1
|
Gerile S, Shen Q, Kang J, Liu W, Dong A. Current advances in black phosphorus-based antibacterial nanoplatform for infection therpy. Colloids Surf B Biointerfaces 2024; 241:114037. [PMID: 38878660 DOI: 10.1016/j.colsurfb.2024.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/29/2024]
Abstract
Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.
Collapse
Affiliation(s)
- Saren Gerile
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Qiudi Shen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Wenxin Liu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
2
|
Benini F, Bassoli N, Restuccia P, Ferrario M, Righi MC. Interaction of Water and Oxygen Molecules with Phosphorene: An Ab Initio Study. Molecules 2023; 28:molecules28083570. [PMID: 37110804 PMCID: PMC10141136 DOI: 10.3390/molecules28083570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphorene, the 2D form of black phosphorus, has recently attracted interest for optoelectronic and tribological applications. However, its promising properties are affected by the strong tendency of the layers to oxidize in ambient conditions. A significant effort has been made to identify the role of oxygen and water in the oxidation process. In this work, we introduce a first-principles study of the phosphorene phase diagram and provide a quantitative estimate of the interaction of pristine and fully oxidized phosphorene layers with oxygen and water molecules. Specifically, we study oxidized layers with oxygen coverages of 25% and 50% that keep the typical anisotropic structure of the layers. We found that hydroxilated and hydrogenated phosphorene layers are both energetically unfavorable, leading to structural distortions. We also studied the water physisorption on both pristine and oxidized layers, finding that the adsorption energy gain doubled on the oxidized layers, whereas dissociative chemisorption was always energetically unfavorable. At the same time, further oxidation (i.e., the dissociative chemisorption of O2) was always favorable, even on oxidized layers. Ab initio molecular dynamics simulations of water intercalated between sliding phosphorene layers showed that even under harsh tribological conditions water dissociation was not activated, thus further strengthening the results obtained from our static calculations. Overall, our results provide a quantitative description of the interaction of phosphorene with chemical species that are commonly found in ambient conditions at different concentrations. The phase diagram that we introduced confirms the tendency of phosphorene layers to fully oxidize due to the presence of O2, resulting in a material with improved hydrophilicity, a piece of information that is relevant for the application of phosphorene, e.g., as a solid lubricant. At the same time, the structural deformations found for the H- and OH- terminated layers undermine their electrical, mechanical, and tribological anisotropic properties and, therefore, the usage of phosphorene.
Collapse
Affiliation(s)
- Francesca Benini
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| | - Nicolò Bassoli
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| | - Paolo Restuccia
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| | - Mauro Ferrario
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Clelia Righi
- Department of Physics and Astronomy, Alma Mater Studiorum-University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
3
|
Zhang G, Chen D, Lu J. A review on black-phosphorus-based composite heterojunction photocatalysts for energy and environmental applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Zhang W, Gou Y, Cheng L, Dong K, Sheng Y, Ye C, Yang X, Mu Y. Revealing the biotoxicity of phosphorene oxide nanosheets based on the villin headpiece. Phys Chem Chem Phys 2023; 25:3100-3109. [PMID: 36621815 DOI: 10.1039/d2cp04080h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phosphorene, a novel member of the two-dimensional nanomaterial family, has demonstrated great potential in biomedical applications, such as photothermal therapy, drug delivery and antibacterial. However, phosphorene is unstable and easily oxidized in an aerobic environment. In this paper, using larger-scale molecular dynamics simulations, we investigated the disruption of phosphorene oxide (PO) to the structure of a model protein, villin headpiece subdomain (HP35). It shows that the disruption of PO nanosheets to the protein structure is enhanced with increasing oxidation concentration of PO, while PO's oxidation mode has very little effect on the PO-HP35 interaction. PO with a low oxidation concentration has certain biocompatibility to HP35. Oxygen atoms filling into the groove region in the puckered surface of phosphorene enhance the dispersion interaction between phosphorene and HP35, which enhances the disruption of phosphorene to the structure of HP35. Compared with the dispersion interaction, the electrostatic interaction between PO and the protein has a negligible effect on the structural damage of HP35. These findings might shed light on the biological toxicity of PO nanosheets and would be helpful for future potential biomedical applications of PO nanosheets, such as nanodrugs and antibacterial agents.
Collapse
Affiliation(s)
- Wei Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Yuanyuan Gou
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Li Cheng
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Kaiwei Dong
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Yijie Sheng
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Chao Ye
- Wenzhou University of Technology, Wenzhou, 325000, China
| | - Xianqing Yang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
5
|
Liu Y, Elbanna A, Gao W, Pan J, Shen Z, Teng J. Interlayer Excitons in Transition Metal Dichalcogenide Semiconductors for 2D Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107138. [PMID: 34700359 DOI: 10.1002/adma.202107138] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Optoelectronic materials that allow on-chip integrated light signal emitting, routing, modulation, and detection are crucial for the development of high-speed and high-throughput optical communication and computing technologies. Interlayer excitons in 2D van der Waals heterostructures, where electrons and holes are bounded by Coulomb interaction but spatially localized in different 2D layers, have recently attracted intense attention for their enticing properties and huge potential in device applications. Here, a general view of these 2D-confined hydrogen-like bosonic particles and the state-of-the-art developments with respect to the frontier concepts and prototypes is presented. Staggered type-II band alignment enables expansion of the interlayer direct bandgap from the intrinsic visible in monolayers up to the near- or even mid-infrared spectrum. Owing to large exciton binding energy, together with ultralong lifetime, room-temperature exciton devices and observation of quantum behaviors are demonstrated. With the rapid advances, it can be anticipated that future studies of interlayer excitons will not only allow the construction of all-exciton information processing circuits but will also continue to enrich the panoply of ideas on quantum phenomena.
Collapse
Affiliation(s)
- Yuanda Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Ahmed Elbanna
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
- The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jisheng Pan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zexiang Shen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
- The Photonics Institute and Center for Disruptive Photonic Technologies, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
6
|
|
7
|
Tofan D, Sakazaki Y, Walz Mitra KL, Peng R, Lee S, Li M, Velian A. Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniel Tofan
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Yukako Sakazaki
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Kendahl L. Walz Mitra
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| | - Ruoming Peng
- Department of Electrical and Computer Engineering Department of Physics University of Washington Paul Allen Center 185 E Stevens Way NE Seattle WA 98195 USA
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering Department of Physics University of Washington Paul Allen Center 185 E Stevens Way NE Seattle WA 98195 USA
| | - Mo Li
- Department of Electrical and Computer Engineering Department of Physics University of Washington Paul Allen Center 185 E Stevens Way NE Seattle WA 98195 USA
| | - Alexandra Velian
- Department of Chemistry University of Washington 4000 15th Ave NE Seattle WA 98195 USA
| |
Collapse
|
8
|
Chen Y, Zhang W, Huang C, Feng M, Yang Y, Gou Y. Destructive Extraction and Enhanced Diffusion of Phospholipids on Lipid Membranes by Phosphorene Oxide Nanosheets. J Phys Chem B 2021; 125:2636-2643. [PMID: 33491449 DOI: 10.1021/acs.jpcb.0c07476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorene is a novel two-dimensional nanomaterial with a puckered surface morphology, which has broad potential application prospects in the fields of biology and medicine. Phosphorene nanosheets are easily oxidized and form phosphorene oxide (PO) in an aerobic environment, whose biological effect remains unknown. In this paper, using large-scale molecular dynamics simulations, we show that the PO nanosheets can penetrate into and destructively extract large amounts of phospholipids from the lipid membrane. The PO nanosheets with a higher oxidation concentration have less extraction of phospholipids, while its oxidation mode has no effect on the extraction of phospholipids. Moreover, inserting PO nanosheets into the lipid membrane can enhance the diffusion of phospholipids on the membrane. These findings can shed light on understanding/designing the membrane-nanomaterial interactions.
Collapse
Affiliation(s)
- Yezhe Chen
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wei Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chuanfu Huang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mei Feng
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunqiu Yang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanyuan Gou
- School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
9
|
Tofan D, Sakazaki Y, Walz Mitra KL, Peng R, Lee S, Li M, Velian A. Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. Angew Chem Int Ed Engl 2021; 60:8329-8336. [PMID: 33480169 DOI: 10.1002/anie.202100308] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/11/2022]
Abstract
Herein we introduce a facile, solution-phase protocol to modify the Lewis basic surface of few-layer black phosphorus (bP) and demonstrate its effectiveness at providing ambient stability and tuning of electronic properties. Commercially available group 13 Lewis acids that range in electrophilicity, steric bulk, and Pearson hard/soft-ness are evaluated. The nature of the interaction between the Lewis acids and the bP lattice is investigated using a range of microscopic (optical, atomic force, scanning electron) and spectroscopic (energy dispersive, X-ray photoelectron) methods. Al and Ga halides are most effective at preventing ambient degradation of bP (>84 h for AlBr3 ), and the resulting field-effect transistors show excellent IV characteristics, photocurrent, and current stability, and are significantly p-doped. This protocol, chemically matched to bP and compatible with device fabrication, opens a path for deterministic and persistent tuning of the electronic properties in bP.
Collapse
Affiliation(s)
- Daniel Tofan
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Yukako Sakazaki
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Kendahl L Walz Mitra
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| | - Ruoming Peng
- Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Seokhyeong Lee
- Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Mo Li
- Department of Electrical and Computer Engineering, Department of Physics, University of Washington, Paul Allen Center, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Alexandra Velian
- Department of Chemistry, University of Washington, 4000 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
10
|
Cheng L, Cai Z, Zhao J, Wang F, Lu M, Deng L, Cui W. Black phosphorus-based 2D materials for bone therapy. Bioact Mater 2020; 5:1026-1043. [PMID: 32695934 PMCID: PMC7355388 DOI: 10.1016/j.bioactmat.2020.06.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Since their discovery, Black Phosphorus (BP)-based nanomaterials have received extensive attentions in the fields of electromechanics, optics and biomedicine, due to their remarkable properties and excellent biocompatibility. The most essential feature of BP is that it is composed of a single phosphorus element, which has a high degree of homology with the inorganic components of natural bone, therefore it has a full advantage in the treatment of bone defects. This review will first introduce the source, physicochemical properties, and degradation products of BP, then introduce the remodeling process of bone, and comprehensively summarize the progress of BP-based materials for bone therapy in the form of hydrogels, polymer membranes, microspheres, and three-dimensional (3D) printed scaffolds. Finally, we discuss the challenges and prospects of BP-based implant materials in bone immune regulation and outlook the future clinical application.
Collapse
Affiliation(s)
- Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhengwei Cai
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| | - Jingwen Zhao
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Fei Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Min Lu
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, Jiaxing 314000, PR China
| |
Collapse
|
11
|
Wan D, Huang H, Wang Z, Liu X, Liao L. Recent advances in long-term stable black phosphorus transistors. NANOSCALE 2020; 12:20089-20099. [PMID: 33006355 DOI: 10.1039/d0nr05204c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional black phosphorus (BP) presents extensive exciting properties attributed to the high mobility and non-dangling bonds uniform surface with simultaneously obtained atomically ultrathin body and offer opportunities beyond the traditional materials. BP has thus emerged as a unique material in the post-silicon era for low-power electronics and photo-electronics. Tremendous efforts have been invested in fully developing the extreme potentiality of BP for future nanoelectronics. However, the accompanying challenges, especially the poor stability that originates from the active surface, in fabricating large-area BP transistors with comparable electrical performance to silicon electronics prevent their practical application. Herein, we review the progress of recent works that demonstrated the feasibility of enhancing the stability of BP electronics, and identify the opportunities and challenges in developing BP as atomically thin semiconductors for next-generation nanoelectronics.
Collapse
Affiliation(s)
- Da Wan
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Hao Huang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhongzheng Wang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xingqiang Liu
- Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China.
| | - Lei Liao
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Naclerio AE, Zakharov DN, Kumar J, Rogers B, Pint CL, Shrivastava M, Kidambi PR. Visualizing Oxidation Mechanisms in Few-Layered Black Phosphorus via In Situ Transmission Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15844-15854. [PMID: 32134627 DOI: 10.1021/acsami.9b21116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Layered two-dimensional (2D) black phosphorus (BP) exhibits novel semiconducting properties including a tunable bandgap and high electron mobility. However, the poor stability of BP in ambient environment severely limits potential for application in future electronic and optoelectronic devices. While passivation or encapsulation of BP using inert materials/polymers has emerged as a plausible solution, a detailed fundamental understanding of BP's reaction with oxygen is imperative to rationally advance its use in applications. Here, we use in situ environmental transmission electron microscopy to elucidate atomistic structural changes in mechanically exfoliated few-layered BP during exposure to varying partial pressures of oxygen. An amorphous oxide layer is seen on the actively etching BP edges, and the thickness of this layer increases with increasing oxygen partial pressure, indicating that oxidation proceeds via initial formation of amorphous PxOy species which sublime to result in the etching of the BP crystal. We observe that while few-layered BP is stable under the 80 kV electron beam (e-beam) in vacuum, the lattice oxidizes and degrades at room temperature in the presence of oxygen only in the region under the e-beam. The oxidative etch rate also increases with increasing e-beam dosage, suggesting the presence of an energy barrier for the oxidation reaction. Preferential oxidative etching along the [0 0 1] and [0 0 1] crystallographic directions is observed, in good agreement with density functional theory calculations showing favorable thermodynamic stability of the oxidized BP (0 0 1) planes compared to the (1 0 0) planes. We expect the atomistic insights and fundamental understanding obtained here to aid in the development of novel approaches to integrate BP in future applications.
Collapse
Affiliation(s)
- Andrew E Naclerio
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jeevesh Kumar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bridget Rogers
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States
| | - Cary L Pint
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Mayank Shrivastava
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1826, United States
| |
Collapse
|
13
|
Antonatos N, Bouša D, Kovalska E, Sedmidubský D, Růžička K, Vrbka P, Veselý M, Hejtmánek J, Sofer Z. Large-Scale Production of Nanocrystalline Black Phosphorus Ceramics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7381-7391. [PMID: 31942787 DOI: 10.1021/acsami.9b13362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Black phosphorus is currently among the most explored two-dimensional (2D) materials. Currently, the synthesis methods are dominantly based on vapor-phase growth of black phosphorus. In this manuscript, we demonstrate large-scale synthesis of black phosphorus by rapid high-pressure transition of red phosphorus. The high-pressure conversion of red phosphorus led to high-density nanocrystalline black phosphorus ceramics. The resulting material was explored in detail including structural and morphological characterization in addition to thermal and electrical transport and basic thermophysical properties. The nanocrystalline black phosphorus can be employed for large-scale production of stable few/single-layer black phosphorus colloidal solutions in various solvents.
Collapse
Affiliation(s)
- Nikolas Antonatos
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - Daniel Bouša
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - Evgeniya Kovalska
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - David Sedmidubský
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - Květoslav Růžička
- Department of Physical Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - Pavel Vrbka
- Department of Physical Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - Martin Veselý
- Department of Organic Technology , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| | - Jiří Hejtmánek
- Institute of Physics of the Czech Academy of Sciences , v.v.i., Cukrovarnická 112/10 , 162 00 Prague 6, Prague , Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry , University of Chemistry and Technology Prague , Technická 5 , 166 28 Prague 6, Prague , Czech Republic
| |
Collapse
|
14
|
Ahmed T, Kuriakose S, Mayes ELH, Ramanathan R, Bansal V, Bhaskaran M, Sriram S, Walia S. Optically Stimulated Artificial Synapse Based on Layered Black Phosphorus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900966. [PMID: 31018039 DOI: 10.1002/smll.201900966] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 06/09/2023]
Abstract
The translation of biological synapses onto a hardware platform is an important step toward the realization of brain-inspired electronics. However, to mimic biological synapses, devices till-date continue to rely on the need for simultaneously altering the polarity of an applied electric field or the output of these devices is photonic instead of an electrical synapse. As the next big step toward practical realization of optogenetics inspired circuits that exhibit fidelity and flexibility of biological synapses, optically-stimulated synaptic devices without a need to apply polarity-altering electric field are needed. Utilizing a unique photoresponse in black phosphorus (BP), here reported is an all-optical pathway to emulate excitatory and inhibitory action potentials by exploiting oxidation-related defects. These optical synapses are capable of imitating key neural functions such as psychological learning and forgetting, spatiotemporally correlated dynamic logic and Hebbian spike-time dependent plasticity. These functionalities are also demonstrated on a flexible platform suitable for wearable electronics. Such low-power consuming devices are highly attractive for deployment in neuromorphic architectures. The manifestation of cognition and spatiotemporal processing solely through optical stimuli provides an incredibly simple and powerful platform to emulate sophisticated neural functionalities such as associative sensory data processing and decision making.
Collapse
Affiliation(s)
- Taimur Ahmed
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sruthi Kuriakose
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Edwin L H Mayes
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility and NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Madhu Bhaskaran
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Sumeet Walia
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, VIC, 3001, Australia
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
15
|
Chen J, Zhou Q, Pan H, Zhang W, Zhao Y, Deng Y, Du Y, Wang J, Tang N. Ambient Degradation-Induced Spin Paramagnetism in Phosphorene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804386. [PMID: 30556287 DOI: 10.1002/smll.201804386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/28/2018] [Indexed: 06/09/2023]
Abstract
The sizeable direct bandgap, high mobility, and long spin lifetimes at room temperature offer black phosphorus (BP) potential applications in spin-based semiconductor devices. Toward these applications, a critical step is creating a magnetic response in BP, which is arousing much interest. It is reported here that ambient degradation of BP, which is immediate and inevitable and greatly changes the semiconducting properties, creates magnetic moments, and any degree of degradation leads to notable paramagnetism. Its Landau factor g measured is ≈1.995, revealing that the magnetization mainly results from spin rather than orbital moments. Such magnetism most likely results from the unsaturated phosphorus in the vacancies which are stabilized by O adatoms. It can be tuned by changing any one of the ambient factors of ambient temperature, humidity, and light intensity, and can be stabilized by exposing BP in argon. The findings highlight the importance of evaluating the effect of ambient degradation-induced magnetism on BP's spin-based devices. The work seems an essential milestone toward the forthcoming research upsurge on BP's magnetism.
Collapse
Affiliation(s)
- Jie Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Qionghua Zhou
- School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Hongzhe Pan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Weili Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Yunlei Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Youwei Du
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, P. R. China
| | - Nujiang Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
16
|
Gómez-Pérez J, Barna B, Tóth IY, Kónya Z, Kukovecz Á. Quantitative Tracking of the Oxidation of Black Phosphorus in the Few-Layer Regime. ACS OMEGA 2018; 3:12482-12488. [PMID: 31457979 PMCID: PMC6644649 DOI: 10.1021/acsomega.8b01989] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022]
Abstract
Previous theoretical reports have described the oxidation of few-layer black phosphorus and its effects on the electronic properties. Theoretically, native oxide layers bring opportunities for band gap engineering, but the detection of the different types of oxides is still a challenge at the experimental level. In this work, we uncover a correlation between thermal processes and Raman shift for the Ag 1, B2g, and Ag 2 vibrational modes. The thermal expansion coefficients (temperature range, 290-485 K) for the Ag 1, B2g, and Ag 2 were -0.015, -0.027, and -0.028 cm-1 K-1, respectively. Differential scanning calorimetry analysis shows an endothermic process centered at 528 K, and it was related with a mass increase according to thermogravimetric analysis. Raman shift temperature dependence was correlated to theoretical lattice thermal expansion, and a significant deviation was detected in the stacking direction at 500 K.
Collapse
Affiliation(s)
- Juan Gómez-Pérez
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla
tér 1, H-6720 Szeged, Hungary
| | - Balázs Barna
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla
tér 1, H-6720 Szeged, Hungary
| | - Ildikó Y. Tóth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla
tér 1, H-6720 Szeged, Hungary
- SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla
tér 1, H-6720 Szeged, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla
tér 1, H-6720 Szeged, Hungary
- SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| |
Collapse
|
17
|
Barraza-Lopez S, Kaloni TP. Water Splits To Degrade Two-Dimensional Group-IV Monochalcogenides in Nanoseconds. ACS CENTRAL SCIENCE 2018; 4:1436-1446. [PMID: 30410982 PMCID: PMC6202654 DOI: 10.1021/acscentsci.8b00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Indexed: 05/11/2023]
Abstract
The experimental exfoliation of layered group-IV monochalcogenides-semiconductors isostructural to black phosphorus-using processes similar to those followed in the production of graphene or phosphorene has turned out unsuccessful thus far, as if the chemical degradation observed in black phosphorus was aggravated in these monochalcogenides. Here, we document a facile dissociation of water by these materials within 10 ns from room-temperature Car-Parrinello molecular dynamics calculations under standard temperature and pressure conditions. These results suggest that humidity must be fully eradicated to exfoliate monolayers successfully, for instance, by placing samples in a hydrophobic solution during mechanical exfoliation. From another materials perspective, these two-dimensional materials that create individual hydrogen ions out of water without illumination may become relevant for applications in hydrogen production and storage.
Collapse
Affiliation(s)
- Salvador Barraza-Lopez
- Department of Physics and Institute for Nanoscale Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- E-mail:
| | - Thaneshwor P. Kaloni
- Department of Physics and Institute for Nanoscale Science and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
18
|
Urban JM, Baranowski M, Surrente A, Wlodarczyk D, Suchocki A, Long G, Wang Y, Klopotowski L, Wang N, Maude DK, Plochocka P. Observation of A Raman mode splitting in few layer black phosphorus encapsulated with hexagonal boron nitride. NANOSCALE 2017; 9:19298-19303. [PMID: 29192915 DOI: 10.1039/c7nr05588a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We investigate the impact of encapsulation with hexagonal boron nitride (h-BN) on the Raman spectrum of few layer black phosphorus. The encapsulation results in a significant reduction of the line width of the Raman modes of black phosphorus, due to a reduced phonon scattering rate. We observe a so far elusive peak in the Raman spectra ∼4 cm-1 above the A mode in trilayer and thicker flakes, which had not been observed experimentally. The newly observed mode originates from the strong black phosphorus inter-layer interaction, which induces a hardening of the surface atom vibration with respect to the corresponding modes of the inner layers. The observation of this mode suggests a significant impact of h-BN encapsulation on the properties of black phosphorus and can serve as an indicator of the quality of its surface.
Collapse
Affiliation(s)
- J M Urban
- Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Naumis GG, Barraza-Lopez S, Oliva-Leyva M, Terrones H. Electronic and optical properties of strained graphene and other strained 2D materials: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:096501. [PMID: 28540862 DOI: 10.1088/1361-6633/aa74ef] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This review presents the state of the art in strain and ripple-induced effects on the electronic and optical properties of graphene. It starts by providing the crystallographic description of mechanical deformations, as well as the diffraction pattern for different kinds of representative deformation fields. Then, the focus turns to the unique elastic properties of graphene, and to how strain is produced. Thereafter, various theoretical approaches used to study the electronic properties of strained graphene are examined, discussing the advantages of each. These approaches provide a platform to describe exotic properties, such as a fractal spectrum related with quasicrystals, a mixed Dirac-Schrödinger behavior, emergent gravity, topological insulator states, in molecular graphene and other 2D discrete lattices. The physical consequences of strain on the optical properties are reviewed next, with a focus on the Raman spectrum. At the same time, recent advances to tune the optical conductivity of graphene by strain engineering are given, which open new paths in device applications. Finally, a brief review of strain effects in multilayered graphene and other promising 2D materials like silicene and materials based on other group-IV elements, phosphorene, dichalcogenide- and monochalcogenide-monolayers is presented, with a brief discussion of interplays among strain, thermal effects, and illumination in the latter material family.
Collapse
Affiliation(s)
- Gerardo G Naumis
- Depto. de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, Mexico City 01000, Mexico
| | | | | | | |
Collapse
|
20
|
Dhanabalan SC, Ponraj JS, Guo Z, Li S, Bao Q, Zhang H. Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600305. [PMID: 28638779 PMCID: PMC5473329 DOI: 10.1002/advs.201600305] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/20/2016] [Indexed: 05/20/2023]
Abstract
The challenge of science and technology is to design and make materials that will dominate the future of our society. In this context, black phosphorus has emerged as a new, intriguing two-dimensional (2D) material, together with its monolayer, which is referred to as phosphorene. The exploration of this new 2D material demands various fabrication methods to achieve potential applications- this demand motivated this review. This article is aimed at supplementing the concrete understanding of existing phosphorene fabrication techniques, which forms the foundation for a variety of applications. Here, the major issue of the degradation encountered in realizing devices based on few-layered black phosphorus and phosphorene is reviewed. The prospects of phosphorene in future research are also described by discussing its significance and explaining ways to advance state-of-art of phosphorene-based devices. In addition, a detailed presentation on the demand for future studies to promote well-systemized fabrication methods towards large-area, high-yield and perfectly protected phosphorene for the development of reliable devices in optoelectronic applications and other areas is offered.
Collapse
Affiliation(s)
- Sathish Chander Dhanabalan
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Electronic Science and Technology, and College of Optoelectronics EngineeringShenzhen UniversityShenzhen518060China
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
| | - Joice Sophia Ponraj
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
- Department of Nanoscience and TechnologyBharathiar UniversityCoimbatore‐641046TamilnaduIndia
| | - Zhinan Guo
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Electronic Science and Technology, and College of Optoelectronics EngineeringShenzhen UniversityShenzhen518060China
| | - Shaojuan Li
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
| | - Qiaoliang Bao
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon‐Based Functional Materials and Devices, and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123P. R. China
- Department of Materials Science and EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Han Zhang
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyKey Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Electronic Science and Technology, and College of Optoelectronics EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
21
|
Abstract
Since the beginning of 2014, phosphorene, a monolayer or few-layer of black phosphorus, has been rediscovered as a two-dimensional (2D) thin film, revealing a plethora of properties different from the bulk material studied so far. Similar to graphene and transition metal dichalcogenides (TMDs), phosphorene is also a layered material that can be exfoliated to yield individual layers. It is one of the few monoelemental 2D crystals and the only one, besides graphene, known to be stable in monolayer, few layer, and bulk form. Recently the intensified research in phosphorene is motivated not only by the study of its fundamental physical properties in the 2D regime, such as tunable bandgap and anisotropic behavior, but also by the high carrier mobility and good on/off ratio of phosphorene-based device prototypes, making it a potential alternative for next generation nanooptoelectronics and nanophotonics applications in the "post-graphene age" The electronic bandgap of phosphorene changes from 0.3 eV in the bulk to 2.1 eV in monolayer. Thus, phosphorene exhibits strong light-matter interactions in the visible and infrared (IR) frequencies. In this Account, we present the progress on understanding the various interactions between light and phosphorene, giving insight into the mechanism of these interactions and the respective applications. We begin by discussing the fundamental optical properties of phosphorene, using theoretical calculations to depict the layer-dependent electronic band structures and anisotropic optical properties. Many-body effects in phosphorene, including excitons and trions and their binding energies and dynamics are reviewed as observed in experiments. For phosphorene, the fast degradation in ambient condition, caused by photoinduced oxidation, is considered as a longstanding challenge. In contrast, oxidation can be used to engineer the band structure of phosphorene and, in parallel, its optical properties. Based on the strong light-matter interactions, we introduce a controllable method to directly oxidize phosphorene by laser techniques. With the oxidization induced by laser scanning, localized bandgap engineering can be achieved and microphotonics are demonstrated on the oxidized phosphorene. Finally, we will present a brief discussion on the realization of phosphorene-based building blocks of optoelectronic devices. Naturally, the strong light-matter interactions in phosphorene could enable efficient photoelectric conversion in optoelectronic devices. We will describe high performance photodetectors based on phosphorene, and the working mechanism of those devices will be introduced. The photovoltaic effect could also be exhibited in phosphorene. This indicates the pervasive potential of phosphorene in nanooptoelectronics.
Collapse
Affiliation(s)
- Junpeng Lu
- Department
of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
- Center
for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, 117546 Singapore
| | - Jiong Yang
- Research
School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Alexandra Carvalho
- Center
for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, 117546 Singapore
| | - Hongwei Liu
- Institute
of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore
| | - Yuerui Lu
- Research
School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chorng Haur Sow
- Department
of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore
- Center
for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, 117546 Singapore
| |
Collapse
|
22
|
Wang G, Pandey R, Karna SP. Physics and chemistry of oxidation of two‐dimensional nanomaterials by molecular oxygen. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1280] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gaoxue Wang
- Department of Physics Michigan Technological University Houghton MI USA
| | - Ravindra Pandey
- Department of Physics Michigan Technological University Houghton MI USA
| | - Shashi P. Karna
- Weapons and Materials Research Directorate US Army Research Laboratory Aberdeen Proving Ground MD USA
| |
Collapse
|
23
|
Cai Y, Ke Q, Zhang G, Yakobson BI, Zhang YW. Highly Itinerant Atomic Vacancies in Phosphorene. J Am Chem Soc 2016; 138:10199-206. [PMID: 27448591 DOI: 10.1021/jacs.6b04926] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Using detailed first-principles calculations, we investigate the hopping rate of vacancies in phosphorene, an emerging elemental 2D material besides graphene. Our work predicts that a direct observation of these monovacancies (MVs), showing a highly mobile and anisotropic motion, is possible only at low temperatures around 70 K or below where the thermal activity is greatly suppressed. At room temperature, the motion of a MV is 16 orders faster than that in graphene, because of the low diffusion barrier of 0.3 eV. Built-in strain associated with the vacancies extends far along the zigzag direction while attenuating rapidly along the armchair direction. We reveal new features of the motion of divacancies (DVs) in phosphorene via multiple dissociation-recombination processes of vacancies owing to a small energy cost of ∼1.05 eV for the splitting of a DV into two MVs. Furthermore, we find that uniaxial tensile strain along the zigzag direction can promote the motion of MVs, while the tensile strain along the armchair direction has the opposite effect. These itinerant features of vacancies, rooted in the unique puckering structure facilitating bond reorganization, enable phosphorene to be a bright new opportunity to broaden the knowledge of the evolution of vacancies, and a proper control of the exceedingly active and anisotropic movement of the vacancies should be critical for applications based on phosphorene.
Collapse
Affiliation(s)
- Yongqing Cai
- Institute of High Performance Computing, A*STAR , Singapore 138632, Singapore
| | - Qingqing Ke
- Institute of Materials Research and Engineering, A*STAR , Singapore 138634, Singapore
| | - Gang Zhang
- Institute of High Performance Computing, A*STAR , Singapore 138632, Singapore
| | - Boris I Yakobson
- Department of Materials Science and Nano Engineering, Rice University , Houston, Texas 77005, United States
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR , Singapore 138632, Singapore
| |
Collapse
|
24
|
Sha ZD, Pei QX, Zhang YY, Zhang YW. Atomic vacancies significantly degrade the mechanical properties of phosphorene. NANOTECHNOLOGY 2016; 27:315704. [PMID: 27345189 DOI: 10.1088/0957-4484/27/31/315704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Due to low formation energies, it is very easy to create atomic defects in phosphorene during its fabrication process. How these atomic defects affect its mechanical behavior, however, remain unknown. Here, we report on a systematic study of the effect of atomic vacancies on the mechanical properties and failure behavior of phosphorene using molecular dynamics simulations. It is found that atomic vacancies induce local stress concentration and cause early bond-breaking, leading to a significant degradation of the mechanical properties of the material. More specifically, a 2% concentration of randomly distributed mono-vacancies is able to reduce the fracture strength by ∼40%. An increase in temperature from 10 to 400 K can further deteriorate the fracture strength by ∼60%. The fracture strength of defective phosphorene is also found to be affected by defect distribution. When the defects are patterned in a line, the reduction in fracture strength greatly depends on the tilt angle and the loading direction. Furthermore, we find that di-vacancies cause an even larger reduction in fracture strength than mono-vacancies when the loading is in an armchair direction. These findings provide important guidelines for the structural design of phosphorene in future applications.
Collapse
Affiliation(s)
- Zhen-Dong Sha
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Ryder CR, Wood JD, Wells SA, Hersam MC. Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. ACS NANO 2016; 10:3900-17. [PMID: 27018800 DOI: 10.1021/acsnano.6b01091] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) and black phosphorus (BP) have beneficial electronic, optical, and physical properties at the few-layer limit. As atomically thin materials, 2D TMDCs and BP are highly sensitive to their environment and chemical modification, resulting in a strong dependence of their properties on substrate effects, intrinsic defects, and extrinsic adsorbates. Furthermore, the integration of 2D semiconductors into electronic and optoelectronic devices introduces unique challenges at metal-semiconductor and dielectric-semiconductor interfaces. Here, we review emerging efforts to understand and exploit chemical effects to influence the properties of 2D TMDCs and BP. In some cases, surface chemistry leads to significant degradation, thus necessitating the development of robust passivation schemes. On the other hand, appropriately designed chemical modification can be used to beneficially tailor electronic properties, such as controlling doping levels and charge carrier concentrations. Overall, chemical methods allow substantial tunability of the properties of 2D TMDCs and BP, thereby enabling significant future opportunities to optimize performance for device applications.
Collapse
Affiliation(s)
- Christopher R Ryder
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Joshua D Wood
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Spencer A Wells
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University , Evanston, Illinois 60208, United States
- Department of Electrical Engineering and Computer Science, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
26
|
Tea E, Hin C. Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study. Phys Chem Chem Phys 2016; 18:22706-11. [DOI: 10.1039/c6cp03361j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron and hole non-radiative lifetimes in phosphorene are investigated by first principles calculations.
Collapse
Affiliation(s)
- E. Tea
- Department of Mechanical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - C. Hin
- Department of Mechanical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
- Department of Materials Science and Engineering
| |
Collapse
|
27
|
Carvalho A, Neto AHC. Phosphorene: Overcoming the Oxidation Barrier. ACS CENTRAL SCIENCE 2015; 1:289-91. [PMID: 27162985 PMCID: PMC4827519 DOI: 10.1021/acscentsci.5b00304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Alexandra Carvalho
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546, Signapore
| | - Antonio H. Castro Neto
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546, Signapore
| |
Collapse
|