials.
Collapse
Affiliation(s)
- Xiaofan Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaqi Zhao
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ying Zhou
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026,China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanhui Tang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
- School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Hongyuan Fu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yangqiu Liu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Lin W, Alix A, Guillot R, Gandon V, Bour C. Aluminum-Catalyzed Intramolecular Vinylation of Arenes by Vinyl Cations. Org Lett 2024; 26:3267-3272. [PMID: 38574281 DOI: 10.1021/acs.orglett.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study addresses the challenges associated with vinyl cation generation, a process that traditionally requires quite specific counterions. Described herein is a novel intramolecular vinylation of arenes catalyzed by aluminum(III) chloride, utilizing practical conditions and readily available vinyl triflates derived from 2-aceto-3-arylpropionates. Comprehensive experimental data support diverse carbocycle synthesis, exemplified by indenes and higher analogues. Control experiments verify the applicability of the vinylation protocol, and synthetic applications showcase a potent tubulin polymerization inhibitor with anticancer properties. Density functional theory computations reveal a Lewis-acid-driven mechanism involving triflate moiety abstraction to generate a reactive vinyl cation.
Collapse
Affiliation(s)
- Wenhua Lin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Aurélien Alix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
4
|
Vayer M, Rodrigues S, Miaskiewicz S, Gatineau D, Gimbert Y, Gandon V, Bour C. Potassium Carbonate to Unlock a GaCl 3-Catalyzed C–H Propargylation of Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marie Vayer
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay CEDEX, France
| | - Sophie Rodrigues
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay CEDEX, France
| | - Solène Miaskiewicz
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay CEDEX, France
| | | | - Yves Gimbert
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris 75005, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay CEDEX, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau CEDEX, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay CEDEX, France
| |
Collapse
|
5
|
Yang S, Bour C, Lebœuf D, Gandon V. DFT Analysis into the Calcium(II)-Catalyzed Coupling of Alcohols With Vinylboronic Acids: Cooperativity of Two Different Lewis Acids and Counterion Effects. J Org Chem 2021; 86:9134-9144. [PMID: 34152770 DOI: 10.1021/acs.joc.1c01263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of the calcium-catalyzed coupling of alcohols with vinylboronic acids has been analyzed by means of density functional theory computations. This study reveals that the calcium and boron Lewis acids associate to form a superelectrophile able to promote a pericyclic group transfer reaction with allyl alcohols. With other alcohols, the two Lewis acids act synergistically to activate the OH functionality and trigger a SNi reaction pathway. These two mechanisms are affected by the nature of the counterions, which has been rationalized by electronic and steric factors.
Collapse
Affiliation(s)
- Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay Cedex 91405, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay Cedex 91405, France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay Cedex 91405, France.,Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg 67000, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Sud, Université Paris-Saclay, Bâtiment 420, Orsay Cedex 91405, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| |
Collapse
|
6
|
Yang S, Alix A, Bour C, Gandon V. Alkynophilicity of Group 13 MX 3 Salts: A Theoretical Study. Inorg Chem 2021; 60:5507-5522. [PMID: 33769800 DOI: 10.1021/acs.inorgchem.0c03302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The concept of alkynophilicity is revisited with group 13 MX3 metal salts (M = In, Ga, Al, B; X = Cl, OTf) using M06-2X/6-31+G(d,p) calculations. This study aims at answering why some of these salts show reactivity toward enynes that is similar to that observed with late-transition-metal complexes, notably Au(I) species, and why some of them are inactive. For this purpose, the mechanism of the skeletal reorganization of 1,6-enynes into 1-vinylcyclopentenes has been computed, including monomeric ("standard") and dimeric (superelectrophilic) activation. Those results are confronted with deactivation pathways based on the dissociation of the M-X bond. The role of the X ligand in the stabilization of the intermediate nonclassical carbocation is revealed, and the whole features required to make a good π-Lewis acid are discussed.
Collapse
Affiliation(s)
- Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Aurélien Alix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| |
Collapse
|
7
|
Dai SS, Yang L, Zhou L, Gao Y, Fang R, Kirillov AM, Yang L. DFT Quest of the Active Species of the Gallium-Mediated Coupling of Methylidenemalonates and Acetylenes. Inorg Chem 2021; 60:995-1006. [PMID: 33390011 DOI: 10.1021/acs.inorgchem.0c03113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, three different Ga-containing systems based on GaCl3, Ga2Cl6, or ionic [Ga(L)3][GaCl4]3 (L = methylidenemalonate) complex were screened to elucidate the mechanism, regioselectivity, chemoselectivity, and role of Ga mediator in the reaction between two types of acetylenes (phenylacetylene and but-1-yn-1-ylbenzene) and methylidenemalonates, i.e., the 1,2-zwitterionic precursors that are similar to intermediates derived from donor-acceptor cyclopropanes (DACs). Our DFT calculation results clearly show that the ionic gallium complex [Ga(L)3][GaCl4]3 represents the key mediator in the title reaction. After the formation of such a complex, the first reaction step is the nucleophilic addition of phenylacetylene or but-1-yn-1-ylbenzene to [Ga(L)3][GaCl4]3, generating an unstable vinyl cation intermediate. In the phenylacetylene system, this vinyl cation intermediate accepts a chlorine atom from [GaCl4]- to give E-configuration intermediate. Then, the above process occurs to other two ligands of the Ga(III) complex to furnish a final product. On the other hand, in the but-1-yn-1-ylbenzene system, the vinyl cation intermediate prefers to undergo Friedel-Crafts (F-C) alkylation to generate a five-membered ring intermediate. This process is repeated on the other two methylidenemalonate ligands, giving rise to a final cyclization product. The distortion/interaction analysis shows that in the nucleophilic addition step the distortion energy of the Ga complex part is the main factor that influences the activation energy. Furthermore, the global reactivity index (GRI) analysis indicates that the Ga-complex model has the highest electrophilicity index ω, thus leading to the lowest energy barrier among three Ga-based models. In addition, DFT results reveal that the regioselectivity (E-configuration preference) and chemoselectivity (chloration or F-C alkylation) are mainly controlled by the steric effect rather than the electronic effect. The main findings of the present work provide a new way to analyze and rationalize various Ga-mediated reactions, which might also be extrapolated to organic transformations undergoing in the presence of aluminum and indium complexes.
Collapse
Affiliation(s)
- Song-Shan Dai
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lin Zhou
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - YuanYuan Gao
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.,College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
8
|
Iashin V, Berta D, Chernichenko K, Nieger M, Moslova K, Pápai I, Repo T. Metal-Free C-H Borylation of N-Heteroarenes by Boron Trifluoride. Chemistry 2020; 26:13873-13879. [PMID: 32478432 PMCID: PMC7702085 DOI: 10.1002/chem.202001436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Organoboron compounds are essential reagents in modern C-C coupling reactions. Their synthesis via catalytic C-H borylation by main group elements is emerging as a powerful tool alternative to transition metal based catalysis. Herein, a straightforward metal-free synthesis of aryldifluoroboranes from BF3 and heteroarenes is reported. The reaction is assisted by sterically hindered amines and catalytic amounts of thioureas. According to computational studies the reaction proceeds via frustrated Lewis pair (FLP) mechanism. The obtained aryldifluoroboranes are further stabilized against destructive protodeborylation by converting them to the corresponding air stable tetramethylammonium organotrifluoroborates.
Collapse
Affiliation(s)
- Vladimir Iashin
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| | - Dénes Berta
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Konstantin Chernichenko
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
- Present address: API Small Molecule DevelopmentJanssen Pharmaceutica N.V.Turnhoutseweg 302340BeerseBelgium
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| | - Karina Moslova
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| | - Imre Pápai
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| |
Collapse
|
9
|
Li Z, Yang S, Thiery G, Gandon V, Bour C. On the Superior Activity of In(I) versus In(III) Cations Toward ortho-C-Alkylation of Anilines and Intramolecular Hydroamination of Alkenes. J Org Chem 2020; 85:12947-12959. [PMID: 32957782 DOI: 10.1021/acs.joc.0c01585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient ortho-C-alkylation of unprotected anilines with a variety of styrenes and alkenes using a univalent cationic indium(I) catalyst is reported. Mechanistic studies revealed that the reaction likely proceeds via a tandem hydroamination/Hofmann-Martius rearrangement. The high compatibility between the cationic indium(I) complex and primary anilines led us to develop an In(I)+-catalyzed hydroamination of alkenes using unprotected primary and secondary alkenylamines. Computations support the catalytic activity of naked In(I)+ ions, with an outer sphere mechanism for the C-N bond formation and a potentially inner sphere protodemetallation.
Collapse
Affiliation(s)
- Zhilong Li
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, Orsay cedex 91405, France
| | - Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, Orsay cedex 91405, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau, Paris cedex 91128, France
| | - Guillaume Thiery
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, Orsay cedex 91405, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, Orsay cedex 91405, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, Palaiseau, Paris cedex 91128, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, Orsay cedex 91405, France
| |
Collapse
|
10
|
Bentley JN, Elgadi SA, Gaffen JR, Demay-Drouhard P, Baumgartner T, Caputo CB. Fluorescent Lewis Adducts: A Practical Guide to Relative Lewis Acidity. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jordan N. Bentley
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Seja A. Elgadi
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Joshua R. Gaffen
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Paul Demay-Drouhard
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Thomas Baumgartner
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Christopher B. Caputo
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
11
|
Klumpp DA, Anokhin MV. Superelectrophiles: Recent Advances. Molecules 2020; 25:E3281. [PMID: 32707680 PMCID: PMC7397018 DOI: 10.3390/molecules25143281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Superelectrophiles are reactive species that often carry multiple positive charges. They have been useful in numerous synthetic methods and they often exhibit highly unusual reactivities. Recent advances in superelectrophile chemistry are discussed in this review.
Collapse
Affiliation(s)
- Douglas A. Klumpp
- Department of Chemistry and Biochemistry, Norther Illinois University, DeKalb, IL 60178, USA;
| | | |
Collapse
|
12
|
Li Z, Gandon V, Bour C. Bimolecular vinylation of arenes by vinyl cations. Chem Commun (Camb) 2020; 56:6507-6510. [DOI: 10.1039/d0cc02300k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Styrene derivatives can be easily synthesized from vinyl triflates and arenes under mild reaction conditions, using [Li][Al(OC(CF3)3)4] as a catalyst and LiHMDS as a base.
Collapse
Affiliation(s)
- Zhilong Li
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- CNRS UMR 8182
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- CNRS UMR 8182
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d’Orsay
- CNRS UMR 8182
- Université Paris-Saclay
- 91405 Orsay Cedex
- France
| |
Collapse
|