1
|
Recabarren R, Llanos AG, Vöhringer-Martinez E. Computational methods for the study of carboxylases: The case of crotonyl-CoA carboxylase/reductase. Methods Enzymol 2024; 708:353-387. [PMID: 39572147 DOI: 10.1016/bs.mie.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
The rising levels of atmospheric CO2 and its impact on climate change call for new methods to transform this greenhouse gas into beneficial compounds. Carboxylases have a significant role in the carbon cycle, converting gigatons of CO2 into biomass annually. One of the most effective and fastest carboxylases is crotonyl-CoA carboxylase/reductase (Ccr). To understand its underlying mechanism, we have developed computational methods and protocols based on all-atom molecular dynamics simulations. These methods provide the CO2 binding locations and free energy inside the active site, dependent on different conformations adopted by Ccr and the presence of the crotonyl-CoA substrate. Furthermore, the adaptive string method and quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations outline the CO2 fixation reaction via two different mechanisms. The direct mechanism involves a hydride transfer creating a reactive enolate, which then binds the electrophilic CO2 molecule, resulting in the carboxylated product. Alternatively, another mechanism involves the formation of a covalent adduct. Our simulations suggest that this adduct serves to store the enolate in a much more stable intermediate avoiding its reduction side reaction, explaining the enzyme's efficiency. Overall, this work presents computational methods for studying carboxylation reactions using Ccr as a model, providing general principles that can be applied to modeling other carboxylases.
Collapse
Affiliation(s)
- Rodrigo Recabarren
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Aharon Gómez Llanos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastian, Lientur, Concepción, Chile
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Erb TJ. Photosynthesis 2.0: Realizing New-to-Nature CO 2-Fixation to Overcome the Limits of Natural Metabolism. Cold Spring Harb Perspect Biol 2024; 16:a041669. [PMID: 37848245 PMCID: PMC10835606 DOI: 10.1101/cshperspect.a041669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Synthetic biology provides opportunities to realize new-to-nature CO2-fixation metabolisms to overcome the limitations of natural photosynthesis. Two different strategies are currently being pursued: One is to realize engineered plants that feature carbon-neutral or carbon-negative (i.e., CO2-fixing) photorespiration metabolism, such as the tatronyl-CoA (TaCo) pathway, to boost CO2-uptake rates of photosynthesis between 20% and 60%. Another (arguably more radical) is to create engineered plants in which natural photosynthesis is fully replaced by an alternative CO2-fixation metabolism, such as the CETCH cycle, which carries the potential to improve CO2 uptake rates between 20% and 200%. These efforts could revolutionize plant engineering by expanding the capabilities of plant metabolism beyond the constraints of natural evolution to create highly improved crops addressing the challenges of climate change in the future.
Collapse
Affiliation(s)
- Tobias J Erb
- Max Planck Society, Germany, Department for Biochemistry & Synthetic Metabolism, Center for Synthetic Microbiology (SYNMIKRO) & Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
3
|
Schmidt FV, Schulz L, Zarzycki J, Prinz S, Oehlmann NN, Erb TJ, Rebelein JG. Structural insights into the iron nitrogenase complex. Nat Struct Mol Biol 2024; 31:150-158. [PMID: 38062208 PMCID: PMC10803253 DOI: 10.1038/s41594-023-01124-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2024]
Abstract
Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.
Collapse
Affiliation(s)
- Frederik V Schmidt
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Luca Schulz
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Simone Prinz
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Niels N Oehlmann
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Johannes G Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
4
|
Gomez A, Erb TJ, Grubmüller H, Vöhringer-Martinez E. Conformational Dynamics of the Most Efficient Carboxylase Contributes to Efficient CO 2 Fixation. J Chem Inf Model 2023; 63:7807-7815. [PMID: 38049384 DOI: 10.1021/acs.jcim.3c01447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Crotonyl-CoA carboxylase/reductase (Ccr) is one of the fastest CO2 fixing enzymes and has become part of efficient artificial CO2-fixation pathways in vitro, paving the way for future applications. The underlying mechanism of its efficiency, however, is not yet completely understood. X-ray structures of different intermediates in the catalytic cycle reveal tetramers in a dimer of dimers configuration with two open and two closed active sites. Upon binding a substrate, this active site changes its conformation from the open state to the closed state. It is challenging to predict how these coupled conformational changes will alter the CO2 binding affinity to the reaction's active site. To determine whether the open or closed conformations of Ccr affect binding of CO2 to the active site, we performed all-atom molecular simulations of the various conformations of Ccr. The open conformation without a substrate showed the highest binding affinity. The CO2 binding sites are located near the catalytic relevant Asn81 and His365 residues and in an optimal position for CO2 fixation. Furthermore, they are unaffected by substrate binding, and CO2 molecules stay in these binding sites for a longer time. Longer times at these reactive binding sites facilitate CO2 fixation through the nucleophilic attack of the reactive enolate in the closed conformation. We previously demonstrated that the Asn81Leu variant cannot fix CO2. Simulations of the Asn81Leu variant explain the loss of activity through the removal of the Asn81 and His365 binding sites. Overall, our findings show that the conformational dynamics of the enzyme controls CO2 binding. Conformational changes in Ccr increase the level of CO2 in the open subunit before the substrate is bound, the active site closes, and the reaction starts. The full catalytic Ccr cycle alternates among CO2 addition, conformational change, and chemical reaction in the four subunits of the tetramer coordinated by communication between the two dimers.
Collapse
Affiliation(s)
- Aharon Gomez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepión 4030000, Chile
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, Marburg D-35043, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35032, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen D-37073, Germany
| | - Esteban Vöhringer-Martinez
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepión 4030000, Chile
| |
Collapse
|
5
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
6
|
Grüning G, Wong SY, Gerhards L, Schuhmann F, Kattnig DR, Hore PJ, Solov’yov IA. Effects of Dynamical Degrees of Freedom on Magnetic Compass Sensitivity: A Comparison of Plant and Avian Cryptochromes. J Am Chem Soc 2022; 144:22902-22914. [DOI: 10.1021/jacs.2c06233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Gesa Grüning
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Siu Ying Wong
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Fabian Schuhmann
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
| | - Daniel R. Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K
| | - P. J. Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Ilia A. Solov’yov
- Department of Physics, Carl von Ossietzky University, Carl-von-Ossietzky-Street 9-11, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Institut für Physik, Ammerländer Heerstreet 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
7
|
Kourist R, Kamerlin SCL. A Structural View into the Complexity of Carbon Dioxide Fixation. ACS CENTRAL SCIENCE 2022; 8:1040-1042. [PMID: 36032761 PMCID: PMC9413436 DOI: 10.1021/acscentsci.2c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Robert Kourist
- Institute of Molecular
Biotechnology, Graz University of Technology, NAW1 Graz, BioTechMed, Petersgasse
14, 8010 Graz, Austria
| | | |
Collapse
|