1
|
Khatib M, Zhao ET, Wei S, Abramson A, Bishop ES, Chen CH, Thomas AL, Xu C, Park J, Lee Y, Hamnett R, Yu W, Root SE, Yuan L, Chakhtoura D, Kim KK, Zhong D, Nishio Y, Zhao C, Wu C, Jiang Y, Zhang A, Li J, Wang W, Salimi-Jazi F, Rafeeqi TA, Hemed NM, Tok JBH, Chen X, Kaltschmidt JA, Dunn JC, Bao Z. Spiral NeuroString: High-Density Soft Bioelectronic Fibers for Multimodal Sensing and Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560482. [PMID: 37873341 PMCID: PMC10592902 DOI: 10.1101/2023.10.02.560482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bioelectronic fibers hold promise for both research and clinical applications due to their compactness, ease of implantation, and ability to incorporate various functionalities such as sensing and stimulation. However, existing devices suffer from bulkiness, rigidity, limited functionality, and low density of active components. These limitations stem from the difficulty to incorporate many components on one-dimensional (1D) fiber devices due to the incompatibility of conventional microfabrication methods (e.g., photolithography) with curved, thin and long fiber structures. Herein, we introduce a fabrication approach, ‶spiral transformation″, to convert two-dimensional (2D) films containing microfabricated devices into 1D soft fibers. This approach allows for the creation of high density multimodal soft bioelectronic fibers, termed Spiral NeuroString (S-NeuroString), while enabling precise control over the longitudinal, angular, and radial positioning and distribution of the functional components. We show the utility of S-NeuroString for motility mapping, serotonin sensing, and tissue stimulation within the dynamic and soft gastrointestinal (GI) system, as well as for single-unit recordings in the brain. The described bioelectronic fibers hold great promises for next-generation multifunctional implantable electronics.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eric Tianjiao Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Shiyuan Wei
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alex Abramson
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Estelle Spear Bishop
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Chih-Hsin Chen
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Anne-Laure Thomas
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Chengyi Xu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jaeho Park
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yeongjun Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ryan Hamnett
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Weilai Yu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel E. Root
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lei Yuan
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Dorine Chakhtoura
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuya Nishio
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chuanzhen Zhao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Can Wu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuanwen Jiang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Anqi Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jinxing Li
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Weichen Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | - Talha A. Rafeeqi
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
| | - Nofar Mintz Hemed
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B.-H. Tok
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Julia A. Kaltschmidt
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - James C.Y. Dunn
- Department of Surgery/Pediatric Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Lee Y, Koehler F, Dillon T, Loke G, Kim Y, Marion J, Antonini MJ, Garwood I, Sahasrabudhe A, Nagao K, Zhao X, Fink Y, Roche ET, Anikeeva P. Magnetically Actuated Fiber-Based Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301916. [PMID: 37269476 PMCID: PMC10526629 DOI: 10.1002/adma.202301916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Indexed: 06/05/2023]
Abstract
Broad adoption of magnetic soft robotics is hampered by the sophisticated field paradigms for their manipulation and the complexities in controlling multiple devices. Furthermore, high-throughput fabrication of such devices across spatial scales remains challenging. Here, advances in fiber-based actuators and magnetic elastomer composites are leveraged to create 3D magnetic soft robots controlled by unidirectional fields. Thermally drawn elastomeric fibers are instrumented with a magnetic composite synthesized to withstand strains exceeding 600%. A combination of strain and magnetization engineering in these fibers enables programming of 3D robots capable of crawling or walking in magnetic fields orthogonal to the plane of motion. Magnetic robots act as cargo carriers, and multiple robots can be controlled simultaneously and in opposing directions using a single stationary electromagnet. The scalable approach to fabrication and control of magnetic soft robots invites their future applications in constrained environments where complex fields cannot be readily deployed.
Collapse
Affiliation(s)
- Youngbin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Tom Dillon
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Juliette Marion
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Indie Garwood
- Harvard/MIT Health Science & Technology Graduate Program; Cambridge, MA 02139, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Keisuke Nagao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Yoel Fink
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Ellen T. Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X, Ni X. Optical meta-waveguides for integrated photonics and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:235. [PMID: 34811345 PMCID: PMC8608813 DOI: 10.1038/s41377-021-00655-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The growing maturity of nanofabrication has ushered massive sophisticated optical structures available on a photonic chip. The integration of subwavelength-structured metasurfaces and metamaterials on the canonical building block of optical waveguides is gradually reshaping the landscape of photonic integrated circuits, giving rise to numerous meta-waveguides with unprecedented strength in controlling guided electromagnetic waves. Here, we review recent advances in meta-structured waveguides that synergize various functional subwavelength photonic architectures with diverse waveguide platforms, such as dielectric or plasmonic waveguides and optical fibers. Foundational results and representative applications are comprehensively summarized. Brief physical models with explicit design tutorials, either physical intuition-based design methods or computer algorithms-based inverse designs, are cataloged as well. We highlight how meta-optics can infuse new degrees of freedom to waveguide-based devices and systems, by enhancing light-matter interaction strength to drastically boost device performance, or offering a versatile designer media for manipulating light in nanoscale to enable novel functionalities. We further discuss current challenges and outline emerging opportunities of this vibrant field for various applications in photonic integrated circuits, biomedical sensing, artificial intelligence and beyond.
Collapse
Affiliation(s)
- Yuan Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yizhen Chen
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China
| | - Longhui Lu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yimin Ding
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Cusano
- Optoelectronic Division, Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Jonathan A Fan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiaomu Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaiyuan Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenwei Xie
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Zhoutian Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China.
| | - Shulin Sun
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China.
| | - Minming Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Xingjie Ni
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|