1
|
Guo X, Wu J, Ji TT, Wang M, Zhang S, Xiong J, Gang FY, Liu W, Gu YH, Liu Y, Xie NB, Yuan BF. Orthologous mammalian A3A-mediated single-nucleotide resolution sequencing of DNA epigenetic modification 5-hydroxymethylcytosine. Chem Sci 2025; 16:3953-3963. [PMID: 39906385 PMCID: PMC11788818 DOI: 10.1039/d4sc08660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Epigenetic modifications in genomes play a crucial role in regulating gene expression in mammals. Among these modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are recognized as the fifth and sixth nucleobases in genomes, respectively, and are the two most significant epigenetic marks in mammals. 5hmC serves as both an intermediate in active DNA demethylation and a stable epigenetic modification involved in various biological processes. Analyzing the location of 5hmC is essential for understanding its functions. In this study, we introduce an orthologous mammalian A3A-mediated sequencing (OMA-seq) method for the quantitative detection of 5hmC in genomic DNA at single-nucleotide resolution. OMA-seq relies on the deamination properties of two naturally occurring mammalian A3A proteins: green monkey A3A (gmA3A) and dog A3A (dogA3A). The combined use of gmA3A and dogA3A effectively deaminates cytosine (C) and 5mC, but not 5hmC. As a result, the original C and 5mC in DNA are deaminated and read as thymine (T) during sequencing, while the original 5hmC remains unchanged and is read as C. Consequently, the remaining C in the sequence indicates the presence of original 5hmC. Using OMA-seq, we successfully quantified 5hmC in genomic DNA from lung cancer tissue and corresponding normal tissue. OMA-seq enables accurate and quantitative mapping of 5hmC at single-nucleotide resolution, utilizing a pioneering single-step deamination protocol that leverages the high specificity of natural deaminases. This approach eliminates the need for bisulfite conversion, DNA glycosylation, chemical oxidation, or screening of engineered protein variants, thereby streamlining the analysis of 5hmC. The utilization of orthologous enzymes for 5hmC detection expands the toolkit for epigenetic research, enabling the precise mapping of modified nucleosides and uncovering new insights into epigenetic regulation.
Collapse
Affiliation(s)
- Xia Guo
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University Wuhan 430060 China
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| | - Min Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Fang-Yin Gang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yao-Hua Gu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- School of Nursing, Wuhan University Wuhan 430071 China
| | - Yu Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Hubei Key Laboratory of Tumor Biological Behaviors, Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University Wuhan 430060 China
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| |
Collapse
|
2
|
YUAN K, XIONG J, YUAN B. [Research advances in the transplacental transfer efficiencies of environmental pollutants]. Se Pu 2025; 43:13-21. [PMID: 39722617 PMCID: PMC11686480 DOI: 10.3724/sp.j.1123.2024.07002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Indexed: 12/28/2024] Open
Abstract
Industrialization has led to significant increases in the types and quantities of pollutants, with environmental pollutants widely present in various media, including the air, food, and everyday items. These pollutants can enter the human body via multiple pathways, including ingestion through food and absorption through the skin; this intrusion can disrupt the production, release, and circulation of hormones in the body, resulting in a range of illnesses that affect the reproductive, endocrine, and nervous systems. Consequently, these pollutants pose substantial risks to human health. In particular, fetuses are highly sensitive to environmental pollutants during critical stages of development, and exposure during periods of growth and development can result in more-obvious and severe health hazards that can lead to preterm birth, low birth weight, and fetal malformations. The placenta acts as a barrier between the mother and fetus, and selectively filters certain pollutants. While some pollutants remain in the maternal bloodstream, others cross the placental barrier into the fetal umbilical blood through passive diffusion, placental transport proteins, or endocytosis. The transplacental transfer efficiency (TTE) is the ratio of the level of the pollutant in the umbilical blood to that in the maternal blood, and is a valuable metric for evaluating the ability of a pollutant to breach the placental barrier. A higher TTE implies that a larger proportion of pollutants are transferred from the mother to the fetus, thereby amplifying the potential risks to the fetus. Mass spectrometry-based detection methods are extensively used in the chemical and environmental sciences because they are exceptionally sensitive and highly resolving. This analytical technique involves ionizing compounds within a sample and identifying them based on their distinct mass-to-charge ratios; it enables both qualitative and quantitative analyses of various environmental pollutants. Current methodologies for examining the TTE of a pollutant include in-vitro experiments, animal studies, epidemiologic studies, and model calculation; these approaches help to evaluate the transfer of pollutants from mother to fetus via the placenta. Analyzing the TTEs of different chemicals enables high-risk pollutants to be identified and provides an understanding of their abilities to cross the placenta. Research on the transplacental transfer of environmental pollutants has focused mainly on per- and polyfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs), with relatively few studies on the TTEs of other pollutants reported. Pollutant transfer through the placenta is a complex process that is influenced by factors that include the physical and chemical properties of the pollutant (e.g., molecular mass, solubility, and lipophilicity), maternal factors (e.g., maternal health and lifestyle, maternal genetics, environmental conditions, and socioeconomic status), and placental characteristics (e.g., placental maturity, placental blood flow, transport proteins, and metabolic enzymes). This review summarizes recent advances in research on the TTEs of environmental pollutants, focusing on analytical methods, the TTEs of PFASs, PBDEs, PCBs, and OCPs, and the pivotal factors that influence TTEs. Studying the TTEs of pollutants enables their characteristics to be elucidated, thereby providing support data for research on the exposure, transfer, and accumulation of pollutants in the human body, as well as a theoretical framework for understanding the mechanism of transplacental transfer of environmental pollutants. This research is expected to play a vital role in assessing the impact of environmental pollutants on the health of pregnant women and their fetuses.
Collapse
|
3
|
Gang FY, Xie NB, Wang M, Zhang S, Ji TT, Liu W, Guo X, Gu SY, Yuan BF. Bisulfite-Free and Quantitative Detection of DNA Methylation at Single-Base Resolution by eROS1-seq. Anal Chem 2024; 96:20559-20567. [PMID: 39681302 DOI: 10.1021/acs.analchem.4c05030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
5-Methylcytosine (5mC) is the most significant DNA modification present in mammalian genomes. Understanding the roles of 5mC in diverse biological processes requires quantitative detection at single-base resolution. In this study, we engineered the repressor of the silencing 1 (ROS1) protein derived from Arabidopsis thaliana to enhance its 5mC glycosylase/lyase activity, resulting in the creation of the engineered ROS1 (eROS1) protein. Leveraging the unique properties of eROS1, we introduced a method termed engineered ROS1 sequencing (eROS1-seq) for bisulfite-free and quantitative detection of 5mC in DNA at single-base resolution. In eROS1-seq, the eROS1 protein selectively cleaves 5mC while leaving unmodified cytosine (C) intact, followed by the incorporation of dTTP, which subsequently results in sequencing as thymine (T). This method effectively differentiates between C and 5mC. Unlike conventional bisulfite sequencing (BS-seq), which predominantly converts cytosines, eROS1-seq specifically transforms 5mC into T, thereby avoiding potential imbalances in the nucleobase composition of the sequencing library. Using eROS1-seq, we successfully achieved quantitative and site-specific detection of 5mC in the genomic DNA of lung cancer tissue. Overall, the eROS1-seq approach is bisulfite-free and straightforward, making it a valuable tool for the quantitative detection of 5mC at single-base resolution.
Collapse
Affiliation(s)
- Fang-Yin Gang
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Min Wang
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shan Zhang
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tong-Tong Ji
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xia Guo
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shu-Yi Gu
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
4
|
Leroux É, Khorami HH, Angers A, Angers B, Breton S. Mitochondrial epigenetics brings new perspectives on doubly uniparental inheritance in bivalves. Sci Rep 2024; 14:31544. [PMID: 39733193 DOI: 10.1038/s41598-024-83368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons. The mechanisms underlying DUI are still unknown, but mtDNA methylation could play a role in its regulation. Here, we investigated mtDNA methylation levels and machinery in gonads of the mussel Mytilus edulis using methods based on antibodies, enzymatic cleavage and methylome sequencing. Our results confirm the presence in mitochondria of methylated cytosines and adenines and methyltransferases and unveil a more variable cytosine methylation state among males than females. Also, spermatid mtDNA is always methylated, while only few spermatozoa present methylated mtDNA suggesting a relation between cytosine methylation and development stage of male gametes. We propose that mtDNA methylation could play a role in the different fates of the parental mtDNAs in male and female embryos in M. edulis. Our study provides novel insights into the epigenetic landscape of bivalve mtDNA and highlights the multiple roles of mtDNA methylation in animals.
Collapse
Affiliation(s)
- Émélie Leroux
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| | | | - Annie Angers
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
5
|
Liu Y, Liu S, Huang J, Zhou J, He F. Development of SPQC sensor based on the specific recognition of TAL-effectors for locus-specific detection of 6-methyladenine in DNA. Talanta 2024; 277:126279. [PMID: 38810382 DOI: 10.1016/j.talanta.2024.126279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
N6-methyladenosine (6mA) plays a pivotal role in diverse biological processes, including cancer, bacterial toxin secretion, and bacterial drug resistance. However, to date there has not been a selective, sensitive, and simple method for quantitative detection of 6mA at single base resolution. Herein, we present a series piezoelectric quartz crystal (SPQC) sensor based on the specific recognition of transcription-activator-like effectors (TALEs) for locus-specific detection of 6mA. Detection sensitivity is enhanced through the use of a hybridization chain reaction (HCR) in conjunction with silver staining. The limit of detection (LOD) of the sensor was 0.63 pM and can distinguish single base mismatches. We demonstrate the applicability of the sensor platform by quantitating 6mA DNA at a specific site in biological matrix. The SPQC sensor presented herein offers a promising platform for in-depth study of cancer, bacterial toxin secretion, and bacterial drug resistance.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Shuyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ji Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiandang Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital, Xiangya Medical College of Central South University, Changsha, 410013, PR China.
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
6
|
Xie NB, Wang M, Ji TT, Guo X, Gang FY, Hao Y, Zeng L, Wang YF, Feng YQ, Yuan BF. Simultaneous detection of 5-methylcytosine and 5-hydroxymethylcytosine at specific genomic loci by engineered deaminase-assisted sequencing. Chem Sci 2024; 15:10073-10083. [PMID: 38966352 PMCID: PMC11220598 DOI: 10.1039/d4sc00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Cytosine modifications, particularly 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), play crucial roles in numerous biological processes. Current analytical methods are often constrained to the separate detection of either 5mC or 5hmC, or the combination of both modifications. The ability to simultaneously detect C, 5mC, and 5hmC at the same genomic locations with precise stoichiometry is highly desirable. Herein, we introduce a method termed engineered deaminase-assisted sequencing (EDA-seq) for the simultaneous quantification of C, 5mC, and 5hmC at the same genomic sites. EDA-seq utilizes a specially engineered protein, derived from human APOBEC3A (A3A), known as eA3A-M5. eA3A-M5 exhibits distinct deamination capabilities for C, 5mC, and 5hmC. In EDA-seq, C undergoes complete deamination and is sequenced as T. 5mC is partially deaminated resulting in a mixed readout of T and C, and 5hmC remains undeaminated and is read as C. Consequently, the proportion of T readouts (P T) reflects the collective occurrences of C and 5mC, regulated by the deamination rate of 5mC (R 5mC). By determining R 5mC and P T values, we can deduce the precise levels of C, 5mC, and 5hmC at particular genomic locations. We successfully used EDA-seq to simultaneously measure C, 5mC, and 5hmC at specific loci within human lung cancer tissue and their normal counterpart. The results from EDA-seq demonstrated a strong concordance with those obtained from the combined application of BS-seq and ACE-seq methods. EDA-seq eliminates the need for bisulfite treatment, DNA oxidation or glycosylation and uniquely enables simultaneous quantification of C, 5mC and 5hmC at the same genomic locations.
Collapse
Affiliation(s)
- Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University Wuhan 430060 China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- College of Chemical Engineering and Environmental Chemistry, Weifang University Weifang 261061 China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Fang-Yin Gang
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
| | - Ying Hao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ya-Fen Wang
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University Wuhan 430060 China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences Wuhan 430071 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
XIONG J, FENG T, YUAN BF. [Advances in mapping analysis of ribonucleic acid modifications through sequencing]. Se Pu 2024; 42:632-645. [PMID: 38966972 PMCID: PMC11224946 DOI: 10.3724/sp.j.1123.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 07/06/2024] Open
Abstract
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Collapse
|
8
|
Ding JH, Li G, Xiong J, Liu FL, Xie NB, Ji TT, Wang M, Guo X, Feng YQ, Ci W, Yuan BF. Whole-Genome Mapping of Epigenetic Modification of 5-Formylcytosine at Single-Base Resolution by Chemical Labeling Enrichment and Deamination Sequencing. Anal Chem 2024; 96:4726-4735. [PMID: 38450632 DOI: 10.1021/acs.analchem.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Gaojie Li
- Key Laboratory of Genomics and Precision Medicine, and China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fei-Long Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, and China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Guo X, Xie NB, Chen W, Ji TT, Xiong J, Feng T, Wang M, Zhang S, Gu SY, Feng YQ, Yuan BF. AlkB-Facilitated Demethylation Enables Quantitative and Site-Specific Detection of Dual Methylation of Adenosine in RNA. Anal Chem 2024; 96:847-855. [PMID: 38159051 DOI: 10.1021/acs.analchem.3c04457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA molecules undergo various chemical modifications that play critical roles in a wide range of biological processes. N6,N6-Dimethyladenosine (m6,6A) is a conserved RNA modification and is essential for the processing of rRNA. To gain a deeper understanding of the functions of m6,6A, site-specific and accurate quantification of this modification in RNA is indispensable. In this study, we developed an AlkB-facilitated demethylation (AD-m6,6A) method for the site-specific detection and quantification of m6,6A in RNA. The N6,N6-dimethyl groups in m6,6A can cause reverse transcription to stall at the m6,6A site, resulting in truncated cDNA. However, we found that Escherichia coli AlkB demethylase can effectively demethylate m6,6A in RNA, generating full-length cDNA from AlkB-treated RNA. By quantifying the amount of full-length cDNA produced using quantitative real-time PCR, we were able to achieve site-specific detection and quantification of m6,6A in RNA. Using the AD-m6,6A method, we successfully detected and quantified m6,6A at position 1851 of 18S rRNA and position 937 of mitochondrial 12S rRNA in human cells. Additionally, we found that the level of m6,6A at position 1007 of mitochondrial 12S rRNA was significantly reduced in lung tissues from sleep-deprived mice compared with control mice. Overall, the AD-m6,6A method provides a valuable tool for easy, accurate, quantitative, and site-specific detection of m6,6A in RNA, which can aid in uncovering the functions of m6,6A in human diseases.
Collapse
Affiliation(s)
- Xia Guo
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Neng-Bin Xie
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jun Xiong
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tian Feng
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shu-Yi Gu
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
10
|
Xie NB, Wang M, Chen W, Ji TT, Guo X, Gang FY, Wang YF, Feng YQ, Liang Y, Ci W, Yuan BF. Whole-Genome Sequencing of 5-Hydroxymethylcytosine at Base Resolution by Bisulfite-Free Single-Step Deamination with Engineered Cytosine Deaminase. ACS CENTRAL SCIENCE 2023; 9:2315-2325. [PMID: 38161361 PMCID: PMC10755730 DOI: 10.1021/acscentsci.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
The epigenetic modification 5-hydroxymethylcytosine (5hmC) plays a crucial role in the regulation of gene expression. Although some methods have been developed to detect 5hmC, direct genome-wide mapping of 5hmC at base resolution is still highly desirable. Herein, we proposed a single-step deamination sequencing (SSD-seq) method, designed to precisely map 5hmC across the genome at single-base resolution. SSD-seq takes advantage of a screened engineered human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A) protein, known as eA3A-v10, to selectively deaminate cytosine (C) and 5-methylcytosine (5mC) but not 5hmC. During sequencing, the deaminated C and 5mC are converted to uracil (U) and thymine (T), read as T in the sequencing data. However, 5hmC remains unaffected by eA3A-v10 and is read as C during sequencing. Consequently, the presence of C in the sequence reads indicates the original 5hmC. We applied SSD-seq to generate a base-resolution map of 5hmC in human lung tissue. Our findings revealed that 5hmC was predominantly localized to CpG dinucleotides. Furthermore, the base-resolution map of 5hmC generated by SSD-seq demonstrated a strong correlation with prior ACE-seq results. The advantages of SSD-seq are its single-step process, absence of bisulfite treatment or DNA glycosylation, cost effectiveness, and ability to detect and quantify 5hmC directly at single-base resolution.
Collapse
Affiliation(s)
- Neng-Bin Xie
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research
Center of Public Health, Renmin Hospital
of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Min Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Wei Chen
- Department
of Laboratory Medicine, Zhongnan Hospital
of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xia Guo
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Fang-Yin Gang
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Ya-Feng Wang
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yuan Liang
- Key
Laboratory of Genomics and Precision Medicine, and China National
Center for Bioinformation, Beijing Institute
of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Ci
- Key
Laboratory of Genomics and Precision Medicine, and China National
Center for Bioinformation, Beijing Institute
of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research
Center of Public Health, Renmin Hospital
of Wuhan University, Wuhan University, Wuhan 430060, China
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| |
Collapse
|