1
|
Borg KN, Shetty A, Cheng G, Zhu S, Wang T, Yuan W, Ho HP, Knudsen BR, Tesauro C, Ho YP. Hydrogel bead-based isothermal detection (BEAD-ID) for assessing the activity of DNA-modifying enzymes. iScience 2024; 27:111332. [PMID: 39640584 PMCID: PMC11617385 DOI: 10.1016/j.isci.2024.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
DNA-modifying enzymes are crucial in biological processes and have significant clinical implications. Traditional quantification methods often overlook enzymatic activity, the true determinants of enzymes' functions. We present hydrogel Bead-based Isothermal Detection (BEAD-ID), utilizing uniform hydrogel bead-based microreactors to evaluate DNA-modifying enzyme activity on-bead. We fabricated homogeneous oligo-conjugated polyacrylamide (oligo-PAA) beads via droplet microfluidics, optimized for capturing and amplifying enzyme-modified nanosensors. By incorporating DNA oligos within the hydrogel network, BEAD-ID retains isothermally amplified products, facilitating in situ detection of enzyme activities on-bead. We validate BEAD-ID by quantifying human topoisomerase I (TOP1) and restriction endonuclease EcoRI, showing a direct correlation between enzyme concentration and fluorescence intensity, demonstrating the platform's sensitivity (6.25 nM TOP1, 6.25 U/μL EcoRI) and reliability in food matrix (25 U/μL EcoRI). Additionally, a customized flow cytometry-mimicking setup allows high-throughput detection at 352 Hz with objective assessment. BEAD-ID, offering flexibility and scalability, is a promising tool for studying DNA-modifying enzymes.
Collapse
Affiliation(s)
- Kathrine Nygaard Borg
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Ayush Shetty
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Guangyao Cheng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Shaodi Zhu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Tianle Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Ho Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Cinzia Tesauro
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 00000, China
- Centre for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
3
|
Eng YJ, Nguyen TM, Luo HK, Chan JMW. Antifouling polymers for nanomedicine and surfaces: recent advances. NANOSCALE 2023; 15:15472-15512. [PMID: 37740391 DOI: 10.1039/d3nr03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Antifouling polymers are materials that can resist nonspecific interactions with cells, proteins, and other biomolecules. Typically, they are hydrophilic polymers with polar or charged moieties that are capable of strong nonbonding interactions with water molecules. This propensity to bind water generates a surface hydration layer that reduces nonspecific interactions with other molecules and is paramount to the antifouling behavior. This property is especially useful for nanoscale applications such as nanomedicine and surface modifications at the molecular level. In nanomedicine, antifouling polymers such as poly(ethylene glycol) and its alternatives play a key role in shielding drug molecules and therapeutic proteins/genes from the immune system within nanoassemblies, thereby enabling effective delivery to target tissues. For coatings, antifouling polymers help to prevent adhesion of cells and molecules to surfaces and are thus valued in marine and biomedical device applications. In this Review, we survey recent advances in antifouling polymers in the context of nanomedicine and coatings, while shining the spotlight on the major polymer classes such as PEG, polyzwitterions, poly(oxazoline)s, and other nonionic hydrophilic polymers.
Collapse
Affiliation(s)
- Yi Jie Eng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Julian M W Chan
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
4
|
Cavett V, Chan AI, Cunningham CN, Paegel BM. Hydrogel-Encapsulated Beads Enable Proximity-Driven Encoded Library Synthesis and Screening. ACS CENTRAL SCIENCE 2023; 9:1603-1610. [PMID: 37637732 PMCID: PMC10451030 DOI: 10.1021/acscentsci.3c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 08/29/2023]
Abstract
Encoded combinatorial library technologies have dramatically expanded the chemical space for screening but are usually only analyzed by affinity selection binding. It would be highly advantageous to reformat selection outputs to "one-bead-one-compound" solid-phase libraries, unlocking activity-based and cellular screening capabilities. Here, we describe hydrogel-encapsulated magnetic beads that enable such a transformation. Bulk emulsion polymerization of polyacrylamide hydrogel shells around magnetic microbeads yielded uniform particles (7 ± 2 μm diameter) that are compatible with diverse in-gel functionalization (amine, alkyne, oligonucleotides) and transformations associated with DNA-encoded library synthesis (acylation, enzymatic DNA ligation). In a case study of reformatting mRNA display libraries, transcription from DNA-templated magnetic beads encapsulated in gel particles colocalized both RNA synthesis via hybridization with copolymerized complementary DNA and translation via puromycin labeling. Two control epitope templates (V5, HA) were successfully enriched (50- and 99-fold, respectively) from an NNK5 library bead screen via FACS. Proximity-driven library synthesis in concert with magnetic sample manipulation provides a plausible means for reformatting encoded combinatorial libraries at scale.
Collapse
Affiliation(s)
- Valerie Cavett
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Alix I Chan
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Departments
of Chemistry & Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Brown W, Albright S, Tsang M, Deiters A. Optogenetic Protein Cleavage in Zebrafish Embryos. Chembiochem 2022; 23:e202200297. [PMID: 36196665 DOI: 10.1002/cbic.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Indexed: 01/25/2023]
Abstract
A wide array of optogenetic tools are available that allow for precise spatiotemporal control over cellular processes. These tools are particularly important to zebrafish researchers who take advantage of the embryo's transparency. However, photocleavable optogenetic proteins have not been utilized in zebrafish. We demonstrate successful optical control of protein cleavage in embryos using PhoCl, a photocleavable fluorescent protein. This optogenetic tool offers temporal and spatial control over protein cleavage events, which we demonstrate in light-triggered protein translocation and light-triggered apoptosis.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|