1
|
Liu Y, Liu S, Huang J, Zhou J, He F. Development of SPQC sensor based on the specific recognition of TAL-effectors for locus-specific detection of 6-methyladenine in DNA. Talanta 2024; 277:126279. [PMID: 38810382 DOI: 10.1016/j.talanta.2024.126279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
N6-methyladenosine (6mA) plays a pivotal role in diverse biological processes, including cancer, bacterial toxin secretion, and bacterial drug resistance. However, to date there has not been a selective, sensitive, and simple method for quantitative detection of 6mA at single base resolution. Herein, we present a series piezoelectric quartz crystal (SPQC) sensor based on the specific recognition of transcription-activator-like effectors (TALEs) for locus-specific detection of 6mA. Detection sensitivity is enhanced through the use of a hybridization chain reaction (HCR) in conjunction with silver staining. The limit of detection (LOD) of the sensor was 0.63 pM and can distinguish single base mismatches. We demonstrate the applicability of the sensor platform by quantitating 6mA DNA at a specific site in biological matrix. The SPQC sensor presented herein offers a promising platform for in-depth study of cancer, bacterial toxin secretion, and bacterial drug resistance.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Shuyi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ji Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jiandang Zhou
- Department of Clinical Laboratory, The Third Xiangya Hospital, Xiangya Medical College of Central South University, Changsha, 410013, PR China.
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
2
|
Xie NB, Wang M, Ji TT, Guo X, Gang FY, Hao Y, Zeng L, Wang YF, Feng YQ, Yuan BF. Simultaneous detection of 5-methylcytosine and 5-hydroxymethylcytosine at specific genomic loci by engineered deaminase-assisted sequencing. Chem Sci 2024; 15:10073-10083. [PMID: 38966352 PMCID: PMC11220598 DOI: 10.1039/d4sc00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Cytosine modifications, particularly 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), play crucial roles in numerous biological processes. Current analytical methods are often constrained to the separate detection of either 5mC or 5hmC, or the combination of both modifications. The ability to simultaneously detect C, 5mC, and 5hmC at the same genomic locations with precise stoichiometry is highly desirable. Herein, we introduce a method termed engineered deaminase-assisted sequencing (EDA-seq) for the simultaneous quantification of C, 5mC, and 5hmC at the same genomic sites. EDA-seq utilizes a specially engineered protein, derived from human APOBEC3A (A3A), known as eA3A-M5. eA3A-M5 exhibits distinct deamination capabilities for C, 5mC, and 5hmC. In EDA-seq, C undergoes complete deamination and is sequenced as T. 5mC is partially deaminated resulting in a mixed readout of T and C, and 5hmC remains undeaminated and is read as C. Consequently, the proportion of T readouts (P T) reflects the collective occurrences of C and 5mC, regulated by the deamination rate of 5mC (R 5mC). By determining R 5mC and P T values, we can deduce the precise levels of C, 5mC, and 5hmC at particular genomic locations. We successfully used EDA-seq to simultaneously measure C, 5mC, and 5hmC at specific loci within human lung cancer tissue and their normal counterpart. The results from EDA-seq demonstrated a strong concordance with those obtained from the combined application of BS-seq and ACE-seq methods. EDA-seq eliminates the need for bisulfite treatment, DNA oxidation or glycosylation and uniquely enables simultaneous quantification of C, 5mC and 5hmC at the same genomic locations.
Collapse
Affiliation(s)
- Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University Wuhan 430060 China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- College of Chemical Engineering and Environmental Chemistry, Weifang University Weifang 261061 China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Fang-Yin Gang
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
| | - Ying Hao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Li Zeng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Ya-Fen Wang
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University Wuhan 430060 China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences Wuhan 430071 China
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
3
|
XIONG J, FENG T, YUAN BF. [Advances in mapping analysis of ribonucleic acid modifications through sequencing]. Se Pu 2024; 42:632-645. [PMID: 38966972 PMCID: PMC11224946 DOI: 10.3724/sp.j.1123.2023.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 07/06/2024] Open
Abstract
Over 170 chemical modifications have been discovered in various types of ribonucleic acids (RNAs), including messenger RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA). These RNA modifications play crucial roles in a wide range of biological processes such as gene expression regulation, RNA stability maintenance, and protein translation. RNA modifications represent a new dimension of gene expression regulation known as the "epitranscriptome". The discovery of RNA modifications and the relevant writers, erasers, and readers provides an important basis for studies on the dynamic regulation and physiological functions of RNA modifications. Owing to the development of detection technologies for RNA modifications, studies on RNA epitranscriptomes have progressed to the single-base resolution, multilayer, and full-coverage stage. Transcriptome-wide methods help discover new RNA modification sites and are of great importance for elucidating the molecular regulatory mechanisms of epitranscriptomics, exploring the disease associations of RNA modifications, and understanding their clinical applications. The existing RNA modification sequencing technologies can be categorized according to the pretreatment approach and sequencing principle as direct high-throughput sequencing, antibody-enrichment sequencing, enzyme-assisted sequencing, chemical labeling-assisted sequencing, metabolic labeling sequencing, and nanopore sequencing technologies. These methods, as well as studies on the functions of RNA modifications, have greatly expanded our understanding of epitranscriptomics. In this review, we summarize the recent progress in RNA modification detection technologies, focusing on the basic principles, advantages, and limitations of different methods. Direct high-throughput sequencing methods do not require complex RNA pretreatment and allow for the mapping of RNA modifications using conventional RNA sequencing methods. However, only a few RNA modifications can be analyzed by high-throughput sequencing. Antibody enrichment followed by high-throughput sequencing has emerged as a crucial approach for mapping RNA modifications, significantly advancing the understanding of RNA modifications and their regulatory functions in different species. However, the resolution of antibody-enrichment sequencing is limited to approximately 100-200 bp. Although chemical crosslinking techniques can achieve single-base resolution, these methods are often complex, and the specificity of the antibodies used in these methods has raised concerns. In particular, the issue of off-target binding by the antibodies requires urgent attention. Enzyme-assisted sequencing has improved the accuracy of the localization analysis of RNA modifications and enables stoichiometric detection with single-base resolution. However, the enzymes used in this technique show poor reactivity, specificity, and sequence preference. Chemical labeling sequencing has become a widely used approach for profiling RNA modifications, particularly by altering reverse transcription (RT) signatures such as RT stops, misincorporations, and deletions. Chemical-assisted sequencing provides a sequence-independent RNA modification detection strategy that enables the localization of multiple RNA modifications. Additionally, when combined with the biotin-streptavidin affinity method, low-abundance RNA modifications can be enriched and detected. Nevertheless, the specificity of many chemical reactions remains problematic, and the development of specific reaction probes for particular modifications should continue in the future to achieve the precise localization of RNA modifications. As an indirect localization method, metabolic labeling sequencing specifically localizes the sites at which modifying enzymes act, which is of great significance in the study of RNA modification functions. However, this method is limited by the intracellular labeling of RNA and cannot be applied to biological samples such as clinical tissues and blood samples. Nanopore sequencing is a direct RNA-sequencing method that does not require RT or the polymerase chain reaction (PCR). However, challenges in analyzing the data obtained from nanopore sequencing, such as the high rate of false positives, must be resolved. Discussing sequencing analysis methods for various types of RNA modifications is instructive for the future development of novel RNA modification mapping technologies, and will aid studies on the functions of RNA modifications across the entire transcriptome.
Collapse
|
4
|
Ding JH, Li G, Xiong J, Liu FL, Xie NB, Ji TT, Wang M, Guo X, Feng YQ, Ci W, Yuan BF. Whole-Genome Mapping of Epigenetic Modification of 5-Formylcytosine at Single-Base Resolution by Chemical Labeling Enrichment and Deamination Sequencing. Anal Chem 2024; 96:4726-4735. [PMID: 38450632 DOI: 10.1021/acs.analchem.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.
Collapse
Affiliation(s)
- Jiang-Hui Ding
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Gaojie Li
- Key Laboratory of Genomics and Precision Medicine, and China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fei-Long Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qi Feng
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Weimin Ci
- Key Laboratory of Genomics and Precision Medicine, and China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Guo X, Xie NB, Chen W, Ji TT, Xiong J, Feng T, Wang M, Zhang S, Gu SY, Feng YQ, Yuan BF. AlkB-Facilitated Demethylation Enables Quantitative and Site-Specific Detection of Dual Methylation of Adenosine in RNA. Anal Chem 2024; 96:847-855. [PMID: 38159051 DOI: 10.1021/acs.analchem.3c04457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA molecules undergo various chemical modifications that play critical roles in a wide range of biological processes. N6,N6-Dimethyladenosine (m6,6A) is a conserved RNA modification and is essential for the processing of rRNA. To gain a deeper understanding of the functions of m6,6A, site-specific and accurate quantification of this modification in RNA is indispensable. In this study, we developed an AlkB-facilitated demethylation (AD-m6,6A) method for the site-specific detection and quantification of m6,6A in RNA. The N6,N6-dimethyl groups in m6,6A can cause reverse transcription to stall at the m6,6A site, resulting in truncated cDNA. However, we found that Escherichia coli AlkB demethylase can effectively demethylate m6,6A in RNA, generating full-length cDNA from AlkB-treated RNA. By quantifying the amount of full-length cDNA produced using quantitative real-time PCR, we were able to achieve site-specific detection and quantification of m6,6A in RNA. Using the AD-m6,6A method, we successfully detected and quantified m6,6A at position 1851 of 18S rRNA and position 937 of mitochondrial 12S rRNA in human cells. Additionally, we found that the level of m6,6A at position 1007 of mitochondrial 12S rRNA was significantly reduced in lung tissues from sleep-deprived mice compared with control mice. Overall, the AD-m6,6A method provides a valuable tool for easy, accurate, quantitative, and site-specific detection of m6,6A in RNA, which can aid in uncovering the functions of m6,6A in human diseases.
Collapse
Affiliation(s)
- Xia Guo
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Neng-Bin Xie
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jun Xiong
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tian Feng
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shu-Yi Gu
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Xie NB, Wang M, Chen W, Ji TT, Guo X, Gang FY, Wang YF, Feng YQ, Liang Y, Ci W, Yuan BF. Whole-Genome Sequencing of 5-Hydroxymethylcytosine at Base Resolution by Bisulfite-Free Single-Step Deamination with Engineered Cytosine Deaminase. ACS CENTRAL SCIENCE 2023; 9:2315-2325. [PMID: 38161361 PMCID: PMC10755730 DOI: 10.1021/acscentsci.3c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
The epigenetic modification 5-hydroxymethylcytosine (5hmC) plays a crucial role in the regulation of gene expression. Although some methods have been developed to detect 5hmC, direct genome-wide mapping of 5hmC at base resolution is still highly desirable. Herein, we proposed a single-step deamination sequencing (SSD-seq) method, designed to precisely map 5hmC across the genome at single-base resolution. SSD-seq takes advantage of a screened engineered human apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (A3A) protein, known as eA3A-v10, to selectively deaminate cytosine (C) and 5-methylcytosine (5mC) but not 5hmC. During sequencing, the deaminated C and 5mC are converted to uracil (U) and thymine (T), read as T in the sequencing data. However, 5hmC remains unaffected by eA3A-v10 and is read as C during sequencing. Consequently, the presence of C in the sequence reads indicates the original 5hmC. We applied SSD-seq to generate a base-resolution map of 5hmC in human lung tissue. Our findings revealed that 5hmC was predominantly localized to CpG dinucleotides. Furthermore, the base-resolution map of 5hmC generated by SSD-seq demonstrated a strong correlation with prior ACE-seq results. The advantages of SSD-seq are its single-step process, absence of bisulfite treatment or DNA glycosylation, cost effectiveness, and ability to detect and quantify 5hmC directly at single-base resolution.
Collapse
Affiliation(s)
- Neng-Bin Xie
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research
Center of Public Health, Renmin Hospital
of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Min Wang
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Wei Chen
- Department
of Laboratory Medicine, Zhongnan Hospital
of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xia Guo
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Fang-Yin Gang
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Ya-Feng Wang
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
| | - Yuan Liang
- Key
Laboratory of Genomics and Precision Medicine, and China National
Center for Bioinformation, Beijing Institute
of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Ci
- Key
Laboratory of Genomics and Precision Medicine, and China National
Center for Bioinformation, Beijing Institute
of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bi-Feng Yuan
- Department
of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan 430071, China
- Research
Center of Public Health, Renmin Hospital
of Wuhan University, Wuhan University, Wuhan 430060, China
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| |
Collapse
|