1
|
Jin W, Li X, Argandona SM, Ray RM, Lin MKTH, Melle F, Clergeaud G, Lars Andresen T, Nielsen M, Fairen-Jimenez D, Astakhova K, Qvortrup K. Surface engineering of metal-organic framework nanoparticles-based miRNA carrier: Boosting RNA stability, intracellular delivery and synergistic therapy. J Colloid Interface Sci 2025; 677:429-440. [PMID: 39153246 DOI: 10.1016/j.jcis.2024.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are critical for the regulation of multiple physiological and pathological processes, thus holding great clinical potential. However, the therapeutic applications of miRNAs are severely limited by their biological instability and poor intracellular delivery. Herein, we describe a dual-layers surface engineering strategy to design an efficient miRNA delivery nanosystem based on metal-organic frameworks (MOFs) incorporating lipid coating. The resulting nanoparticle system was demonstrated to protect miRNA from ribonuclease degradation, enhance cellular uptake and facilitate lysosomal escape. These ensured effective miRNA mediated gene therapy, which synergized with MOF-specific photodynamic therapy and pre-encapsulated doxorubicin (Dox) chemotherapy to provide a multifunctional with therapeutic effectiveness against cencer cells The mechanisms of miRNA binding and Dox loading were revealed, demonstrating the potential of the present MOFs surface-engineered strategy to overcome their inherent pore-size restriction for macromolecular miRNA carrying, enableefficient co-delivery. In vitro studies revealed the potential of our multifunctional system for miRNA delivery and the demonstrated the therapeutic effectiveness against cancer cells, thereby providing a versatile all-in-one MOFs strategy for delivery of nucleic acids and diverse therapeutic molecules in synergistic therapy.
Collapse
Affiliation(s)
- Weiguang Jin
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Xin Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Sergio Mercado Argandona
- The Adsorption and Advanced Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Roslyn M Ray
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA.
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Francesca Melle
- The Adsorption and Advanced Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Gael Clergeaud
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Martin Nielsen
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - David Fairen-Jimenez
- The Adsorption and Advanced Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK.
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wu S, Zhang Q, Zhao Q, Jiang Y, Qu X, Zhou Y, Zhao T, Cang F, Li Y. Cobalt-doped hollow polydopamine for oxygen generation and GSH consumption enhanced chemo-PTT combined cancer therapy. BIOMATERIALS ADVANCES 2023; 154:213593. [PMID: 37657278 DOI: 10.1016/j.bioadv.2023.213593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.
Collapse
Affiliation(s)
- Shilong Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Qin Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiyao Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yu Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Xiaomeng Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Tingting Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Feng Cang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China
| | - Yanyan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin 150040, China.
| |
Collapse
|
4
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
5
|
Kajihara N, Tanaka Y, Takeuchi R, Kobayashi T, Tanji M, Ataka T, Nakano S, Yamada T, Takaoka A, Hasegawa Y, Seino KI, Wada H. Augmented interferon regulatory factor 7 axis in whole tumor cell vaccines prevents tumor recurrence by inducing interferon gamma-secreting B cells. Oncoimmunology 2023; 12:2213132. [PMID: 37235066 PMCID: PMC10208210 DOI: 10.1080/2162402x.2023.2213132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Among cancer immunotherapy, which has received great attention in recent years, cancer vaccines can potentially prevent recurrent tumors by using the exquisite power and specificity of the immune system. Specifically, whole tumor cell vaccines (WTCVs) based on surgically resected tumors have been considered to elicit robust anti-tumor immune responses by exposing various tumor-associated antigens to host immunity. However, most tumors have little immunogenicity because of immunoediting by continuous interactions with host immunity; thus, preparing WTCVs based on patient-derived non-modified tumors cannot prevent tumor onset. Hence, the immunogenicity of tumor cells must be improved for effective WTCVs. In this study, we indicate the importance of the interferon regulatory factor 7 (Irf7) axis, including Irf7 and its downstream factors, within tumor cells in regulating immunogenicity. Indeed, WTCVs that augmented the Irf7 axis have exerted remarkable recurrence-preventive effects when vaccinated after tumor inactivation by radiation. Most notably, vaccination with murine colon cancer cells that enhanced the Irf7 axis prevented the development of challenged tumors in all mice and resulted in a 100% survival rate during the observation period. Furthermore, the mechanism leading to vaccine effectiveness was mediated by interferon-gamma-producing B cells. This study provides novel insights into how to enhance tumor immunogenicity and use WTCVs as recurrence prophylaxis.
Collapse
Affiliation(s)
- Nabeel Kajihara
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshino Tanaka
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Riko Takeuchi
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Takuto Kobayashi
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masafumi Tanji
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Ataka
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shiho Nakano
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taisho Yamada
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshinori Hasegawa
- Laboratory of Gene Sequencing Analysis, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Ken-Ichiro Seino
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Haruka Wada
- Division of Immunobiology, Graduate School of Medicine, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Guo F, Liu B, Li X, Wang H, Zhu X, Su Y, He C, Zhu M, Ding J, Xu Y, Zhao X, Wang Y, Shan R, Zhu J, Xie J, Ge Q, Fan L, Ding Y, Xie Y, Zhang C, Li H, Wang H, Zhou H. Mass balance, metabolic disposition, and pharmacokinetics of a novel selective inhibitor of PI3Kδ [ 14C] SHC014748M in healthy Chinese subjects following oral administration. Cancer Chemother Pharmacol 2023; 91:143-156. [PMID: 36572783 DOI: 10.1007/s00280-022-04493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/15/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE SHC014748M is a potent, novel selective PI3Kδ isoform inhibitor and is proposed for the treatment of non-Hodgkin lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma. This study investigated the pharmacokinetics, mass balance, metabolism and excretion of SHC014748M in Chinese male subjects following a single oral dose of 150 mg (100 μCi) [14C] SHC014748M. METHODS Six healthy Chinese male subjects administrated an oral suspension of 150 mg (100 μCi) [14C] SHC014748M and the samples of blood, urine and feces were collected for measuring. Liquid chromatography-tandem mass spectrometry and liquid scintillation counter were utilized to obtain mass balance and the pharmacokinetic data. RESULTS The median Tmax for [14C]-radioactivity was 1.6 ± 0.5 h after the oral administration of [14C] SHC014748M and the mean Cmax was 3863 ± 354 ng Eq./mL in plasma, while the mean Cmax, t1/2 values and AUC0-∞ values for total radioactivity in whole blood were 2466 ± 518 ng Eq./mL, 32.2 ± 30.5 h and 66,236 ± 44,232 h * ng Eq./mL, respectively. Fecal excretion was proposed as the predominant elimination route, accounting for a mean of 90.68 ± 11.38% of the administered dose, whereas the mean urine excretion was 6.00 ± 1.48% within 336 h post-dose. The proposed major metabolic pathway of [14C] SHC014748M in the human body were as follows: (I) monooxidation, (II) glucuronide acid conjugation, and (III) monoxide-hydrogenation. CONCLUSIONS SHC014748M was absorbed, metabolized and excreted with unchanged SHC014748M as its main circulating component in plasma following oral administration. In addition, it was speculated that fecal excretion was the principal excretion pathway; meanwhile, monohydroxy, glucuronide conjugation, oxygen, and hydrogenation were the major clearance pathways of SHC014748M through urine and/or feces. TRIAL REGISTRATION The trial registration number: CTR20202505.
Collapse
Affiliation(s)
- Fei Guo
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,Department of Medical Imaging Diagnosis, School of Medical Imaging, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Bingyan Liu
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Xiaoli Li
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Haidong Wang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, 222000, People's Republic of China
| | - Xingyu Zhu
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yue Su
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Cuixia He
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Minhui Zhu
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jiaxiang Ding
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yuanyuan Xu
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Xiangdi Zhao
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Ying Wang
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Rongfang Shan
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Juan Zhu
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Jing Xie
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Qin Ge
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Ling Fan
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yuzhou Ding
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yunqiu Xie
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Chaoyang Zhang
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Hongtao Li
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Hongju Wang
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| | - Huan Zhou
- National Institute of Clinical Drug Trials, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, People's Republic of China. .,School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, People's Republic of China. .,School of Public Foundation, Bengbu Medical College, Bengbu, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Wang N, Yu C, Xu T, Yao D, Zhu L, Shen Z, Huang X. Self-assembly of DNA nanostructure containing cell-specific aptamer as a precise drug delivery system for cancer therapy in non-small cell lung cancer. J Nanobiotechnology 2022; 20:486. [PMID: 36403038 PMCID: PMC9675138 DOI: 10.1186/s12951-022-01701-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Background As the most common subtype in lung cancer, the precise and efficient treatment for non-small cell lung cancer (NSCLC) remains an outstanding challenge owing to early metastasis and poor prognosis. Chemotherapy, the most commonly used treatment modality, is a difficult choice for many cancer patients due to insufficient drug accumulation in tumor sites and severe systemic side-effects. In this study, we constructed a cell-specific aptamer-modified DNA nanostructure (Apt-NS) as a targeting drug delivery system achieving the precision therapy for lung cancer. Methods The synthesis of DNA nanostructure and its stability were evaluated using gel electrophoresis. The targeting properties and internalization mechanism were investigated via flow cytometry and confocal analyses. Drug loading, release, and targeted drug delivery were determined by fluorescence detection, Zeta potentials assay, and confocal imaging. CCK8 assays, colony formation, cell apoptosis, metastasis analyses and in vivo experiments were conducted to assess the biological functions of DNA nanostructure. Results Self-assembled DNA nanoparticles (Apt-NS) had excellent stability to serum and DNase I and the ability to specifically recognize A549 cells. Upon specific binding, the drug-loaded nanoparticles (Apt-NS-DOX) were internalized into target cells by clathrin-mediated endocytosis. Subsequently, DOX could be released from Apt-NS-DOX based on the degradation of the lysosome. Apt-NS-DOX exerted significant suppression of cell proliferation, invasion and migration, and also enhanced cell apoptosis due to the excellent performance of drug delivery and intracellular release, while maintaining a superior biosafety. In addition, the antitumor effects of Apt-NS-DOX were further confirmed using in vivo models. Conclusions Our study provided cell-specific aptamer-modified DNA nanostructures as a drug-delivery system targeting A549 cells, which could precisely and efficiently transport chemotherapeutic drug into tumor cells, exerting enhanced antineoplastic efficacy. These findings highlight that DNA nanostructure serving as an ideal drug delivery system in cancer treatment appears great promise in biomedical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01701-5.
Collapse
Affiliation(s)
- Ning Wang
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000 China
| | - Chang Yu
- grid.414906.e0000 0004 1808 0918Intervention Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000 China
| | - Tingting Xu
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000 China
| | - Dan Yao
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000 China
| | - Lingye Zhu
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000 China
| | - Zhifa Shen
- grid.268099.c0000 0001 0348 3990Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Xiaoying Huang
- grid.414906.e0000 0004 1808 0918Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000 China
| |
Collapse
|
8
|
Wang C, Li N, Li Y, Hou S, Zhang W, Meng Z, Wang S, Jia Q, Tan J, Wang R, Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J Nanobiotechnology 2022; 20:247. [PMID: 35642064 PMCID: PMC9153154 DOI: 10.1186/s12951-022-01462-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanoscale monolayer membrane vesicles that are actively endogenously secreted by mammalian cells. Currently, multifunctional exosomes with tumor-targeted imaging and therapeutic potential have aroused widespread interest in cancer research. Herein, we developed a multifunctional HEK-293T exosome-based targeted delivery platform by engineering HEK-293T cells to express a well-characterized exosomal membrane protein (Lamp2b) fused to the αv integrin-specific iRGD peptide and tyrosine fragments. This platform was loaded with doxorubicin (Dox) and labeled with radioiodine-131 (131I) using the chloramine-T method. iRGD exosomes showed highly efficient targeting and Dox delivery to integrin αvβ3-positive anaplastic thyroid carcinoma (ATC) cells as demonstrated by confocal imaging and flow cytometry in vitro and an excellent tumor-targeting capacity confirmed by single-photon emission computed tomography-computed tomography after labeling with 131I in vivo. In addition, intravenous injection of this vehicle delivered Dox and 131I specifically to tumor tissues, leading to significant tumor growth inhibition in an 8505C xenograft mouse model, while showing biosafety and no side effects. These as-developed multifunctional exosomes (denoted as Dox@iRGD-Exos-131I) provide novel insight into the current treatment of ATC and hold great potential for improving therapeutic efficacy against a wide range of integrin αvβ3-overexpressing tumors.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003, Shandong, China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yutian Li
- Department of Radiology, Qingdao Women and Children's Hospital, No. 217 Liaoyang West Road, Shibei District, Qingdao, 266000, Shandong, China
| | - Shasha Hou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenxin Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Renfei Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ruiguo Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
9
|
Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Au KM, Tisch R, Wang AZ. In Vivo Bioengineering of Beta Cells with Immune Checkpoint Ligand as a Treatment for Early-Onset Type 1 Diabetes Mellitus. ACS NANO 2021; 15:19990-20002. [PMID: 34843648 DOI: 10.1021/acsnano.1c07538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by autoreactive T cells targeting the insulin-producing beta (β) cells. Despite advances in insulin therapy, T1DM still leads to high morbidity and mortality in patients. A key focus of T1DM research has been to identify strategies that re-establish self-tolerance and suppress ongoing autoimmunity. Here, we describe a strategy that utilizes pretargeting and glycochemistry to bioengineer β cells in situ to induce β-cell-specific tolerance. We hypothesized that β-cell-targeted Ac4ManNAz-encapsulated nanoparticles deliver and establish β cells with high levels of surface reactive azide groups. We further theorized that administration of a dibenzylcyclooctyne (DBCO)-functionalized programmed death-ligand 1 immunoglobulin fusion protein (PD-L1-Ig) can be readily conjugated to the surface of native β cells. Using nonobese diabetic (NOD) mice, we demonstrated that our strategy effectively and selectively conjugates PD-L1 onto β cells through bioorthogonal stain-promoted azide-alkyne cycloaddition. We also showed that the in vivo functionalized β cells simultaneously present islet-specific antigen and PD-L1 to the engaged T cells, reversing early onset T1DM by reducing IFN-gamma expressing cytotoxic toxic T cells and inducing antigen-specific tolerance.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75230, United States
| | - Roland Tisch
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75230, United States
| |
Collapse
|
11
|
Yang X, Wang Y, Chen S, Zhang S, Cui C. Cetuximab-Modified Human Serum Albumin Nanoparticles Co-Loaded with Doxorubicin and MDR1 siRNA for the Treatment of Drug-Resistant Breast Tumors. Int J Nanomedicine 2021; 16:7051-7069. [PMID: 34703227 PMCID: PMC8528549 DOI: 10.2147/ijn.s332830] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer is the most prevalent cancer among women. Doxorubicin (DOX) is a common chemotherapeutic drug used to treat many different cancers. However, multidrug resistance limits the treatment of breast cancer. MDR1 siRNA (siMDR1) combinatorial therapy has attracted significant attention as a breakthrough therapy for multidrug resistance in tumors. However, naked siRNA is easily degraded by enzymatic hydrolysis requiring an siRNA carrier for its protection. Human serum albumin (HSA) was selected as the carrier due to its excellent biocompatibility, non-toxicity, and non-immunogenicity. Cetuximab was used to modify the HSA nanoparticles in order to target the tumor tissues. Methods This study used a central composite design response surface methodology (CCD-RSM) to investigate the optimal formula for HSA NPs preparation. Cex-HSA/DOX/MDR1 siRNA (C-H/D/M) was characterized by dynamic light scattering and transmission electron microscopy. The efficacy of C-H/D/M tumor growth inhibitory activity was investigated in vitro and in vivo using confocal imaging, MTT assay, and an MCF-7/ADR tumor-bearing mice model. RT–qPCR, ELISA analysis, and flow cytometry were used to investigate the in vitro antitumor mechanisms of C-H/D/M. Results The diameter and PDI of the C-H/D/M were 173.57 ± 1.30 nm and 0.027 ± 0.004, respectively. C-H/D/M promoted and maintained the sustained release and the uptake of DOX significantly. After transfection, the MDR1 mRNA and P-gp expression levels were down-regulated by 44.31 ± 3.6% (P < 0.01) and 38.08 ± 2.4% (P < 0.01) in an MCF-7/ADR cell line. The fluorescent images of the treated BALB/c nude mice revealed that C-H/D/M achieved targeted delivery of siMDR1 and DOX into the tumor tissue. The in vivo tumor inhibition results demonstrated that the tumor inhibition rate of the C-H/D/M treated group was 54.05% ± 1.25%. The biosafety results indicated that C-H/D/M did not induce significant damages to the main organs in vivo. Conclusion C-H/D/M can be used as an ideal non-viral tumor-targeting vector to overcome MDR and enhance the antitumor effect.
Collapse
Affiliation(s)
- Xin Yang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, 100069, People's Republic of China
| | - Yifan Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, 100069, People's Republic of China
| | - Si Chen
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, 100069, People's Republic of China
| | - Shuang Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, 100069, People's Republic of China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, 100069, People's Republic of China
| |
Collapse
|
12
|
Jiang M, Zeng J, Zhao L, Zhang M, Ma J, Guan X, Zhang W. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. NANOSCALE 2021; 13:17218-17235. [PMID: 34643196 DOI: 10.1039/d1nr05512g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy has been a conventional paradigm for cancer treatment, and multifarious chemotherapeutic drugs have been widely employed for decades with significant performances in suppressing tumors. Moreover, some of the antitumor chemotherapeutic agents, such as doxorubicin (DOX), oxaliplatin (OXA), cyclophosphamide (CPA) and paclitaxel (PTX), can also tackle tumors through the induction of immunogenic cell death (ICD) in tumor cells to trigger specific antitumor immune responses of the body and improve chemotherapy efficacy. In recent years, chemo-immunotherapy has attracted increasing attention as one of the most promising combination therapies to struggle with malignant tumors. Many effective antitumor therapies have benefited from the successful induction of ICD in tumors, which could incur the release of endogenous danger signals and tumor-associated antigens (TAAs), further stimulating antigen-presenting cells (APCs) and ultimately initiating efficient antitumor immunity. In this review, several well-characterized damage-associated molecular patterns (DAMPs) were introduced and the progress of ICD induced by representative chemotherapeutic drugs for nanomedicine-based chemo-immunotherapy was highlighted. In addition, the combination strategies involving ICD cooperated with other therapies were discussed. Finally, we shared some perspectives in chemotherapeutic drug-induced ICD for future chemo-immunotherapy. It was hoped that this review would provide worthwhile presentations and enlightenments for cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Jun Zeng
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Liping Zhao
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Mogen Zhang
- College of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jinlong Ma
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang 261053, China.
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang 261053, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
13
|
Li M, Gao X, Lin C, Shen A, Luo J, Ji Q, Wu J, Wang P. An intelligent responsive macrophage cell membrane-camouflaged mesoporous silicon nanorod drug delivery system for precise targeted therapy of tumors. J Nanobiotechnology 2021; 19:336. [PMID: 34689763 PMCID: PMC8543955 DOI: 10.1186/s12951-021-01082-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Macrophage cell membrane-camouflaged nanocarriers can effectively reduce immune cell clearance and actively target tumors. In this study, a macrophage cell membrane-camouflaged mesoporous silica nanorod (MSNR)-based antitumor drug carrier equipped with a cationic polymer layer was developed. As drug carriers, these MSNRs were loaded with the thermosensitive phase change material L-menthol (LM), the chemotherapy drug doxorubicin (DOX) and the fluorescent molecule indocyanine green (ICG). The rod-like shape of the MSNRs was shown to enhance the penetration of the drug carriers to tumors. In the weakly acidic tumor microenvironment, the cationic polymer exhibited a proton sponge effect to trigger macrophage cell membrane coating detachment, promoting tumor cell uptake. Following nanocarrier uptake, ICG is heated by near-infrared (NIR) irradiation to make LM undergo a phase transition to release DOX and generate a synergistic effect of thermochemotherapy which kills tumor cells and inhibits tumor growth together with reactive oxygen species (ROS) produced by ICG. Overall, this nanohybrid drug delivery system demonstrates an intelligent cascade response, leads to tissue-cell specific targeting and improves drug release accuracy, thus proving to be an effective cancer therapy.
Collapse
Affiliation(s)
- Minghua Li
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Baoshan District, Shanghai, 201908, People's Republic of China
- Department of Radiology, Luodian Hospital, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chao Lin
- Institute for Translational Medicine, Shanghai East Hospital, Institute for Biomedical Engineering and Nanoscience, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Aijun Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jing Luo
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Qiongqiong Ji
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jiaqi Wu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
14
|
Liu W, Chen B, Zheng H, Xing Y, Chen G, Zhou P, Qian L, Min Y. Advances of Nanomedicine in Radiotherapy. Pharmaceutics 2021; 13:pharmaceutics13111757. [PMID: 34834172 PMCID: PMC8622383 DOI: 10.3390/pharmaceutics13111757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) remains one of the current main treatment strategies for many types of cancer. However, how to improve RT efficiency while reducing its side effects is still a large challenge to be overcome. Advancements in nanomedicine have provided many effective approaches for radiosensitization. Metal nanoparticles (NPs) such as platinum-based or hafnium-based NPs are proved to be ideal radiosensitizers because of their unique physicochemical properties and high X-ray absorption efficiency. With nanoparticles, such as liposomes, bovine serum albumin, and polymers, the radiosensitizing drugs can be promoted to reach the tumor sites, thereby enhancing anti-tumor responses. Nowadays, the combination of some NPs and RT have been applied to clinical treatment for many types of cancer, including breast cancer. Here, as well as reviewing recent studies on radiotherapy combined with inorganic, organic, and biomimetic nanomaterials for oncology, we analyzed the underlying mechanisms of NPs radiosensitization, which may contribute to exploring new directions for the clinical translation of nanoparticle-based radiosensitizers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Bo Chen
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
| | - Haocheng Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yun Xing
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Guiyuan Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (W.L.); (P.Z.)
- Correspondence:
| | - Yuanzeng Min
- Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China; (B.C.); (Y.M.)
- Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (H.Z.); (Y.X.); (G.C.)
- CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Yang S, Sun IC, Hwang HS, Shim MK, Yoon HY, Kim K. Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. J Mater Chem B 2021; 9:3983-4001. [PMID: 33909000 DOI: 10.1039/d1tb00397f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immunogenic cell death (ICD) occurring by chemical and physical stimuli has shown the potential to activate an adaptive immune response in the immune-competent living body through the release of danger-associated molecular patterns (DAMPs) into the tumor microenvironment (TME). However, limitations to the long-term immune responses and systemic toxicity of conventional ICD inducers have led to unsatisfactory therapeutic efficacy in ICD-based cancer immunotherapy. Until now, various nanoparticle-based ICD-inducers have been developed to induce an antitumor immune response without severe toxicity, and to efficiently elicit an anticancer immune response against target cancer cells. In this review, we introduce a recent advance in the designs and applications of nanoparticle-based therapeutics to elicit ICD for effective cancer immunotherapy. In particular, combination strategies of nanoparticle-based ICD inducers with typical theranostic modalities are introduced intensively. Subsequently, we discuss the expected challenges and future direction of nanoparticle-based ICD inducers to provide strategies for boosting ICD in cancer immunotherapy. These versatile designs and applications of nanoparticle-based therapeutics for ICD can provide advantages to improve the therapeutic efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. and Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
16
|
Feng Y, Xie X, Zhang H, Su Q, Yang G, Wei X, Li N, Li T, Qin X, Li S, Wu C, Zheng C, Zhu J, You F, Wang G, Yang H, Liu Y. Multistage-responsive nanovehicle to improve tumor penetration for dual-modality imaging-guided photodynamic-immunotherapy. Biomaterials 2021; 275:120990. [PMID: 34186239 DOI: 10.1016/j.biomaterials.2021.120990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 01/10/2023]
Abstract
The exploration of an intelligent multifunctional imaging-guided therapeutic platform is of great significance because of its ideal delivery efficiency and controlled release. In this work, a tumor microenvironment (TME)-responsive nanocarrier (denoted as MB@MSP) is designed for on-demand, sequentially release of a short D-peptide antagonist of programmed cell death-ligand 1 (named as PDPPA-1) and a photosensitizer methylene blue (MB). Fe3O4-Au located in the core of MB@MSP is used as a magnetic resonance imaging and micro-computed tomography imaging contrast agent for noninvasive diagnosis of solid tumors and simultaneous monitoring of drug delivery. The PDPPA-1 coated on MB@MSP can be shed due to the cleavage of the peptide substrate by matrix metalloproteinase-2 (MMP-2) that is highly expressed in the tumor stroma, and disulfide bonding is further broken when it encounters high levels of glutathione (GSH) in TME, which finally leads to significant size reduction and charge-reversal. These transitions facilitate penetration and uptake of nanocarriers against tumors. Noticeably, the released PDPPA-1 can block the immune checkpoint to create an environment that favors the activation of cytotoxic T lymphocytes and augment the antitumor immune response elicited by photodynamic therapy, thus significantly improving therapeutic outcomes. Studies of the underlying mechanisms suggest that the designed MMP-2 and GSH-sensitive delivery system not only induce apoptosis of tumor cells but also modulate the immunosuppressive tumor microenvironment to eventually augment the suppression tumor metastasis effect of CD8+ cytotoxic T cells. Overall, the visualization of the therapeutic processes with comprehensive information renders MB@MSP an intriguing platform to realize the combined treatment of metastatic tumors.
Collapse
Affiliation(s)
- Yi Feng
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaoxue Xie
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Hanxi Zhang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Qingqing Su
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Geng Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiaodan Wei
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Ningxi Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Tingting Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Xiang Qin
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China
| | - Shun Li
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chunhui Wu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Jie Zhu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, PR China.
| | - Hong Yang
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China.
| | - Yiyao Liu
- Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan, PR China.
| |
Collapse
|
17
|
Quantum dots as targeted doxorubicin drug delivery nanosystems in human lung cancer cells. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00077-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Lung cancer is one of the most frequently diagnosed cancers all over the world and is also one of the leading causes of cancer-related mortality. The main treatment option for small cell lung cancer, conventional chemotherapy, is characterized by a lack of specificity, resulting in severe adverse effects. Therefore, this study aimed at developing a new targeted drug delivery (TDD) system based on Ag–In–Zn–S quantum dots (QDs). For this purpose, the QD nanocrystals were modified with 11-mercaptoundecanoic acid (MUA), L-cysteine, and lipoic acid decorated with folic acid (FA) and used as a novel TDD system for targeting doxorubicin (DOX) to folate receptors (FARs) on adenocarcinomic human alveolar basal epithelial cells (A549). NIH/3T3 cells were used as FAR-negative controls. Comprehensive physicochemical, cytotoxicity, and genotoxicity studies were performed to characterize the developed novel TDDs.
Results
Fourier transformation infrared spectroscopy, dynamic light scattering, and fluorescence quenching confirmed the successful attachment of FA to the QD nanocrystals and of DOX to the QD–FA nanocarriers. UV–Vis analysis helped in determining the amount of FA and DOX covalently anchored to the surface of the QD nanocrystals. Biological screening revealed that the QD–FA–DOX nanoconjugates had higher cytotoxicity in comparison to the other forms of synthesized QD samples, suggesting the cytotoxic effect of DOX liberated from the QD constructs. Contrary to the QD–MUA–FA–DOX nanoconjugates which occurred to be the most cytotoxic against A549 cells among others, no such effect was observed for NIH/3T3 cells, confirming FARs as molecular targets. In vitro scratch assay also revealed significant inhibition of A549 cell migration after treatment with QD–MUA–FA–DOX. The performed studies evidenced that at IC50 all the nanoconjugates induced significantly more DNA breaks than that observed in nontreated cells. Overall, the QD–MUA–FA–DOX nanoconjugates showed the greatest cytotoxicity and genotoxicity, while significantly inhibiting the migratory potential of A549 cells.
Conclusion
QD–MUA–FA–DOX nanoconjugates can thus be considered as a potential drug delivery system for the effective treatment of adenocarcinomic human alveolar basal epithelial cells.
Collapse
|
18
|
Engineering immunogenic cell death with nanosized drug delivery systems improving cancer immunotherapy. Curr Opin Biotechnol 2020; 66:36-43. [DOI: 10.1016/j.copbio.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
|
19
|
Jin L, Shen S, Huang Y, Li D, Yang X. Corn-like Au/Ag nanorod-mediated NIR-II photothermal/photodynamic therapy potentiates immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Biomaterials 2020; 268:120582. [PMID: 33302120 DOI: 10.1016/j.biomaterials.2020.120582] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Immune checkpoint blocking (ICB) antibodies have shown great success in the clinic, but their low response rate in patients with immunosuppressive cold tumors remains a huge challenge. Inspired by the capability of immunogenic cell death (ICD) to convert tumors from cold to hot, we developed a corn-like Au/Ag nanorod (NR) that can induce the ICD of tumor cells under 1064-nm light irradiation. The corn-like Au/Ag NRs plus NIR-II light irradiation strikingly increased the tumor infiltration of T cells and provoked a systemic immune response to reprogram the immunosuppressive cold tumor microenvironment; these NRs synergized with ICB antibodies to efficiently inhibit distant tumor growth. Encouragingly, the combination of aCTLA4 and Au/Ag NRs plus 1064-nm light irradiation elicited a strong immunological memory effect that protected against tumor recurrence.
Collapse
Affiliation(s)
- Liangjie Jin
- Guangzhou First People's Hospital, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, And Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Song Shen
- Guangzhou First People's Hospital, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, And Key Laboratory of Biomedical Engineering of Guangdong Province, And Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China.
| | - Youju Huang
- Guangzhou First People's Hospital, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, PR China.
| | - Dongdong Li
- Guangzhou First People's Hospital, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xianzhu Yang
- Guangzhou First People's Hospital, Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, PR China.
| |
Collapse
|
20
|
Au KM, Park SI, Wang AZ. Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. SCIENCE ADVANCES 2020; 6:eaba8564. [PMID: 32923587 PMCID: PMC7455497 DOI: 10.1126/sciadv.aba8564] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Activation of the innate immune system and natural killer (NK) cells has been a key effort in cancer immunotherapy research. Here, we report a nanoparticle-based trispecific NK cell engager (nano-TriNKE) platform that can target epidermal growth factor receptor (EGFR)-overexpressing tumors and promote the recruitment and activation of NK cells to eradicate these cancer cells. Moreover, the nanoengagers can deliver cytotoxic chemotherapeutics to further improve their therapeutic efficacy. We have demonstrated that effective NK cell activation can be achieved by the spatiotemporal coactivation of CD16 and 4-1BB stimulatory molecules on NK cells with nanoengagers, and the nanoengagers are more effective than free antibodies. We also show that biological targeting, either through radiotherapy or EGFR, is critical to the therapeutic effects of nanoengagers. Last, EGFR-targeted nanoengagers can augment both NK-activating agents and chemotherapy (epirubicin) as highly effective anticancer agents, providing robust chemoimmunotherapy.
Collapse
Affiliation(s)
- Kin Man Au
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steven I. Park
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Levine Cancer Institute, Atrium Health, Division of Hematology and Oncology, 1021 Morehead Medical Dr, Suite 20121, Charlotte, NC 28025, USA
| | - Andrew Z. Wang
- Laboratory of Nano- and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
21
|
Balhorn R, Balhorn MC, Balakrishnan K, Rebhun RB. The small molecule antibody mimic SH7139 targets a family of HLA-DRs expressed by B-cell lymphomas and other solid cancers. J Drug Target 2020; 28:1124-1136. [PMID: 32588667 DOI: 10.1080/1061186x.2020.1787418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selective high-affinity ligands (SHALs) belong to a novel class of small-molecule cancer therapeutics that function as targeted prodrugs. SH7139, the most advanced of the SHAL drugs designed to bind to a unique β-subunit structural epitope located on HLA-DR10, has exhibited exceptional preclinical efficacy and safety profiles. A comparison of SH7139 and SH7129, a biotin derivative of the drug developed for use as a diagnostic, showed the incorporation of a biotin tag did not alter the SHALs ability to target or kill HLA-DR10 expressing Raji cells. The use of SH7129 in an immuno-histochemical type assay to stain peripheral blood mononuclear cells (PBMCs) obtained from individuals expressing specific HLA-DRB1 alleles has also revealed that in addition to HLA-DR10, seven other more commonly expressed HLA-DRs are targeted by the drug. Computational dockings of the SHAL's recognition ligands to a number of HLA-DR structures explain, in part, why the targeting domains of SH7129 and SH7139 bind to some HLA-DRs but not others. The results also substantiate the selectivity of SH7129 and suggest it may prove useful as a companion diagnostic for pre-screening biopsy samples to identify those patients whose tumours should respond to SH7139 therapy.
Collapse
Affiliation(s)
| | | | - Karuppiah Balakrishnan
- Department of Immunology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Robert B Rebhun
- The Comparative Cancer Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
22
|
Zhang X, Liu N, Zhou M, Li S, Cai X. The Application of Tetrahedral Framework Nucleic Acids as a Drug Carrier in Biomedicine Fields. Curr Stem Cell Res Ther 2020; 16:48-56. [PMID: 32321408 DOI: 10.2174/1574888x15666200422103415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
In recent years, tetrahedral Framework Nucleic Acids(tFNAs) have become a hot topic in the field of DNA nanostructures because of their stable structures, nanoscale size, superior mechanical properties and convenient synthesis with high yield. tFNAs are considered promising drug delivery carriers because they can pass through the cellular membrane without any help and they have a good biocompatibility and biodegradability. Besides, they have rich modification sites, they can be modified by kinds of functional groups. The functionalization molecules can be modified on the vertexes, embedded between the double-stranded DNA of the tetrahedron edges, hanged on the edges, or encapsulated in the cage-like structure of the tetrahedron. The structure of tetrahedron can also be intelligently controlled through smart design, such as integrating DNA hairpin loop structure onto the edges. Nowadays, DNA tetrahedron will have a broader development prospect in the application of drug transport carriers and intelligent drug carriers. Therefore, DNA material is a new carrier material with great advantages and has a very broad application prospect in the construction of an intelligent drug transport system.
Collapse
Affiliation(s)
- Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nanxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|