1
|
Fan G, Corbin N, Chung M, Gill TM, Moore EB, Karbelkar AA, Furst AL. Highly Efficient Carbon Dioxide Electroreduction via DNA-Directed Catalyst Immobilization. JACS AU 2024; 4:1413-1421. [PMID: 38665653 PMCID: PMC11040669 DOI: 10.1021/jacsau.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) is a promising route to up-convert this industrial byproduct. However, to perform this reaction with a small-molecule catalyst, the catalyst must be proximal to an electrode surface. Efforts to immobilize molecular catalysts on electrodes have been stymied by the need to optimize the immobilization chemistries on a case-by-case basis. Taking inspiration from nature, we applied DNA as a molecular-scale "Velcro" to investigate the tethering of three porphyrin-based catalysts to electrodes. This tethering strategy improved both the stability of the catalysts and their Faradaic efficiencies (FEs). DNA-catalyst conjugates were immobilized on screen-printed carbon and carbon paper electrodes via DNA hybridization with nearly 100% efficiency. Following immobilization, a higher catalyst stability at relevant potentials is observed. Additionally, lower overpotentials are required for the generation of carbon monoxide (CO). Finally, high FE for CO generation was observed with the DNA-immobilized catalysts as compared to the unmodified small-molecule systems, as high as 79.1% FE for CO at -0.95 V vs SHE using a DNA-tethered catalyst. This work demonstrates the potential of DNA "Velcro" as a powerful strategy for catalyst immobilization. Here, we demonstrated improved catalytic characteristics of molecular catalysts for CO2 valorization, but this strategy is anticipated to be generalizable to any reaction that proceeds in aqueous solutions.
Collapse
Affiliation(s)
- Gang Fan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nathan Corbin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Minju Chung
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas M. Gill
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Evan B. Moore
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Amruta A. Karbelkar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Gasse C, Srivastava P, Schepers G, Jose J, Hollenstein M, Marlière P, Herdewijn P. Controlled E. coli Aggregation Mediated by DNA and XNA Hybridization. Chembiochem 2023; 24:e202300191. [PMID: 37119472 DOI: 10.1002/cbic.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
Chemical cell surface modification is a fast-growing field of research, due to its enormous potential in tissue engineering, cell-based immunotherapy, and regenerative medicine. However, engineering of bacterial tissues by chemical cell surface modification has been vastly underexplored and the identification of suitable molecular handles is in dire need. We present here, an orthogonal nucleic acid-protein conjugation strategy to promote artificial bacterial aggregation. This system gathers the high selectivity and stability of linkage to a protein Tag expressed at the cell surface and the modularity and reversibility of aggregation due to oligonucleotide hybridization. For the first time, XNA (xeno nucleic acids in the form of 1,5-anhydrohexitol nucleic acids) were immobilized via covalent, SNAP-tag-mediated interactions on cell surfaces to induce bacterial aggregation.
Collapse
Affiliation(s)
- Cécile Gasse
- Génomique Métabolique, Genoscope Institut François Jacob, CEA, CNRS Univ Evry, Université Paris-Saclay, 2 Rue Gaston Crémieux, 91057, Evry, France
| | - Puneet Srivastava
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Guy Schepers
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, D-48149, Münster, Germany
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, CNRS UMR3523, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Philippe Marlière
- The European Syndicate of Synthetic Scientists and Industrialists (TESSSI), 81 rue Réaumur, 75002, Paris, France
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, Rega Institute for Biomedical Research, KU Leuven, Herestraat 49, Box 1041, 3000, Leuven, Belgium
| |
Collapse
|
3
|
Zhang S, De Leon Rodriguez LM, Li FF, Brimble MA. Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues. Chem Sci 2023; 14:7782-7817. [PMID: 37502317 PMCID: PMC10370606 DOI: 10.1039/d3sc02543h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Peptide and protein selective modification at tyrosine residues has become an exploding field of research as tyrosine constitutes a robust alternative to lysine and cysteine-targeted traditional peptide/protein modification protocols. This review offers a comprehensive summary of the latest advances in tyrosine-selective cleavage, functionalization, and conjugation of peptides and proteins from the past three years. This updated overview complements the extensive body of work on site-selective modification of peptides and proteins, which holds significant relevance across various disciplines, including chemical, biological, medical, and material sciences.
Collapse
Affiliation(s)
- Shengping Zhang
- Center for Translational Medicine, Shenzhen Bay Laboratory New Zealand
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
| | | | - Freda F Li
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds St Auckland 1010 New Zealand
- School of Biological Sciences, The University of Auckland 3A Symonds St Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 1142 New Zealand
| |
Collapse
|
4
|
Prasad PK, Eizenshtadt N, Goliand I, Fellus-Alyagor L, Oren R, Golani O, Motiei L, Margulies D. Chemically programmable bacterial probes for the recognition of cell surface proteins. Mater Today Bio 2023; 20:100669. [PMID: 37334185 PMCID: PMC10275978 DOI: 10.1016/j.mtbio.2023.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Common methods to label cell surface proteins (CSPs) involve the use of fluorescently modified antibodies (Abs) or small-molecule-based ligands. However, optimizing the labeling efficiency of such systems, for example, by modifying them with additional fluorophores or recognition elements, is challenging. Herein we show that effective labeling of CSPs overexpressed in cancer cells and tissues can be obtained with fluorescent probes based on chemically modified bacteria. The bacterial probes (B-probes) are generated by non-covalently linking a bacterial membrane protein to DNA duplexes appended with fluorophores and small-molecule binders of CSPs overexpressed in cancer cells. We show that B-probes are exceptionally simple to prepare and modify because they are generated from self-assembled and easily synthesized components, such as self-replicating bacterial scaffolds and DNA constructs that can be readily appended, at well-defined positions, with various types of dyes and CSP binders. This structural programmability enabled us to create B-probes that can label different types of cancer cells with distinct colors, as well as generate very bright B-probes in which the multiple dyes are spatially separated along the DNA scaffold to avoid self-quenching. This enhancement in the emission signal enabled us to label the cancer cells with greater sensitivity and follow the internalization of the B-probes into these cells. The potential to apply the design principles underlying B-probes in therapy or inhibitor screening is also discussed here.
Collapse
Affiliation(s)
- Pragati K. Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Noa Eizenshtadt
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - Inna Goliand
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science Rehovot, 7610001, Israel
| |
Collapse
|
5
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Prasad PK, Motiei L, Margulies D. Applications of Bacteria Decorated with Synthetic DNA Constructs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206136. [PMID: 36670059 DOI: 10.1002/smll.202206136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The advent of DNA nanotechnology has revolutionized the way DNA has been perceived. Rather than considering it as the genetic material alone, DNA has emerged as a versatile synthetic scaffold that can be used to create a variety of molecular architectures. Modifying such self-assembled structures with bio-molecular recognition elements has further expanded the scope of DNA nanotechnology, opening up avenues for using synthetic DNA assemblies to sense or regulate biological molecules. Recent advancements in this field have lead to the creation of DNA structures that can be used to modify bacterial cell surfaces and endow the bacteria with new properties. This mini-review focuses on the ways by which synthetic modification of bacterial cell surfaces with DNA constructs can expand the natural functions of bacteria, enabling their potential use in various fields such as material engineering, bio-sensing, and therapy. The challenges and prospects for future advancements in this field are also discussed.
Collapse
Affiliation(s)
- Pragati K Prasad
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Leila Motiei
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Margulies
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
7
|
Atkinson JT, Chavez MS, Niman CM, El-Naggar MY. Living electronics: A catalogue of engineered living electronic components. Microb Biotechnol 2023; 16:507-533. [PMID: 36519191 PMCID: PMC9948233 DOI: 10.1111/1751-7915.14171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/26/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Biology leverages a range of electrical phenomena to extract and store energy, control molecular reactions and enable multicellular communication. Microbes, in particular, have evolved genetically encoded machinery enabling them to utilize the abundant redox-active molecules and minerals available on Earth, which in turn drive global-scale biogeochemical cycles. Recently, the microbial machinery enabling these redox reactions have been leveraged for interfacing cells and biomolecules with electrical circuits for biotechnological applications. Synthetic biology is allowing for the use of these machinery as components of engineered living materials with tuneable electrical properties. Herein, we review the state of such living electronic components including wires, capacitors, transistors, diodes, optoelectronic components, spin filters, sensors, logic processors, bioactuators, information storage media and methods for assembling these components into living electronic circuits.
Collapse
Affiliation(s)
- Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California, USA.,Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.,Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Gu Y, Qi X, Yang X, Jiang Y, Liu P, Quan X, Liang P. Extracellular electron transfer and the conductivity in microbial aggregates during biochemical wastewater treatment: A bottom-up analysis of existing knowledge. WATER RESEARCH 2023; 231:119630. [PMID: 36689883 DOI: 10.1016/j.watres.2023.119630] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/14/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Microbial extracellular electron transfer (EET) plays a crucial role in bioenergy production and resource recovery from wastewater. Interdisciplinary efforts have been made to unveil EET processes at various spatial scales, from nanowires to microbial aggregates. Electrical conductivity has been frequently measured as an indicator of EET efficiency. In this review, the conductivity of nanowires, biofilms, and granular sludge was summarized, and factors including subjects, measurement methods, and conducting conditions that affect the conductivity difference were discussed in detail. The high conductivity of nanowires does not necessarily result in efficient EET in microbial aggregates due to the existence of non-conductive substances and contact resistance. Improving the conductivity measurement of microbial aggregates is important because it enables the calculation of an EET flux from conductivity and a comparison of the flux with mass transfer coefficients. This review provides new insight into the significance, characterization, and optimization of EET in microbial aggregates during a wastewater treatment process.
Collapse
Affiliation(s)
- Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xufei Yang
- Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, SD 57007 USA
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiangchun Quan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Karbelkar A, Ahlmark R, Zhou X, Austin K, Fan G, Yang VY, Furst A. Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins. Bioconjug Chem 2023; 34:358-365. [PMID: 36633230 DOI: 10.1021/acs.bioconjchem.2c00542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modification of electrodes with biomolecules is an essential first step for the development of bioelectrochemical systems, which are used in a variety of applications ranging from sensors to fuel cells. Gold is often used because of its ease of modification with thiolated biomolecules, but carbon screen-printed electrodes (SPEs) are gaining popularity due to their low cost and fabrication from abundant resources. However, their effective modification with biomolecules remains a challenge; the majority of work to-date relies on nonspecific adhesion or broad amide bond formation to chemical handles on the electrode surface. By combining facile electrochemical modification to add an aniline handle to electrodes with a specific and biocompatible oxidative coupling reaction, we can readily modify carbon electrodes with a variety of biomolecules. Importantly, both proteins and DNA maintain bioactive conformations following coupling. We have then used biomolecule-modified electrodes to generate microbial monolayers through DNA-directed immobilization. This work provides an easy, general strategy to modify inexpensive carbon electrodes, significantly expanding their potential as bioelectrochemical systems.
Collapse
Affiliation(s)
- Amruta Karbelkar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Rachel Ahlmark
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Gang Fan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Victoria Y Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Ariel Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| |
Collapse
|
10
|
Li X, Jin Y, Zhu F, Liu R, Jiang Y, Jiang Y, Mao L. Electrochemical Conjugation of Aptamers on a Carbon Fiber Microelectrode Enables Highly Stable and Selective In Vivo Neurosensing. Angew Chem Int Ed Engl 2022; 61:e202208121. [DOI: 10.1002/anie.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Li
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ying Jin
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Fenghui Zhu
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ran Liu
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Yan Jiang
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Ying Jiang
- College of Chemistry Beijing Normal University Beijing 100875 China
| | - Lanqun Mao
- College of Chemistry Beijing Normal University Beijing 100875 China
| |
Collapse
|
11
|
Li X, Jin Y, Zhu F, Liu R, Jiang Y, Jiang Y, Mao L. Electrochemical Conjugation of Aptamers on Carbon Fiber Microelectrode Enables Highly Stable and Selective In Vivo Neurosensing. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin Li
- Beijing Normal University College of Chemistry CHINA
| | - Ying Jin
- Beijing Normal University College of Chemistry CHINA
| | - Fenghui Zhu
- Beijing Normal University College of Chemistry CHINA
| | - Ran Liu
- Beijing Normal University College of Chemistry CHINA
| | - Yan Jiang
- Beijing Normal University College of Chemistry CHINA
| | - Ying Jiang
- Beijing Normal University College of Chemistry CHINA
| | - Lanqun Mao
- Beijing Normal University College of Chemistry No.19, Xinjiekouwai St, Haidian District 100875 Beijing CHINA
| |
Collapse
|
12
|
Zhao F, Chavez MS, Naughton KL, Niman CM, Atkinson JT, Gralnick JA, El-Naggar MY, Boedicker JQ. Light-Induced Patterning of Electroactive Bacterial Biofilms. ACS Synth Biol 2022; 11:2327-2338. [PMID: 35731987 DOI: 10.1021/acssynbio.2c00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Collapse
Affiliation(s)
- Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Kyle L Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Kong Y, Du Q, Li J, Xing H. Engineering bacterial surface interactions using DNA as a programmable material. Chem Commun (Camb) 2022; 58:3086-3100. [PMID: 35077527 DOI: 10.1039/d1cc06138k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The diverse surface interactions and functions of a bacterium play an important role in cell signaling, host infection, and colony formation. To understand and synthetically control the biological functions of individual cells as well as the whole community, there is growing attention on the development of chemical and biological tools that can integrate artificial functional motifs onto the bacterial surface to replace the native interactions, enabling a variety of applications in biosynthesis, environmental protection, and human health. Among all these functional motifs, DNA emerges as a powerful tool that can precisely control bacterial interactions at the bio-interface due to its programmability and biorecognition properties. Compared with conventional chemical and genetic approaches, the sequence-specific Watson-Crick interaction enables almost unlimited programmability in DNA nanostructures, realizing one base-pair spatial control and bio-responsive properties. This highlight aims to provide an overview on this emerging research topic of DNA-engineered bacterial interactions from the aspect of synthetic chemists. We start with the introduction of native bacterial surface ligands and established synthetic approaches to install artificial ligands, including direct modification, metabolic engineering, and genetic engineering. A brief overview of DNA nanotechnology, reported DNA-bacteria conjugation chemistries, and several examples of DNA-engineered bacteria are included in this highlight. The future perspectives and challenges in this field are also discussed, including the development of dynamic bacterial surface chemistry, assembly of programmable multicellular community, and realization of bacteria-based theranostic agents and synthetic microbiota as long-term goals.
Collapse
Affiliation(s)
- Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Qi Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Juan Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
14
|
Ramsey AV, Bischoff AJ, Francis MB. Enzyme Activated Gold Nanoparticles for Versatile Site-Selective Bioconjugation. J Am Chem Soc 2021; 143:7342-7350. [PMID: 33939917 DOI: 10.1021/jacs.0c11678] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new enzymatic method is reported for constructing protein- and DNA-AuNP conjugates. The strategy relies on the initial functionalization of AuNPs with phenols, followed by activation with the enzyme tyrosinase. Using an oxidative coupling reaction, the activated phenols are coupled to proteins bearing proline, thiol, or aniline functional groups. Activated phenol-AuNPs are also conjugated to a small molecule biotin and commercially available thiol-DNA. Advantages of this approach for AuNP bioconjugation include: (1) initial formation of highly stable AuNPs that can be selectively activated with an enzyme, (2) the ability to conjugate either proteins or DNA through a diverse set of functional handles, (3) site-specific immobilization, and (4) facile conjugation that is complete within 2 h at room temperature under aqueous conditions. The enzymatic oxidative coupling on AuNPs is applied to the construction of tobacco mosaic virus (TMV)-AuNP conjugates, and energy transfer between the AuNPs and fluorophores on TMV is demonstrated.
Collapse
Affiliation(s)
- Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Young TD, Liau WT, Lee CK, Mellody M, Wong GCL, Kasko AM, Weiss PS. Selective Promotion of Adhesion of Shewanella oneidensis on Mannose-Decorated Glycopolymer Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35767-35781. [PMID: 32672931 DOI: 10.1021/acsami.0c04329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using glycopolymer surfaces, we have stimulated Shewanella oneidensis bacterial colonization and induced where the bacteria attach on a molecular pattern. When adherent bacteria were rinsed with methyl α-d-mannopyranoside, the glycopolymer-functionalized surfaces retained more cells than self-assembled monolayers terminated by a single mannose unit. These results suggest that the three-dimensional multivalency of the glycopolymers both promotes and retains bacterial attachment. When the methyl α-d-mannopyranoside competitor was codeposited with the cell culture, however, the mannose-based polymer was not significantly different from bare gold surfaces. The necessity for equilibration between methyl α-d-mannopyranoside and the cell culture to remove the enhancement suggests that the retention of cells on glycopolymer surfaces is kinetically controlled and is not a thermodynamic result of the cluster glycoside effect. The MshA lectin appears to facilitate the improved adhesion observed. Our findings that the surfaces studied here can induce stable initial attachment and influence the ratio of bacterial strains on the surface may be applied to harness useful microbial communities.
Collapse
Affiliation(s)
- Thomas D Young
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Walter T Liau
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Calvin K Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Gerard C L Wong
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Andrea M Kasko
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul S Weiss
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Material Science and Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Xu W, Jin T, Dai Y, Liu CC. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosens Bioelectron 2020; 155:112100. [PMID: 32090878 DOI: 10.1016/j.bios.2020.112100] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022]
Abstract
Robust developments of personalized medicine for next-generation healthcare highlight the need for sensitive and accurate point-of-care platforms for quantification of disease biomarkers. Broad presentations of clustered regularly interspaced short palindromic repeats (CRISPR) as an accurate gene editing tool also indicate that the high-specificity and programmability of CRISPR system can be utilized for the development of biosensing systems. Herein, we present a CRISPR Cas system enhanced electrochemical DNA (E-DNA) sensor with unprecedented sensitivity and accuracy. The principle of the E-DNA sensor is the target induced conformational change of the surface signaling probe (containing an electrochemical tag), leading to the variation of the electron transfer rate of the electrochemical tag. With the introduction of CRISPR cleavage activity into the E-DNA sensor, a more apparent signal change between with and without the presence of the target can be achieved. We compared the performance of Cas9 and Cas12a enhanced E-DNA sensor and optimized the chemical environment of CRISPR, achieving a femto-molar detection limit without enzymatic amplification. Moreover, we correlated the CRISPR cleavage signal with the original E-DNA signal as a strategy to indicate potential mismatches in the target sequence. Comparing with classic DNA electrochemistry based mutation detection strategy, CRISPR enhanced E-DNA sensor can determine the presence of a single mutation at an unknown concentration condition. Overall, we believe that the CRISPR enhanced E-DNA sensing strategy will be of especially high utility for point-of-care systems owing to the programmability, modularity, high-sensitivity and high-accuracy.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tian Jin
- College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Yifan Dai
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA; Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
17
|
Marmelstein AM, Lobba MJ, Mogilevsky CS, Maza JC, Brauer DD, Francis MB. Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. J Am Chem Soc 2020; 142:5078-5086. [PMID: 32093466 DOI: 10.1021/jacs.9b12002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Marco J Lobba
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Casey S Mogilevsky
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Daniel D Brauer
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Suravaram SK, Smith DK, Parkin A, Chechik V. Conductive Gels Based on Modified Agarose Embedded with Gold Nanoparticles and their Application as a Conducting Support for
Shewanella Oneidensis
MR‐1. ChemElectroChem 2019. [DOI: 10.1002/celc.201901618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - David K. Smith
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Alison Parkin
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| | - Victor Chechik
- Department of ChemistryUniversity of York Heslington York YO10 5DD UK
| |
Collapse
|
19
|
Brauer DD, Hartman EC, Bader DLV, Merz ZN, Tullman-Ercek D, Francis MB. Systematic Engineering of a Protein Nanocage for High-Yield, Site-Specific Modification. J Am Chem Soc 2019; 141:3875-3884. [DOI: 10.1021/jacs.8b10734] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Emily C. Hartman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zoe N. Merz
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
20
|
Dauphin-Ducharme P, Arroyo-Currás N, Plaxco KW. High-Precision Electrochemical Measurements of the Guanine-, Mismatch-, and Length-Dependence of Electron Transfer from Electrode-Bound DNA Are Consistent with a Contact-Mediated Mechanism. J Am Chem Soc 2019; 141:1304-1311. [PMID: 30605323 DOI: 10.1021/jacs.8b11341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite 25 years' effort, serious questions remain regarding the mechanism(s) underlying electron transfer through (or from) electrode-bound double-stranded DNA. In part this is because a control experiment regarding the putatively critical role of guanine bases in the most widely proposed transport mechanism (hopping from guanine to guanine through the π-stack) appears to be lacking from the prior literature. In response, we have employed chronoamperometry, which allows for high-precision determination of electron transfer rates, to characterize transfer to a redox reporter appended onto electrode-bound DNA duplexes. Specifically, we have measured the effects of guanines and base mismatches on the electron transfer rate associated with such constructs. Upon doing so, we find that, counter to prior reports, the transfer rate is, to within relatively tight experimental confidence intervals, unaffected by either. Parallel studies of the dependence of the electron transfer rate on the length of the DNA suggest that transfer from this system obeys a "collision" mechanism in which the redox reporter physically contacts the electrode surface prior to the exchange of electrons.
Collapse
Affiliation(s)
- Philippe Dauphin-Ducharme
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , United States.,Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry , University of California Santa Barbara , Santa Barbara , California 93106 , United States.,Center for Bioengineering , University of California Santa Barbara , Santa Barbara , California 93106 , United States
| |
Collapse
|
21
|
Affiliation(s)
- Ariel L. Furst
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|