1
|
Vladimirov VY, Charrier-Chardin M, Kariuki BM, Ward BD, Newman PD. Ringing the Changes: Effects of Heterocyclic Ring Size on Stereoselectivity in [(η 5-C 5Me 5)RhCl], [(η 5-C 5Me 5)IrCl] and [Ru(η 6-cymene)Cl] Complexes of Chiral 3-Amino-1-Azacycles. Molecules 2024; 29:4659. [PMID: 39407586 PMCID: PMC11478173 DOI: 10.3390/molecules29194659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Ring size-dependent diastereoselective coordination of unsymmetrical diamines containing one azacyclic nitrogen and one exocyclic nitrogen to [(η5-C5Me5)MCl]+ cores where M = Rh, Ir and [Ru(η6-cymene)Cl]+ is reported herein. Total stereoselectivity was observed with the six- and seven-membered azacycles, whereas the five-derivative proved poorly selective. All complexes were active for transfer hydrogenation but showed no enantioselectivity with prochiral ketones.
Collapse
Affiliation(s)
| | | | | | | | - Paul D. Newman
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK; (V.Y.V.); (M.C.-C.); (B.D.W.)
| |
Collapse
|
2
|
Kidd JB, Fiala TA, Swords WB, Park Y, Meyer KA, Sanders KM, Guzei IA, Wright JC, Yoon TP. Enantioselective Paternò-Büchi Reactions: Strategic Application of a Triplet Rebound Mechanism for Asymmetric Photocatalysis. J Am Chem Soc 2024; 146:15293-15300. [PMID: 38781687 PMCID: PMC11224773 DOI: 10.1021/jacs.4c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The Paternò-Büchi reaction is the [2 + 2] photocycloaddition of a carbonyl with an alkene to afford an oxetane. Enantioselective catalysis of this classical photoreaction, however, has proven to be a long-standing challenge. Many of the best-developed strategies for asymmetric photochemistry are not suitable to address this problem because the interaction of carbonyls with Brønsted or Lewis acidic catalysts can alter the electronic structure of their excited state and divert their reactivity toward alternate photoproducts. We show herein that a triplet rebound strategy enables the stereocontrolled reaction of an excited-state carbonyl compound in its native, unbound state. These studies have resulted in the development of the first highly enantioselective catalytic Paternò-Büchi reaction, catalyzed by a novel hydrogen-bonding chiral Ir photocatalyst.
Collapse
Affiliation(s)
- Jesse B. Kidd
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - Tahoe A. Fiala
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - Wesley B. Swords
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kent A. Meyer
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - Kyana M. Sanders
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - John C. Wright
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison WI 53706 USA
| |
Collapse
|
3
|
Merten C. Modelling solute-solvent interactions in VCD spectra analysis with the micro-solvation approach. Phys Chem Chem Phys 2023; 25:29404-29414. [PMID: 37881890 DOI: 10.1039/d3cp03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy has become an important part of the (stereo-)chemists' toolbox as a reliable method for the determination of absolute configurations. Being the chiroptical version of infrared spectroscopy, it has also been recognized as being very sensitive to conformational changes and intermolecular interactions. This sensitivity originates from the fact that the VCD spectra of individual conformers are often more different than their IR spectra, so that changes in conformational distributions or band positions and intensities become more pronounced. What is an advantage for studies focussing on intermolecular interactions can, however, quickly turn into a major obstacle during AC determinations: solute-solvent interactions can have a strong influence on spectral signatures and they must be accurately treated when simulating VCD and IR spectra. In this perspective, we showcase selected examples which exhibit particularly pronounced solvent effects. It is demonstrated that it is typically sufficient to model solute-solvent interactions by placing single solvent molecules near hydrogen bonding sites of the solute and subsequently use the optimized structures for spectra simulations. This micro-solvation approach works reasonably well for medium-sized, not too conformationally flexible molecules. We thus also discuss its limitations and outline the next steps that method development needs to take in order to further improve the workflows for VCD spectra predictions.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
4
|
Sohtome Y, Komagawa S, Nakamura A, Hashizume D, Lectard S, Akakabe M, Hamashima Y, Uchiyama M, Sodeoka M. Experimental and Computational Investigation of Facial Selectivity Switching in Nickel-Diamine-Acetate-Catalyzed Michael Reactions. J Org Chem 2023. [PMID: 36813263 DOI: 10.1021/acs.joc.2c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Chiral Ni complexes have revolutionized both asymmetric acid-base and redox catalysis. However, the coordination isomerism of Ni complexes and their open-shell property still often hinder the elucidation of the origin of their observed stereoselectivity. Here, we report our experimental and computational investigations to clarify the mechanism of β-nitrostyrene facial selectivity switching in Ni(II)-diamine-(OAc)2-catalyzed asymmetric Michael reactions. In the reaction with a dimethyl malonate, the Evans transition state (TS), in which the enolate binds in the same plane with the diamine ligand, is identified as the lowest-energy TS to promote C-C bond formation from the Si face in β-nitrostyrene. In contrast, a detailed survey of the multiple potential pathways in the reaction with α-keto esters points to a clear preference for our proposed C-C bond-forming TS, in which the enolate coordinates to the Ni(II) center in apical-equatorial positions relative to the diamine ligand, thereby promoting Re face addition in β-nitrostyrene. The N-H group plays a key orientational role in minimizing steric repulsion.
Collapse
Affiliation(s)
- Yoshihiro Sohtome
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinsuke Komagawa
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Ayako Nakamura
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Sylvain Lectard
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshitaka Hamashima
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanobu Uchiyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Khromova OV, Emelyanov MA, Stoletova NV, Bodunova EE, Prima DO, Smol’yakov AF, Eremenko IL, Maleev VI, Larionov VA. Post-Modification of Octahedral Chiral-at-Metal Cobalt(III) Complexes by Suzuki–Miyaura Cross-Coupling and Evaluation of Their Catalytic Activity. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olga V. Khromova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail A. Emelyanov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V. Stoletova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Ekaterina E. Bodunova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Higher Chemical College of the Russian Academy of Sciences, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Darya O. Prima
- Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences, Leninsky prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander F. Smol’yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Igor L. Eremenko
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 31, 119991 Moscow, Russian Federation
| | - Victor I. Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A. Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
6
|
Iwai K, Wada K, Nishiwaki N. Unusual Reactivities of ortho-Hydroxy-β-nitrostyrene. Molecules 2022; 27:molecules27154804. [PMID: 35956754 PMCID: PMC9369901 DOI: 10.3390/molecules27154804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrostyrene derivatives are widely used in organic syntheses as a substrate for Michael addition, photoisomerization and cycloaddition. In contrast, ortho-hydroxy derivatives exhibit unusual behaviors in these reactions. Conjugate addition proceeded upon treatment of the ortho-hydroxy-β-nitrostyrene with an amine; however, subsequent C–C bond cleavage readily occurred to afford the corresponding imine. Moreover, conversion of the trans-isomer to a cis-isomer did not occur efficiently, even when UV light was irradiated. We studied these unusual behaviors of β-nitrostyrene, focusing on the role of the ortho-hydroxy group.
Collapse
Affiliation(s)
- Kento Iwai
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; (K.I.); (K.W.)
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Khimiya Wada
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; (K.I.); (K.W.)
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan; (K.I.); (K.W.)
- Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
- Correspondence: ; Tel.: +81-887-57-2517
| |
Collapse
|
7
|
Wu Y, Bu X, Ke Y, Sun H, Li J, Chen L, Cui W, He Y, Wu L. Insight into the Stereocontrol of DNA Polymerase‐Catalysed Reaction by Chiral Cobalt Complexes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya Wu
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Xinya Bu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yongqi Ke
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Huaming Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710065 People's Republic of China
| | - Jingyao Li
- College of Chemistry and Chemical Engineering Xi'an Shiyou University Xi'an 710065 People's Republic of China
| | - Lu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Wei Cui
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yujian He
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Li Wu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs School of Pharmaceutical Sciences Peking University Beijing 100191 People's Republic of China
| |
Collapse
|
8
|
Sors-Vendrell A, Ortiz A, Meneses D, Alfonso I, Solà J, Jimeno C. A Degenerate Metal-Templated Catalytic System with Redundant Functional Groups for the Asymmetric Aldol Reaction. J Org Chem 2022; 87:7509-7513. [PMID: 35583468 PMCID: PMC9171831 DOI: 10.1021/acs.joc.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
A degenerate zinc-templated
catalytic system containing two bipyridine
ligands with redundant functional groups for either enamine or hydrogen
bond formation was applied to the asymmetric aldol reaction. This
concept led to both a higher probability of reaction and rate acceleration.
Thus, the catalyst loading could be decreased to a remarkable 2 mol
% in what we think is a general approach.
Collapse
Affiliation(s)
- Alba Sors-Vendrell
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, Barcelona E08034, Spain
| | - Albert Ortiz
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, Barcelona E08034, Spain
| | - Diego Meneses
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, Barcelona E08034, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, Barcelona E08034, Spain
| | - Jordi Solà
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, Barcelona E08034, Spain
| | - Ciril Jimeno
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, Barcelona E08034, Spain
| |
Collapse
|
9
|
Khromova OV, Emelyanov MA, Smol'yakov AF, Fedyanin IV, Maleev VI, Larionov VA. Family of Well-Defined Chiral-at-Cobalt(III) Complexes as Metal-Templated Hydrogen-Bond-Donor Catalysts: Effect of Chirality at the Metal Center on the Stereochemical Outcome of the Reaction. Inorg Chem 2022; 61:5512-5523. [PMID: 35357165 DOI: 10.1021/acs.inorgchem.1c03927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of well-defined Λ- and Δ-diastereomeric octahedral cationic chiral-at-cobalt complexes were obtained by a simple two-step reaction of (R,R)-1,2-diaminocyclohexane, (R,R)-1,2-diphenylethylenediamine, or (S)-2-(aminomethyl)pyrrolidine and substituted salicylaldehydes with a cobalt(III) salt. It was observed for the first time that the use of an excess of cobalt(III) salt provides both the enantiopure Λ and Δ forms of the corresponding cobalt(III) complexes 1 and 2 in a ratio of diastereomers ranging from 1:1.6 to >20:1 (Λ/Δ) and in 31-95% combined yields. The obtained complexes were robust, air- and bench-stable, soluble in most of organic solvents, and insoluble in water. Through variation of the substituents in the phenyl ring of the salicylaldehyde moiety, it was shown that both steric and electronic effects of substituents have a significant impact on the formation of Λ and Δ isomers. Next, the efficacies of the enantiopure metal-templated complexes 1-3 were investigated in three benchmark asymmetric reactions in order to compare their catalytic activity. The chiral cobalt(III) complexes 1-3 were tested as enantioselective hydrogen-bond-donor catalysts in such important reactions as the Michael addition of the O'Donnell substrate to methyl acrylate, epoxidation of chalcone, and trimethylsilylcyanation of benzaldehyde. It was clearly demonstrated that the chirality at the cobalt center has an impact on the stereochemical outcome of the reactions. In particular, the Λ(R,R)-1 and Δ(R,R)-1 complexes acted as "pseudoenantiomeric" catalysts in the epoxidation and trimethylsilylcyanoation reactions, providing both enantiomers of the products with up to 57% enantiomeric excess.
Collapse
Affiliation(s)
- Olga V Khromova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, Moscow 119991, Russian Federation
| | - Mikhail A Emelyanov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, Moscow 119991, Russian Federation
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, Moscow 119991, Russian Federation.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation
| | - Ivan V Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, Moscow 119991, Russian Federation.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, Moscow 119991, Russian Federation
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, Moscow 119991, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, Moscow 117198, Russian Federation
| |
Collapse
|
10
|
Wegener AR, Ghosh SK, Bhuvanesh N, Reibenspies J, Gladysz JA. Rhodium(III) Werner Complexes with 1,2‐Diphenylethylenediamine Ligands: Syntheses, Structures, and Applications as Chiral Hydrogen Bond Donor Catalysts and Agents for Enantiomer Purity Determinations. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aaron R Wegener
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - Subrata K. Ghosh
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - Nattamai Bhuvanesh
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - Joseph Reibenspies
- Texas A&M University Chemistry P.O. Box 30012 77843 College Station UNITED STATES
| | - John A. Gladysz
- Texas A&M University Department of Chemistry PO Box 30012 77842-3012 College Station UNITED STATES
| |
Collapse
|
11
|
Emelyanov MA, Lisov AA, Medvedev MG, Maleev VI, Larionov VA. Cobalt(III) Complexes as Bifunctional Hydrogen Bond Donor Catalysts Featuring Halide Anions for Cyclic Carbonate Synthesis at Ambient Temperature and Pressure: Mechanistic Insight. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mikhail A. Emelyanov
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Alexey A. Lisov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Leninskie Gory 1/3 119991 Moscow RUSSIAN FEDERATION
| | - Michael G. Medvedev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN Chemistry Leninsky prospect 47 119991 Moscow RUSSIAN FEDERATION
| | - Victor I. Maleev
- A N Nesmeyanov Institute of Organoelement Compounds RAS: Institut elementoorganiceskih soedinenij imeni A N Nesmeanova RAN LAC Vavilov Str. 28 119991 Moscow RUSSIAN FEDERATION
| | - Vladimir A. Larionov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Laboratory of Asymmetric Catalysis Vavilov Street 28 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
12
|
Jerwood K, Lowy P, Deeming L, Kariuki BM, Newman PD. Remote control: stereoselective coordination of electron-deficient 2,2'-bipyridine ligands to Re(I) and Ir(III) cores. Dalton Trans 2021; 50:16459-16463. [PMID: 34668511 DOI: 10.1039/d1dt02928b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly diastereoselective coordination of unsymmetrical cationic 2,2'-bipyridine ligands bearing a chiral amidinium substituent to [Re(CO)3Cl] and [Ir(PhPy)2]+ cores is reported. Binding strength and stereoselectivity have been correlated with the position of the amidinium group on the bipy. The 4-, 5- and 6-substituted ligands all produce C-[Re(CO)3(LH)Cl]X selectively, while only the 4-derivative gives preferred formation of Δ-[Ir(Phpy)2(4-LH)](BF4)2.
Collapse
Affiliation(s)
- Kimberley Jerwood
- School of Chemistry, Cardiff University, Cardiff, Wales, CF10 3AT, UK
| | - Phoebe Lowy
- School of Chemistry, Cardiff University, Cardiff, Wales, CF10 3AT, UK
| | - Laura Deeming
- School of Chemistry, Cardiff University, Cardiff, Wales, CF10 3AT, UK
| | - Benson M Kariuki
- School of Chemistry, Cardiff University, Cardiff, Wales, CF10 3AT, UK
| | - Paul D Newman
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, Wales, CF10 3AT, UK.
| |
Collapse
|
13
|
Emelyanov MA, Stoletova NV, Smol'yakov AF, Il'in MM, Maleev VI, Larionov VA. Synthesis and a Catalytic Study of Diastereomeric Cationic Chiral-at-Cobalt Complexes Based on ( R, R)-1,2-Diphenylethylenediamine. Inorg Chem 2021; 60:13960-13967. [PMID: 34449202 DOI: 10.1021/acs.inorgchem.1c00855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the first synthesis of two diastereomeric cationic octahedral Co(III) complexes based on commercially available (R,R)-1,2-diphenylethylenediamine and salicylaldehyde. Both diastereoisomers with opposite chiralities at the metal center (Λ and Δ configurations) were prepared. The new Co(III) complexes possessed both acidic hydrogen-bond donating (HBD) NH moieties and nucleophilic counteranions and operate as bifunctional chiral catalysts for the challenging kinetic resolution of terminal and disubstituted epoxides by the reaction with CO2 under mild conditions. The highest selectivity factor (s) of 2.8 for the trans-chalcone epoxide was achieved at low catalyst loading (2 mol %) in chlorobenzene, which is the best achieved result currently for this type of substrate.
Collapse
Affiliation(s)
- Mikhail A Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Nadezhda V Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Mikhail M Il'in
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Victor I Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
14
|
Larionov VA, Feringa BL, Belokon YN. Enantioselective "organocatalysis in disguise" by the ligand sphere of chiral metal-templated complexes. Chem Soc Rev 2021; 50:9715-9740. [PMID: 34259242 DOI: 10.1039/d0cs00806k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Asymmetric catalysis holds a prominent position among the important developments in chemistry during the 20th century. This was acknowledged by the 2001 Nobel Prize in chemistry awarded to Knowles, Noyori, and Sharpless for their development of chiral metal catalysts for organic transformations. The key feature of the catalysts was the crucial role of the chiral ligand and the nature of the metal ions, which promoted the catalytic conversions of the substrates via direct coordination. Subsequently the development of asymmetric organic catalysis opened new avenues to the synthesis of enantiopure compounds, avoiding any use of metal ions. Recently, an alternative approach to asymmetric catalysis emerged that relied on the catalytic functions of the ligands themselves boosted by coordination to metal ions. In other words, in these hybrid chiral catalysts the substrates are activated not by the metal ions but by the ligands. The activation and enantioselective control occurred via well-orchestrated and custom-tailored non-covalent interactions of the substrates with the ligand sphere of chiral metal complexes. In these metal-templated catalysts, the metal served either as a template (a purely structural role), or it constituted the exclusive source of chirality (metal-centred chirality due to the spatial arrangement of achiral or chiral bi-/tridentate ligands around an octahedral metal centre), and/or it increased the Brønsted acidity of the ligands. Although the field is still in its infancy, it represents an inspiring combination of both metal and organic catalysis and holds major unexplored potential to push the frontiers of asymmetric catalysis. Here we present an overview of this emerging field discussing the principles, applications and perspectives on the catalytic use of chiral metal complexes that operate as "organocatalysts in disguise". It has been demonstrated that these chiral metal complexes are efficient and provide high stereoselective control in asymmetric hydrogen bonding catalysis, phase-transfer catalysis, Brønsted acid/base catalysis, enamine catalysis, nucleophilic catalysis, and photocatalysis as well as bifunctional catalysis. Also, many of the catalysts have been identified as highly effective catalysts at remarkably low catalyst loadings. These hybrid systems offer many opportunities in the synthesis of chiral compounds and represent promising alternatives to metal-based and organocatalytic asymmetric transformations.
Collapse
Affiliation(s)
- Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation.
| | | | | |
Collapse
|
15
|
Kabes CQ, Lucas RF, Gunn JH, Gladysz JA. Chiral Cobalt(III) Tris(1,2-diamine) Catalysts That Incorporate Nitrogenous Base Containing Anions for the Bifunctional Activation of Nucleophiles and Electrophiles in Enantioselective Addition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Connor Q. Kabes
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Reagan F. Lucas
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Jack H. Gunn
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
16
|
Campanella AJ, Nguyen MT, Zhang J, Ngendahimana T, Antholine WE, Eaton GR, Eaton SS, Glezakou VA, Zadrozny JM. Ligand control of low-frequency electron paramagnetic resonance linewidth in Cr(III) complexes. Dalton Trans 2021; 50:5342-5350. [PMID: 33881070 PMCID: PMC8173706 DOI: 10.1039/d1dt00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.3 GHz) EPR spectroscopic linewidths in the trichloride salts of five Cr(iii) complexes: [Cr(RR-dphen)3]3+ (RR-dphen = (1R,2R)-(+)-diphenylethylenediamine, 1), [Cr(en)3]3+ (en = ethylenediamine, 2), [Cr(me-en)3]3+ (me-en = 1,2-diaminopropane, 3), [Cr(tn)3]3+ (tn = 1,3-diaminopropane, 4) [Cr(trans-chxn)3]3+ (trans-chxn = trans-(±)-1,2-diaminocyclohexane, 5). Spectral broadening varies in a nonintuitive manner across the series, showing the sharpest peaks for 1 and broadest for 5. Molecular dynamics simulations provide evidence that the broadening is correlated to rigidity in the inner coordination sphere and reflected in ligand-dependent distribution of Cr-N bond distances that can be found in frozen solution.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Manh-Thuong Nguyen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Jun Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Thacien Ngendahimana
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - William E Antholine
- National Biomedical EPR Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
| | | | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
17
|
Jang S, Kim H. Understanding the Origin of the Chiral Recognition of Esters with Octahedral Chiral Cobalt Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sumin Jang
- Department of Chemistry Korea Advanced Instituted of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry Korea Advanced Instituted of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
18
|
Expanding the Family of Octahedral Chiral-at-Metal Cobalt(III) Catalysts by Introducing Tertiary Amine Moiety into the Ligand. Catalysts 2021. [DOI: 10.3390/catal11020152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chiral metal-templated complexes are attractive catalysts for organic synthetic transformations. Herein, we introduce a novel chiral cobalt(III)-templated complex based on chiral trans-3,4-diamino-1-benzylpyrrolidine and 3,5-di-tert-butyl-salicylaldehyde which features both hydrogen bond donor and Brønsted base functionalities. The obtained complexes were fully characterized by 1H, 13C NMR, IR-, UV-vis, CD-spectroscopy and by a single X-ray diffraction analysis. It was shown that chlorine anion is connected with amino groups of the complex via a hydrogen bonding. DFT calculations of charges and molecular electrostatic potential of the cobalt(III) complex showed that the basicity of the complex is certainly diminished as compared with the routine tertiary amines but the acidity of the conjugated acid of the complex should be increased. Thus, the catalytic potential of the complex may be much greater as a chiral acid than a chiral base. We believe that this work opens a new way in chiral bifunctional catalyst design.
Collapse
|
19
|
Emelyanov MA, Stoletova NV, Lisov AA, Medvedev MG, Smol'yakov AF, Maleev VI, Larionov VA. An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine as a bifunctional metal-templated hydrogen bond donor catalyst for fixation of CO2 with epoxides under ambient conditions. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00464f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An octahedral cobalt(iii) complex based on cheap 1,2-phenylenediamine operates as an efficient bifunctional hydrogen bond donor catalyst in cycloaddition of epoxides with CO2 under ambient conditions and solvent- and co-catalyst-free conditions.
Collapse
Affiliation(s)
- Mikhail A. Emelyanov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Nadezhda V. Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Alexey A. Lisov
- Department of Chemistry
- Lomonosov Moscow State University
- 119991 Moscow
- Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
| | - Michael G. Medvedev
- N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander F. Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
| | - Vladimir A. Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- 119991 Moscow
- Russian Federation
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| |
Collapse
|
20
|
Kabes CQ, Jameson BL, Gladysz JA. Solvent free enantioselective catalysis with chiral cobalt( iii) Werner complexes via ball milling. NEW J CHEM 2021. [DOI: 10.1039/d1nj03698j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The title technique is applied for the first time to cobalt(iii) hydrogen bond donor catalysts, a large family of recently developed salts that enable numerous enantioselective organic reactions and feature an earth abundant metal.
Collapse
Affiliation(s)
- Connor Q. Kabes
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA
| | - Bailey L. Jameson
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA
| |
Collapse
|
21
|
Kuo JL, Goldberg KI. Metal/Ligand Proton Tautomerism Facilitates Dinuclear H 2 Reductive Elimination. J Am Chem Soc 2020; 142:21439-21449. [PMID: 33297680 DOI: 10.1021/jacs.0c10458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the doubly protic bis-pyrazole-pyridine ligand (N(NNH)2), we have synthesized an octahedral IrIII-H [HIr(κ3-N(NNH)(NN-))(CO)(tBuPy)]+ ([1-MH]+) from an IrI starting material. This hydride was generated by adding sufficient electron density to the metal center such that it became the thermodynamically preferred site of protonation. It was observed via UV-vis spectroscopy that [1-MH]+ establishes a [tBuPy] dependent equilibrium with a ligand protonated square-planar IrI [Ir(N(NNH)2)(CO)]+ ([2-LH]+). This example of metal/ligand proton tautomerism is unusual in that the position of the equilibrium can be controlled by the concentration of exogeneous ligand (i.e., tBuPy). This equilibrium was shown to be key to the reactivity of the IrIII-H; 2 equiv of [1-MH]+ release H2, converting to the IrII dimer [[Ir(N(NN-)(NNH))(CO)(tBuPy)]2]2+ ([7]2+) under mild conditions (observable at room temperature). Mechanistic evidence is presented to support that this dinuclear reductive elimination occurs by tautomerization of the metal hydride [1-MH]+ to a ligand protonated species [1-LH]+, from which ligand dissociation is facile, generating [2-LH]+. Subsequent reaction of [2-LH]+ with [1-MH]+ allows for production of H2 and the IrII dimer [7]2+. The tautomerization between the metal-hydride and the ligand protonated species provides a low energy pathway for ligand dissociation, opening the needed coordination site. The ability to control the interconversion between a metal-hydride and a ligand-protonated congener using an exogeneous ligand introduces a new strategy for catalyst design with proton responsive ligands.
Collapse
Affiliation(s)
- Jonathan L Kuo
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I Goldberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Sun N, Wang SQ, Andaloussi YH, Liu G, Fu T, Xu J, Zaworotko MJ, Bu XH. Supramolecular Cages Based on a Silver Complex as Adaptable Hosts for Poly-Aromatic Hydrocarbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001377. [PMID: 33140550 DOI: 10.1002/smll.202001377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
In this work, an L-shaped silver complex, AgLClO4 (L = 2,3-bis[3-(pyridin-2-yl)-1H-pyrazol-1-yl·methyl]quinoxaline), M, is found to be adaptable enough to host a range of medium and large aromatic hydrocarbons including several polycyclic aromatic hydrocarbons (PAHs). The transformation of M from as-synthesized closed (nonporous) crystalline to at least three types of open phase structures in the presence of different aromatic hydrocarbons enables the adaptable binding of M to these aromatics. In essence, M can rearrange its cavities to fit the different sizes and shapes of the guest molecules in the manner that is infeasible with cage compounds or coordination networks. Single-crystal and powder X-ray diffraction confirm the adaptable structures of the resulting host-guest complexes, M·nG (G = guest, n = 0.5 or 0.75). Detailed 1D and 2D nuclear magnetic resonance spectra, along with the fluorescence spectroscopy, reveal that the host-guest complexes feature similar chemical compositions in the solution, but are in the states of rapid exchange in and outside the cages. Such an adaptability of M provides insights into the strength of host-guest interactions and enables a new class of adsorptive molecular materials that can bind a large number of aromatics, specifically PAHs.
Collapse
Affiliation(s)
- Na Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Shi-Qiang Wang
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Yassin H Andaloussi
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Guorui Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Tonghuan Fu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| | - Michael J Zaworotko
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Republic of Ireland
| | - Xian-He Bu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, China
| |
Collapse
|
23
|
Wegener AR, Kabes CQ, Gladysz JA. Launching Werner Complexes into the Modern Era of Catalytic Enantioselective Organic Synthesis. Acc Chem Res 2020; 53:2299-2313. [PMID: 32886471 DOI: 10.1021/acs.accounts.0c00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions catalyzed by transition metal complexes almost always entail binding of one or more reactants to the metal center, and nearly every corner of the "chiral pool" has been picked over in efforts to develop enantioselective catalysts. As reported by Alfred Werner in 1911-1912, salts of the formally D3-symmetric [Co(en)3]3+ trication (en = ethylenediamine) were among the first chiral inorganic compounds to be resolved into enantiomers. These air- and water-stable complexes are substitution-inert, so for 100 years they languished without application in organic synthesis. We then showed that when they are rendered soluble in organic media by lipophilic anions such as fluorinated tetraarylborates BArf-, they become potent catalysts for a variety of carbon-carbon and carbon-heteroatom bond forming reactions.These involve substrate activation by hydrogen bonding to the coordinated NH2 units (pKa ca. 15), a "second coordination sphere" mechanism. Only modest enantioselectivities are obtained with [Co(en)3]3+ 3BArf- or related chromium, rhodium, iridium, and platinum salts. However, high enantioselectivities are achieved when the three en ligands are replaced by the 1,2-diphenyl analogues (S,S)- or (R,R)-H2NCHPhCHPhNH2. Here only one BArf- anion is required to solubilize the trication, so a number of mixed-salt catalysts (2X-BArf-) have been evaluated. Alternatively, a dimethylamino group can be tethered to the backbone of one en ligand, providing bifunctional catalysts that obviate any need for an external base. Interestingly, the counteranions modulate the enantioselectivities somewhat. However, catalysts with chiral anions do not significantly outperform benchmark catalysts with achiral anions. Cagelike chiral hexaaminecobalt(III) complexes known as sepulchrates and sarcophagines, which feature secondary NH donor atoms, can also serve as catalysts, but the enantioselectivities are very low.In a spinoff application, certain salts are found to be superb "chiral solvating agents", leading to distinct sets of NMR signals for enantiomers of chiral analytes with Lewis basic functional groups. Loadings of 10-25 mol % generally suffice, providing the best way of assaying the enantiomeric purities of a host of compounds. Also, mixtures of several chiral compounds can be simultaneously analyzed. It is not surprising that complexes that perform well in chiral recognition phenomena also excel as enantioselective catalysts.In this Account, the stereochemical properties of the preceding complexes are treated, as well as arcana generally known only to specialists in the field. These include the use of charcoal for equilibrating configurations of the cobalt stereocenter and Sephadex for separating enantiomers and diastereomers. Other types of metal-containing hydrogen-bond-donor catalysts are briefly surveyed (noncoordinating NH units can also be effective), including several developed by other groups. However, the mechanisms of enantioselection in all of these transformations remain obscure. The optimum diastereomer and anion set varies from reaction to reaction, suggesting a "phenotypic plasticity" that allows adaption to a variety of processes.
Collapse
Affiliation(s)
- Aaron R. Wegener
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Connor Q. Kabes
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
24
|
Buendia MB, Kegnæs S, Kramer S. A Nickel‐Bisdiamine Porous Organic Polymer as Heterogeneous Chiral Catalyst for Asymmetric Michael Addition to Aliphatic Nitroalkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Søren Kegnæs
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| | - Søren Kramer
- Department of Chemistry Technical University of Denmark 2800 Kgs. Lyngby Denmark
| |
Collapse
|
25
|
Mandal A, Nath B, Patel BK. Unraveling the role of non-covalent interactions to determine chiral selectivity in coordination compounds of racemic 1,2-dihydroquinazolinone ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catal 2020; 10:10672-10714. [PMID: 32983588 PMCID: PMC7507755 DOI: 10.1021/acscatal.0c02957] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Enantioselective transition metal catalysis is an area very much at the forefront of contemporary synthetic research. The development of processes that enable the efficient synthesis of enantiopure compounds is of unquestionable importance to chemists working within the many diverse fields of the central science. Traditional approaches to solving this challenge have typically relied on leveraging repulsive steric interactions between chiral ligands and substrates in order to raise the energy of one of the diastereomeric transition states over the other. By contrast, this Review examines an alternative tactic in which a set of attractive noncovalent interactions operating between transition metal ligands and substrates are used to control enantioselectivity. Examples where this creative approach has been successfully applied to render fundamental synthetic processes enantioselective are presented and discussed. In many of the cases examined, the ligand scaffold has been carefully designed to accommodate these attractive interactions, while in others, the importance of the critical interactions was only elucidated in subsequent computational and mechanistic studies. Through an exploration and discussion of recent reports encompassing a wide range of reaction classes, we hope to inspire synthetic chemists to continue to develop asymmetric transformations based on this powerful concept.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Philip J. Docherty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
27
|
Luu QH, Gladysz JA. An Air‐ and Water‐Stable Hydrogen‐Bond‐Donor Catalyst for the Enantioselective Generation of Quaternary Carbon Stereocenters by Additions of Substituted Cyanoacetate Esters to Acetylenic Esters. Chemistry 2020; 26:10230-10239. [DOI: 10.1002/chem.202001639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Quang H. Luu
- Department of Chemistry Texas A&M University P.O. Box 30012 College Station Texas 77842-3012 USA
| | - John A. Gladysz
- Department of Chemistry Texas A&M University P.O. Box 30012 College Station Texas 77842-3012 USA
| |
Collapse
|
28
|
Alimohammadi M, Hasaninejad A, Luu QH, Gladysz JA. Λ-[Co((S,S)-dpen)3]3+ 2I–B(C6F5)4–: A Second Generation Air- and Water-Stable Chiral Solvating Agent for Chirality Sensing (dpen = NH2CHPhCHPhNH2). J Org Chem 2020; 85:11250-11257. [DOI: 10.1021/acs.joc.0c01332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Motahareh Alimohammadi
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Alireza Hasaninejad
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Quang H. Luu
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
29
|
Jang S, Kim H. Chiral 1H NMR Analysis of Carbonyl Compounds Enabled by Cationic Cobalt Complex. Org Lett 2020; 22:4185-4189. [DOI: 10.1021/acs.orglett.0c01256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sumin Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hyunwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
30
|
Mukherjee T, Ghosh SK, Wititsuwannakul T, Bhuvanesh N, Gladysz JA. Chiral-at-Metal Ruthenium Complexes with Guanidinobenzimidazole and Pentaphenylcyclopentadienyl Ligands: Synthesis, Resolution, and Preliminary Screening as Enantioselective Second Coordination Sphere Hydrogen Bond Donor Catalysts. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tathagata Mukherjee
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Subrata K. Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Taveechai Wititsuwannakul
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| |
Collapse
|
31
|
Wititsuwannakul T, Mukherjee T, Hall MB, Gladysz JA. Computational Investigations of Enantioselection in Carbon–Carbon Bond Forming Reactions of Ruthenium Guanidinobenzimidazole Second Coordination Sphere Hydrogen Bond Donor Catalysts. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Taveechai Wititsuwannakul
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Tathagata Mukherjee
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77843-3012, United States
| |
Collapse
|
32
|
Maximuck WJ, Ganzmann C, Alvi S, Hooda KR, Gladysz JA. Rendering classical hydrophilic enantiopure Werner salts [M(en) 3] n+nX - lipophilic (M/n = Cr/3, Co/3, Rh/3, Ir/3, Pt/4); new chiral hydrogen bond donor catalysts and enantioselectivities as a function of metal and charge. Dalton Trans 2020; 49:3680-3691. [PMID: 32124905 DOI: 10.1039/d0dt00523a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Known hydrophilic halide salts of the title compounds are converted to new lipophilic BArf- (B(3,5-C6H3(CF3)2)4-) salts. These are isolated as hydrates (Λ- or Δ-[M(en)3]n+nBArf-·zH2O; z = 17-9) and characterized by NMR (acetone-d6) and microanalyses. Thermal stabilities are probed by capillary thermolyses and TGA and DSC measurements (onset of dehydration 71-151 °C). In the presence of tertiary amines, they are effective catalysts for enantioselective Michael type carbon-carbon or carbon-nitrogen bond forming additions of 1,3-dicarbonyl compounds (acceptors: trans-β-nitrostyrene, di-tert-butylazodicarboxylate, 2-cyclopenten-1-one; average ee = 33%, 52%, 17%). Effects of the metal and charge upon enantioselectivities are analyzed. A number of properties appear to correlate to the NH Brønsted acidity order ([Pt(en)3]4+ > [Cr(en)3]3+ > [Co(en)3]3+ > [Rh(en)3]3+ > [Ir(en)3]3+).
Collapse
Affiliation(s)
- William J Maximuck
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - Carola Ganzmann
- Institut für Organische Chemie and Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 42, 91054 Erlangen, Germany
| | - Scheherzad Alvi
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - Karan R Hooda
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| | - John A Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, USA.
| |
Collapse
|
33
|
Kabes CQ, Maximuck WJ, Ghosh SK, Kumar A, Bhuvanesh N, Gladysz JA. Chiral Tricationic Tris(1,2-diphenylethylenediamine) Cobalt(III) Hydrogen Bond Donor Catalysts with Defined Carbon/Metal Configurations; Matched/Mismatched Effects upon Enantioselectivities with Enantiomeric Chiral Counter Anions. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Connor Q. Kabes
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - William J. Maximuck
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Subrata K. Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Anil Kumar
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
34
|
Gimeno MC, Herrera RP. Hydrogen Bonding and Internal or External Lewis or Brønsted Acid Assisted (Thio)urea Catalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Concepción Gimeno
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Raquel P. Herrera
- Departamento de Química Orgánica. Laboratorio de Organocatálisis Asimétrica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
35
|
Maximuck WJ, Gladysz JA. Lipophilic chiral cobalt (III) complexes of hexaamine ligands: Efficacies as enantioselective hydrogen bond donor catalysts. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Reznikov AN, Sibiryakova AE, Baimuratov MR, Golovin EV, Rybakov VB, Klimochkin YN. Synthesis of non-racemic 4-nitro-2-sulfonylbutan-1-ones via Ni(II)-catalyzed asymmetric Michael reaction of β-ketosulfones. Beilstein J Org Chem 2019; 15:1289-1297. [PMID: 31293677 PMCID: PMC6604683 DOI: 10.3762/bjoc.15.127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Functionally substituted sulfones with stereogenic centers are valuable reagents in organic synthesis and key motifs in some bioactive compounds. The asymmetric Michael addition of β-ketosulfones to conjugated nitroalkenes in the presence of Ni(II) complexes with various chiral vicinal diamines was studied. This reaction provides convenient access to non-racemic 4-nitro-2-sulfonylbutan-1-ones with two stereocenters with high yield and excellent enantioselectivity (up to 99%). It has been established that the catalytic Michael reaction itself was carried out with high diastereoselectivity, but the Michael adducts may epimerize at the C-2 position at a significant rate. Conditions for the preparation of individual diastereomers were found.
Collapse
Affiliation(s)
- Alexander N Reznikov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Anastasiya E Sibiryakova
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Marat R Baimuratov
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Eugene V Golovin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, Moscow State University, Leninskie Gory, 1, 119991, Mosсow, Russian Federation
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Samara State Technical University, Molodogvardeyskaya str., 244, 443100 Samara, Russian Federation
| |
Collapse
|
37
|
Affiliation(s)
- Charles L. Perrin
- Department of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093-0358, United States
| | - Yifan Wu
- Department of Chemistry and Biochemistry, University of California—San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
38
|
De los Santos ZA, Lynch CC, Wolf C. Optische Chiralitätssensorik mit ligandenfreien, weit verbreiteten Cobaltsalzen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zeus A. De los Santos
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Ciarán C. Lynch
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
39
|
De los Santos ZA, Lynch CC, Wolf C. Optical Chirality Sensing with an Auxiliary‐Free Earth‐Abundant Cobalt Probe. Angew Chem Int Ed Engl 2018; 58:1198-1202. [DOI: 10.1002/anie.201811761] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/20/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zeus A. De los Santos
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Ciarán C. Lynch
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University 37th and O Streets Washington DC 20057 USA
| |
Collapse
|
40
|
Cruchter T, Larionov VA. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Zheng K, Liu X, Feng X. Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. Chem Rev 2018; 118:7586-7656. [PMID: 30047721 DOI: 10.1021/acs.chemrev.7b00692] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metal-catalyzed asymmetric conjugate addition (ACA) reaction has emerged as a general and powerful approach for the construction of optically active compounds and is among the most significant and useful reactions in synthetic organic chemistry. In recent years, great progress has been made in this area with the use of various chiral metal complexes based on different chiral ligands. This review provides comprehensive and critical information on the enantioselective 1,4-conjugate addition of nonorganometallic (soft) nucleophiles and their importance in synthetic applications. The literature is covered from the last 10 years, and a number of examples from before 2007 are included as background information. The review is divided into multiple parts according to the type of nucleophile involved in the reaction (such as C-, B-, O-, N-, S-, P-, and Si-centered nucleophiles) and metal catalyst systems used.
Collapse
Affiliation(s)
- Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
42
|
Luu QH, Lewis KG, Banerjee A, Bhuvanesh N, Gladysz JA. The robust, readily available cobalt(iii) trication [Co(NH 2CHPhCHPhNH 2) 3] 3+ is a progenitor of broadly applicable chirality and prochirality sensing agents. Chem Sci 2018; 9:5087-5099. [PMID: 29938040 PMCID: PMC5994889 DOI: 10.1039/c8sc01510d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
When NMR spectra of chiral racemic organic molecules containing a Lewis basic functional group are recorded in the presence of air and water stable salts of the cobalt(iii) trication [Co((S,S)-NH2CHPhCHPhNH2)3]3+ (23+), separate signals are usually observed for the enantiomers (28 diverse examples, >12 functional groups). Several chiral molecules can be simultaneously analyzed, and enantiotopic groups in prochiral molecules differentiated (16 examples). Particularly effective are the mixed bis(halide)/tetraarylborate salts Λ-23+ 2X-BArf- (X = Cl, I; BArf = B(3,5-C6H3(CF3)2)4), which are applied in CD2Cl2 or CDCl3 at 1-100 mol% (avg 34 and 14 mol%). Job plots establish 1 : 1 binding for Λ-23+ 2Cl-BArf- and 1-phenylethyl acetate (4) or 1-phenylethanol (10), and ca. 1 : 2 binding with DMSO (CD2Cl2). Selected binding constants are determined, which range from 7.60-2.73 M-1 for the enantiomers of 10 to 28.1-22.6 M-1 for the enantiomers of 4. The NH moieties of the C2 faces of the trication are believed to hydrogen bond to the Lewis basic functional groups, as seen in the crystal structure of a hexakis(DMSO) solvate of Λ-23+ 3I-. These salts rank with the most broadly applicable chirality sensing agents discovered to date.
Collapse
Affiliation(s)
- Quang H Luu
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - Kyle G Lewis
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - Anik Banerjee
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - Nattamai Bhuvanesh
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| | - John A Gladysz
- Department of Chemistry , Texas A&M University , P.O. Box 30012 , College Station , Texas 77842-3012 , USA .
| |
Collapse
|
43
|
|
44
|
Li X, You C, Yang Y, Yang Y, Li P, Gu G, Chung LW, Lv H, Zhang X. Rhodium-catalyzed asymmetric hydrogenation of β-cyanocinnamic esters with the assistance of a single hydrogen bond in a precise position. Chem Sci 2018; 9:1919-1924. [PMID: 29675238 PMCID: PMC5890790 DOI: 10.1039/c7sc04639a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/02/2018] [Indexed: 12/24/2022] Open
Abstract
The first asymmetric hydrogenation of β-cyanoacrylate esters has been developed to furnish chiral β-cyano esters with excellent yields and excellent enantioselectivities. Notably, the catalyst with a single H-bond donor in a precise position performed better than that with double H-bond donors.
With the assistance of hydrogen bonds, the first asymmetric hydrogenation of β-cyanocinnamic esters is developed, affording chiral β-cyano esters with excellent enantioselectivities (up to 99% ee). This novel methodology provides an efficient and concise synthetic route to chiral GABA-derivatives such as (S)-Pregabalin, (R)-Phenibut, (R)-Baclofen. Interestingly, in this system, the catalyst with a single H-bond donor performs better than that with double H-bond donors, which is a novel discovery in the metalorganocatalysis area.
Collapse
Affiliation(s)
- Xiuxiu Li
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Cai You
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Yusheng Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Yuhong Yang
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China .
| | - Pan Li
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China .
| | - Guoxian Gu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China .
| | - Lung Wa Chung
- Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China .
| | - Hui Lv
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China . .,Engineering Research Center of Organosilicon Compounds & Materials , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , Hubei 430072 , P. R. China . .,Department of Chemistry , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China .
| |
Collapse
|
45
|
Serra-Pont A, Alfonso I, Solà J, Jimeno C. A copper-templated, bifunctional organocatalyst: a strongly cooperative dynamic system for the aldol reaction. Org Biomol Chem 2018; 15:6584-6591. [PMID: 28749514 DOI: 10.1039/c7ob01370a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of novel metal-templated dynamic organocatalytic systems has led to the identification of CuSO4 as the most efficient template to assemble monofunctional prolinamide- and thiourea-modified pyridine ligands. The structural and electronic requirements to assemble an efficient catalyst have been disclosed: both pyridine ligands must bear a 1,3-substitution pattern, and the thiourea ligand serves as a reducing agent to copper(i) as well. Eventually, the cooperative effects achieved with such a simple system deliver high reaction rates and stereoselectivities at room temperature in the asymmetric aldol reaction, requiring only 1 mol% of copper salt.
Collapse
Affiliation(s)
- Anna Serra-Pont
- Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E08034 Barcelona, Spain.
| | | | | | | |
Collapse
|
46
|
Hydrogen bonding motifs in structurally characterized salts of the tris(ethylenediamine) cobalt trication, [Co(en)3]3+; An interpretive review, including implications for catalysis. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
Zhang L, Meggers E. Stereogenic-Only-at-Metal Asymmetric Catalysts. Chem Asian J 2017; 12:2335-2342. [PMID: 28782915 DOI: 10.1002/asia.201700739] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/06/2017] [Indexed: 11/10/2022]
Abstract
Chirality is an essential feature of asymmetric catalysts. This review summarizes asymmetric catalysts that derive their chirality exclusively from stereogenic metal centers. Reported chiral-at-metal catalysts can be divided into two classes, namely, inert metal complexes, in which the metal fulfills a purely structural role, so catalysis is mediated entirely through the ligand sphere, and reactive metal complexes. The latter are particularly appealing because structural simplicity (only achiral ligands) is combined with the prospect of particularly effective asymmetric induction (direct contact of the substrate with the chiral metal center). Challenges and solutions for the design of such reactive stereogenic-only-at-metal asymmetric catalysts are discussed.
Collapse
Affiliation(s)
- Lilu Zhang
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg, Germany
| |
Collapse
|
48
|
Cruchter T, Medvedev MG, Shen X, Mietke T, Harms K, Marsch M, Meggers E. Asymmetric Nucleophilic Catalysis with an Octahedral Chiral-at-Metal Iridium(III) Complex. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01296] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Cruchter
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Michael G. Medvedev
- X-ray
Structural Laboratory, A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991 Moscow, Russian Federation
| | - Xiaodong Shen
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Thomas Mietke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Klaus Harms
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Michael Marsch
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Eric Meggers
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| |
Collapse
|
49
|
Ghosh SK, Lewis KG, Kumar A, Gladysz JA. Syntheses of Families of Enantiopure and Diastereopure Cobalt Catalysts Derived from Trications of the Formula [Co(NH2CHArCHArNH2)3]3+. Inorg Chem 2017; 56:2304-2320. [DOI: 10.1021/acs.inorgchem.6b03042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Subrata K. Ghosh
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Kyle G. Lewis
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - Anil Kumar
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
50
|
Merten C. Vibrational optical activity as probe for intermolecular interactions. Phys Chem Chem Phys 2017; 19:18803-18812. [DOI: 10.1039/c7cp02544k] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A detailed VCD spectroscopic analysis of well-selected chiral model systems can give valuable and unprecedented insights into intermolecular interactions such as solvation or reactant–substrate binding in catalysis.
Collapse
|