1
|
Blazhynska M, Gumbart JC, Chen H, Tajkhorshid E, Roux B, Chipot C. A Rigorous Framework for Calculating Protein-Protein Binding Affinities in Membranes. J Chem Theory Comput 2023; 19:9077-9092. [PMID: 38091976 PMCID: PMC11145395 DOI: 10.1021/acs.jctc.3c00941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Calculating the binding free energy of integral transmembrane (TM) proteins is crucial for understanding the mechanisms by which they recognize one another and reversibly associate. The glycophorin A (GpA) homodimer, composed of two α-helical segments, has long served as a model system for studying TM protein reversible association. The present work establishes a methodological framework for calculating the binding affinity of the GpA homodimer in the heterogeneous environment of a membrane. Our investigation carefully considered a variety of protocols, including the appropriate choice of the force field, rigorous standardization reflecting the experimental conditions, sampling algorithm, anisotropic environment, and collective variables, to accurately describe GpA dimerization via molecular dynamics-based approaches. Specifically, two strategies were explored: (i) an unrestrained potential mean force (PMF) calculation, which merely enhances sampling along the separation of the two binding partners without any restraint, and (ii) a so-called "geometrical route", whereby the α-helices are progressively separated with imposed restraints on their orientational, positional, and conformational degrees of freedom to accelerate convergence. Our simulations reveal that the simplified, unrestrained PMF approach is inadequate for the description of GpA dimerization. Instead, the geometrical route, tailored specifically to GpA in a membrane environment, yields excellent agreement with experimental data within a reasonable computational time. A dimerization free energy of -10.7 kcal/mol is obtained, in fairly good agreement with available experimental data. The geometrical route further helps elucidate how environmental forces drive association before helical interactions stabilize it. Our simulations also brought to light a distinct, long-lived spatial arrangement that potentially serves as an intermediate state during dimer formation. The methodological advances in the generalized geometrical route provide a powerful tool for accurate and efficient binding-affinity calculations of intricate TM protein complexes in inhomogeneous environments.
Collapse
Affiliation(s)
- Marharyta Blazhynska
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, United States
| | - Haochuan Chen
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Christophe Chipot
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Université de Lorraine, B.P. 70239, Vandœuvre-lès-Nancy cedex 54506, France
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Avenue, Urbana, Illinois 61801, United States
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 E. 57th Street W225, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Hawai'i at Ma̅noa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| |
Collapse
|
2
|
Kim JW, Kim HJ, Heo K, Lee Y, Jang HJ, Lee HY, Park JW, Cho YB, Lee JH, Shin HG, Yang HR, Choi HL, Shim HB, Lee S. A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants. Front Immunol 2023; 14:1271508. [PMID: 37822941 PMCID: PMC10562541 DOI: 10.3389/fimmu.2023.1271508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has caused unprecedented health and socioeconomic crises, necessitating the immediate development of highly effective neutralizing antibodies. Despite recent advancements in anti-SARS-CoV-2 receptor-binding domain (RBD)-specific monoclonal antibodies (mAbs) derived from convalescent patient samples, their efficacy against emerging variants has been limited. In this study, we present a novel dual-targeting strategy using bispecific antibodies (bsAbs) that specifically recognize both the SARS-CoV-2 RBD and fusion peptide (FP), crucial domains for viral attachment to the host cell membrane and fusion in SARS-CoV-2 infection. Methods Using phage display technology, we rapidly isolated FP-specific mAbs from an established human recombinant antibody library, identifying K107.1 with a nanomolar affinity for SARS-CoV-2 FP. Furthermore, we generated K203.A, a new bsAb built in immunoglobulin G4-(single-chain variable fragment)2 forms and demonstrating a high manufacturing yield and nanomolar affinity to both the RBD and FP, by fusing K102.1, our previously reported RBD-specific mAb, with K107.1. Results Our comprehensive in vitro functional analyses revealed that the K203.A bsAb significantly outperformed the parental RBD-specific mAb in terms of neutralization efficacy against SARS-CoV-2 variants. Furthermore, intravenous monotherapy with K203.A demonstrated potent in vivo neutralizing activity without significant in vivo toxicity in a mouse model infected with a SARS-CoV-2 variant. Conclusion These findings present a novel bsAb dual-targeting strategy, directed at SARS-CoV-2 RBD and FP, as an effective approach for rapid development and management against continuously evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ji Woong Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Kyun Heo
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Yoonwoo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yea Bin Cho
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hye Lim Choi
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Hyun Bo Shim
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sukmook Lee
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|