1
|
Zhao P, Hou P, Zhang Z, Li X, Quan C, Xue Y, Lei K, Li J, Gao W, Fu F. Microbial-derived peptides with anti-mycobacterial potential. Eur J Med Chem 2024; 276:116687. [PMID: 39047606 DOI: 10.1016/j.ejmech.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis, has become the leading cause of death. The subsequent emergence of multidrug-resistant, extensively drug-resistant and totally drug-resistant strains, brings an urgent need to discover novel anti-TB drugs. Among them, microbial-derived anti-mycobacterial peptides, including ribosomally synthesized and post-translationally modified peptides (RiPPs) and multimodular nonribosomal peptides (NRPs), now arise as promising candidates for TB treatment. This review presents 96 natural RiPP and NRP families from bacteria and fungi that have broad spectrum in vitro activities against non-resistant and drug-resistant mycobacteria. In addition, intracellular targets of 22 molecules are the subject of much attention. Meanwhile, chemical features of 38 families could be modified in order to improve properties. In final, structure-activity relationships suggest that the modifications of various groups, especially the peptide side chains, the amino acid moieties, the cyclic peptide skeletons, various special groups, stereochemistry and entire peptide chain length are important for increasing the potency.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Pu Hou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhishen Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xin Li
- Shanxi Key Laboratory of Yuncheng Salt Lake Ecological Protection and Resource Utilization, Yuncheng University, 044000, China.
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China.
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Kun Lei
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fangfang Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
2
|
Su G, Yang Q, Zhou H, Huang Y, Nie S, Wang D, Ma G, Zhang S, Kong L, Zou C, Li Y. Thiostrepton as a Potential Therapeutic Agent for Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:9717. [PMID: 39273665 PMCID: PMC11395809 DOI: 10.3390/ijms25179717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Due to limited drug efficacy and drug resistance, it is urgent to explore effective anti-liver cancer drugs. Repurposing drugs is an efficient strategy, with advantages including reduced costs, shortened development cycles, and assured safety. In this study, we adopted a synergistic approach combining computational and experimental methods and identified the antibacterial drug thiostrepton (TST) as a candidate for an anti-liver cancer drug. Although the anti-tumor capabilities of TST have been reported, its role and underlying mechanisms in hepatocellular carcinoma (HCC) remain unclear. TST was found here to inhibit the proliferation of HCC cells effectively, arresting the cell cycle and inducing cell apoptosis, as well as suppressing the cell migration. Further, our findings revealed that TST induced mitochondrial impairment, which was demonstrated by destroyed mitochondrial structures, reduced mitochondria, and decreased mitochondrial membrane potential (MMP). TST caused the production of reactive oxygen species (ROS), and the mitochondrial impairment and proliferation inhibition of HCC cells were completely restored by the ROS scavenger N-acetyl-L-cysteine (NAC). Moreover, we discovered that TST induced mitophagy, and autophagy inhibition effectively promoted the anti-cancer effects of TST on HCC cells. In conclusion, our study suggests TST as a promising candidate for the treatment of liver cancers, and these findings provide theoretical support for the further development and potential application of TST in clinical liver cancer therapy.
Collapse
Affiliation(s)
- Guifeng Su
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqing Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Heyang Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Ying Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Shiyun Nie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Dan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Guangchao Ma
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Shaohua Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Lingmei Kong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yan Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Yang JJ, Goff A, Wild DJ, Ding Y, Annis A, Kerber R, Foote B, Passi A, Duerksen JL, London S, Puhl AC, Lane TR, Braunstein M, Waddell SJ, Ekins S. Computational drug repositioning identifies niclosamide and tribromsalan as inhibitors of Mycobacterium tuberculosis and Mycobacterium abscessus. Tuberculosis (Edinb) 2024; 146:102500. [PMID: 38432118 PMCID: PMC10978224 DOI: 10.1016/j.tube.2024.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Tuberculosis (TB) is still a major global health challenge, killing over 1.5 million people each year, and hence, there is a need to identify and develop novel treatments for Mycobacterium tuberculosis (M. tuberculosis). The prevalence of infections caused by nontuberculous mycobacteria (NTM) is also increasing and has overtaken TB cases in the United States and much of the developed world. Mycobacterium abscessus (M. abscessus) is one of the most frequently encountered NTM and is difficult to treat. We describe the use of drug-disease association using a semantic knowledge graph approach combined with machine learning models that has enabled the identification of several molecules for testing anti-mycobacterial activity. We established that niclosamide (M. tuberculosis IC90 2.95 μM; M. abscessus IC90 59.1 μM) and tribromsalan (M. tuberculosis IC90 76.92 μM; M. abscessus IC90 147.4 μM) inhibit M. tuberculosis and M. abscessus in vitro. To investigate the mode of action, we determined the transcriptional response of M. tuberculosis and M. abscessus to both compounds in axenic log phase, demonstrating a broad effect on gene expression that differed from known M. tuberculosis inhibitors. Both compounds elicited transcriptional responses indicative of respiratory pathway stress and the dysregulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Jeremy J Yang
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA; Department of Internal Medicine Translational Informatics Division, University of New Mexico, Albuquerque, NM, USA
| | - Aaron Goff
- Department of Global Health and Infection, Brighton & Sussex Medical School, University of Sussex, UK
| | - David J Wild
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA
| | - Ying Ding
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA; Data2Discovery, Inc., Bloomington, IN, USA; School of Information, Dell Medical School, University of Texas, Austin, TX, USA
| | - Ayano Annis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | | | | | - Anurag Passi
- Department of Pediatrics, UC San Diego, San Diego, CA, USA
| | | | | | - Ana C Puhl
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Thomas R Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Simon J Waddell
- Department of Global Health and Infection, Brighton & Sussex Medical School, University of Sussex, UK
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| |
Collapse
|
4
|
Vinogradov AA, Zhang Y, Hamada K, Kobayashi S, Ogata K, Sengoku T, Goto Y, Suga H. A Compact Reprogrammed Genetic Code for De Novo Discovery of Proteolytically Stable Thiopeptides. J Am Chem Soc 2024; 146:8058-8070. [PMID: 38491946 PMCID: PMC10979747 DOI: 10.1021/jacs.3c12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 μM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.
Collapse
Affiliation(s)
- Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Shunsuke Kobayashi
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department
of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Verbeke J, De Bolle X, Arnould T. To eat or not to eat mitochondria? How do host cells cope with mitophagy upon bacterial infection? PLoS Pathog 2023; 19:e1011471. [PMID: 37410705 DOI: 10.1371/journal.ppat.1011471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
Mitochondria fulfil a plethora of cellular functions ranging from energy production to regulation of inflammation and cell death control. The fundamental role of mitochondria makes them a target of choice for invading pathogens, with either an intracellular or extracellular lifestyle. Indeed, the modulation of mitochondrial functions by several bacterial pathogens has been shown to be beneficial for bacterial survival inside their host. However, so far, relatively little is known about the importance of mitochondrial recycling and degradation pathways through mitophagy in the outcome (success or failure) of bacterial infection. On the one hand, mitophagy could be considered as a defensive response triggered by the host upon infection to maintain mitochondrial homeostasis. However, on the other hand, the pathogen itself may initiate the host mitophagy to escape from mitochondrial-mediated inflammation or antibacterial oxidative stress. In this review, we will discuss the diversity of various mechanisms of mitophagy in a general context, as well as what is currently known about the different bacterial pathogens that have developed strategies to manipulate the host mitophagy.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Thierry Arnould
- Research Unit in Cell Biology, Laboratory of Biochemistry and Cell Biology URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| |
Collapse
|
6
|
Son YJ, Hwang HJ, Kwon Y. Heterologous Synthesis and Characterization of Thiocillin IV. ACS Chem Biol 2023; 18:265-272. [PMID: 36693003 DOI: 10.1021/acschembio.2c00612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Micrococcin P1 and P2 are thiopeptides with a wide range of biological functions including antibacterial and antimalarial activities. We previously demonstrated optimized enzymatic sequences for the exclusive and scalable biosynthesis of micrococcin P2. Thiocillin IV is predicted to be the congener of O-methylated micrococcin P2, but the exact structure has not been elucidated. In this study, we report the first scalable biosynthesis and full structural characterization of thiocillin IV, a 26-membered thiopeptide. This was achieved by generating a recombinant plasmid by inserting tclO, a gene encoding an O-methyltransferase, and genes responsible for micrococcin P2 production and incorporating them into a Bacillus strain. With the incorporation of precursor peptide genes and optimal culture conditions, production reached 2.4 mg/L of culture. The purified thiocillin IV structure was identified as O-methylated micrococcin P2 at the 8-Thr position, and its promising biological activity toward various Gram-positive pathogens was observed. This study provides tclO-mediated site-selective methylation and opens a biotechnological opportunity to produce selective thiopeptides.
Collapse
Affiliation(s)
- Young-Jin Son
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea.,Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hee-Jong Hwang
- A&J Science Co., Ltd., 80 Chumbok Ro, Dong Gu, Daegu 41061, Republic of Korea
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
8
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
9
|
Bogart JW, Kramer NJ, Turlik A, Bleich RM, Catlin DS, Schroeder FC, Nair SK, Williamson RT, Houk KN, Bowers AA. Interception of the Bycroft-Gowland Intermediate in the Enzymatic Macrocyclization of Thiopeptides. J Am Chem Soc 2020; 142:13170-13179. [PMID: 32609512 PMCID: PMC7429253 DOI: 10.1021/jacs.0c05639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiopeptides are a broad class of macrocyclic, heavily modified peptide natural products that are unified by the presence of a substituted, nitrogen-containing heterocycle core. Early work indicated that this core might be fashioned from two dehydroalanines by an enzyme-catalyzed aza-[4 + 2] cycloaddition to give a cyclic-hemiaminal intermediate. This common intermediate could then follow a reductive path toward a dehydropiperidine, as in the thiopeptide thiostrepton, or an aromatization path to yield the pyridine groups observed in many other thiopeptides. Although several of the enzymes proposed to perform this cycloaddition have been reconstituted, only pyridine products have been isolated and any hemiaminal intermediates have yet to be observed. Here, we identify the conditions and substrates that decouple the cycloaddition from subsequent steps and allow interception and characterization of this long hypothesized intermediate. Transition state modeling indicates that the key amide-iminol tautomerization is the major hurdle in an otherwise energetically favorable cycloaddition. An anionic model suggests that deprotonation and polarization of this amide bond by TbtD removes this barrier and provides a sufficient driving force for facile (stepwise) cycloaddition. This work provides evidence for a mechanistic link between disparate cyclases in thiopeptide biosynthesis.
Collapse
Affiliation(s)
- Jonathan W. Bogart
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Nicholas J. Kramer
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Rachel M. Bleich
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Daniel S. Catlin
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Ithaca, New York 14853, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
10
|
Vinogradov AA, Suga H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem Biol 2020; 27:1032-1051. [PMID: 32698017 DOI: 10.1016/j.chembiol.2020.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Thiopeptides (also known as thiazolyl peptides) are structurally complex natural products with rich biological activities. Known for over 70 years for potent killing of Gram-positive bacteria, thiopeptides are experiencing a resurgence of interest in the last decade, primarily brought about by the genomic revolution of the 21st century. Every area of thiopeptide research-from elucidating their biological function and biosynthesis to expanding their structural diversity through genome mining-has made great strides in recent years. These advances lay the foundation for and inspire novel strategies for thiopeptide engineering. Accordingly, a number of diverse approaches are being actively pursued in the hope of developing the next generation of natural-product-inspired therapeutics. Here, we review the contemporary understanding of thiopeptide biological activities, biosynthetic pathways, and approaches to structural and functional reprogramming, with a special focus on the latter.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|