1
|
Chen X, Mu W, Shao Y, Peng L, Zhang R, Luo S, He X, Zhang L, He F, Li L, Wang R, Yang L, Xiang B. Genetic and molecular characterization of H9N2 avian influenza viruses in Yunnan Province, Southwestern China. Poult Sci 2024; 103:104040. [PMID: 39043028 PMCID: PMC11318558 DOI: 10.1016/j.psj.2024.104040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
The H9N2 subtype of the avian influenza virus (AIV) is widely prevalent in birds, threatening the poultry industry and providing genetic material for emerging human pathogens. The prevalence and genetic characteristics of H9N2 in Yunnan Province, China, are largely unknown. Samples were collected from live poultry markets (LPMs) and breeding farms in Yunnan Province. H9N2-positive samples were identified by polymerase chain reaction (PCR), with a high positivity rate of 42.86% in tissue samples. The positivity rate of swab samples in the LPMs in Kunming was 3.97% (17/564), but no AIV was detected in samples from poultry farms in Lijiang, Wenshan, and Yuxi. Evolutionary analysis and genotyping were performed for the 17 strains of isolated H9N2 virus. Phylogenetic analysis revealed that all H9N2 viral genes had 91.6%-100% nucleotide homology, belonged to the G57 genotype, and had high homology with H9N2 viruses isolated from Guangdong and Guangxi, suggesting that the H9N2 viruses in Yunnan Province may have been imported by chicks. Using a nucleotide divergence cutoff of 95%, we identified ten distinct H9N2 genotypes that continued to evolve. The surface genes of the H9N2 isolates displayed substantial genetic diversity, highlighting the genetic diversity and complexity of the H9N2-subtype AIVs in Yunnan. Molecular analysis demonstrated that all 17 strains of H9N2 isolates had mutations at H183N, Q226L, L31P, and I268V in hemagglutinin; S31N in matrix protein 2; and no replacements at positions 274 and 292 of the neuraminidase protein. Sixteen strains had the A558V mutation and one strain had the E627V mutation in polymerase basic protein 2. Analysis of these amino acid sites suggests that H9N2 influenza viruses in Yunnan continue to mutate and adapt to mammals and are sensitive to neuraminidase inhibitors but resistant to adamantanes. It is necessary to strengthen surveillance of AIV H9N2 subtypes in poultry and LPMs in Yunnan to further understand their genetic diversity.
Collapse
Affiliation(s)
- Xi Chen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwu Mu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Yunteng Shao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Li Peng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Rongjie Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Shiyu Luo
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Xingchen He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Lei Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Ronghai Wang
- Animal Husbandry and Veterinary Bureau, Yanjin 657599, China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China; Center for Poultry Disease Control and Prevention, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Kumar G, Sakharam KA. Tackling Influenza A virus by M2 ion channel blockers: Latest progress and limitations. Eur J Med Chem 2024; 267:116172. [PMID: 38330869 DOI: 10.1016/j.ejmech.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Influenza outbreaks cause pandemics in millions of people. The treatment of influenza remains a challenge due to significant genetic polymorphism in the influenza virus. Also, developing vaccines to protect against seasonal and pandemic influenza infections is constantly impeded. Thus, antibiotics are the only first line of defense against antigenically distinct strains or new subtypes of influenza viruses. Among several anti-influenza targets, the M2 protein of the influenza virus performs several activities. M2 protein is an ion channel that permits proton conductance through the virion envelope and the deacidification of the Golgi apparatus. Both these functions are critical for viral replication. Thus, targeting the M2 protein of the influenza virus is an essential target. Rimantadine and amantadine are two well-known drugs that act on the M2 protein. However, these drugs acquired resistance to influenza and thus are not recommended to treat influenza infections. This review discusses an overview of anti-influenza therapy, M2 ion channel functions, and its working principle. It also discusses the M2 structure and its role, and the change in the structure leads to mutant variants of influenza A virus. We also shed light on the recently identified compounds acting against wild-type and mutated M2 proteins of influenza virus A. These scaffolds could be an alternative to M2 inhibitors and be developed as antibiotics for treating influenza infections.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kakade Aditi Sakharam
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
3
|
Georgiou K, Konstantinidi A, Hutterer J, Freudenberger K, Kolarov F, Lambrinidis G, Stylianakis I, Stampelou M, Gauglitz G, Kolocouris A. Accurate calculation of affinity changes to the close state of influenza A M2 transmembrane domain in response to subtle structural changes of adamantyl amines using free energy perturbation methods in different lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184258. [PMID: 37995846 DOI: 10.1016/j.bbamem.2023.184258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Athina Konstantinidi
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Johanna Hutterer
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Kathrin Freudenberger
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Felix Kolarov
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany; Roche, Penzberg, Bavaria, Germany
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Ioannis Stylianakis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Margarita Stampelou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
4
|
Hrdina R, Holovko-Kamoshenkova OM, Císařová I, Koucký F, Machalický O. Annulated carbamates are precursors for the ring contraction of the adamantane framework. RSC Adv 2022; 12:31056-31060. [PMID: 36349043 PMCID: PMC9620499 DOI: 10.1039/d2ra06402b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
We report a protocol for the one-pot two-step synthesis of noradamantane methylene amines. The first step is the triflic acid-promoted decarboxylation of adamantane carbamates, which causes rearrangement of the adamantane framework to form noradamantane iminium salts, which are reduced to amines in the second separate step.
Collapse
Affiliation(s)
- Radim Hrdina
- Charles University, Faculty of Science, Department of Organic Chemistry Hlavova 8 12840 Praha Czech Republic
| | - Oksana M Holovko-Kamoshenkova
- Charles University, Faculty of Science, Department of Organic Chemistry Hlavova 8 12840 Praha Czech Republic
- Uzhhorod National University Narodna Ploshcha 3 88000 Uzhhorod Ukraine
| | - Ivana Císařová
- Charles University, Faculty of Science, Department of Inorganic Chemistry Hlavova 8 12840 Praha Czech Republic
| | - Filip Koucký
- Charles University, Faculty of Science, Department of Inorganic Chemistry Hlavova 8 12840 Praha Czech Republic
| | - Oldřich Machalický
- University of Pardubice, Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
| |
Collapse
|
5
|
Vasilenko DA, Dronov SE, Grishin YK, Averina EB. An Efficient Access to 5‐(1,2,3‐triazol‐1‐yl)isoxazoles – previously unknown structural type of triazole‐isoxazole hybrid molecule. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dmitry A. Vasilenko
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Sevastian E. Dronov
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Yuri K. Grishin
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Chemistry Department Leninskie Gory, 1-3 119991 Moscow RUSSIAN FEDERATION
| | - Elena B. Averina
- Lomonosov Moscow State University: Moskovskij gosudarstvennyj universitet imeni M V Lomonosova Department of Chemistry Leninskie Gory-1-3Not Available 119991 Moscow RUSSIAN FEDERATION
| |
Collapse
|
6
|
New type of RNA virus replication inhibitor based on decahydro-closo-decaborate anion containing amino acid ester pendant group. J Biol Inorg Chem 2022; 27:421-429. [PMID: 35332377 PMCID: PMC8948040 DOI: 10.1007/s00775-022-01937-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022]
Abstract
In this work, a synthetic approach to prepare an example of new class of the derivatives of the closo-decaborate anion with amino acids detached from the boron cluster by pendant group has been proposed and implemented. Compound Na2[B10H9–O(CH2)4C(O)–His–OMe] was isolated and characterized. This compound has an inorganic hydrophobic core which is the 10-vertex boron cage and the –O(CH2)4C(O)–His–OMe organic substituent. It has been shown to possess strong antiviral activity in vitro against modern strains of A/H1N1 virus at 10 and 5 µg/mL. The compound has been found to be non-cytotoxic up to 160 µg/mL. At the same time, the compound has been found to be inactive against SARS-CoV-2, indicating specific activity against RNA virus replication. Molecular docking of the target derivative of the closo-decaborate anion with a model of the transmembrane region of the M2 protein has been performed and the mechanism of its antiviral action is discussed.
Collapse
|
7
|
Ghosh U, Sayef Ahammed K, Mishra S, Bhaumik A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 2022; 17:e202101149. [PMID: 35020270 PMCID: PMC9011828 DOI: 10.1002/asia.202101149] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Indexed: 11/26/2022]
Abstract
Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection-related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra-small nanoscale size and shape through different convenient bottom-up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano-formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.
Collapse
Affiliation(s)
- Ujjyani Ghosh
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of UtahSalt Lake CityUT84112USA
| | - Khondakar Sayef Ahammed
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
- Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTX77030USA
| | - Snehasis Mishra
- Cancer & Inflammatory Disorder DivisionCSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata700032India
| | - Asim Bhaumik
- School of Materials SciencesIndian Association for the Cultivation of ScienceJadavpur, Kolkata700 032India
| |
Collapse
|
8
|
Ochmann L, Kessler ML, Schreiner PR. Alkylphosphinites as Synthons for Stabilized Carbocations. Org Lett 2022; 24:1460-1464. [PMID: 35147036 DOI: 10.1021/acs.orglett.2c00042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new acid-free method for the generation of carbocations based on a redox condensation reaction that enables SN1 reactions with a variety of nucleophiles. We utilize readily synthesized phosphinites that are activated by diisopropyl azodicarboxylate to form betaine structures that collapse upon adding a pronucleophile, thereby yielding reactive carbocation intermediates. We also employ this approach for the alkylation of some bioactive molecules.
Collapse
Affiliation(s)
- Lukas Ochmann
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Mika L Kessler
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
9
|
Aledavood E, Selmi B, Estarellas C, Masetti M, Luque FJ. From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Front Mol Biosci 2022; 8:796229. [PMID: 35096969 PMCID: PMC8795881 DOI: 10.3389/fmolb.2021.796229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Beatrice Selmi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| |
Collapse
|
10
|
Kolokouris D, Kalenderoglou IE, Kolocouris A. Inside and Out of the Pore: Comparing Interactions and Molecular Dynamics of Influenza A M2 Viroporin Complexes in Standard Lipid Bilayers. J Chem Inf Model 2021; 61:5550-5568. [PMID: 34714655 DOI: 10.1021/acs.jcim.1c00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion channels located at viral envelopes (viroporins) have a critical function for the replication of infectious viruses and are important drug targets. Over the last decade, the number and duration of molecular dynamics (MD) simulations of the influenza A M2 ion channel owing to the increased computational efficiency. Here, we aimed to define the system setup and simulation conditions for the correct description of the protein-pore and the protein-lipid interactions for influenza A M2 in comparison with experimental data. We performed numerous MD simulations of the influenza A M2 protein in complex with adamantane blockers in standard lipid bilayers using OPLS2005 and CHARMM36 (C36) force fields. We explored the effect of varying the M2 construct (M2(22-46) and M2(22-62)), the lipid buffer size and type (stiffer DMPC or softer POPC with or without 20% cholesterol), the simulation time, the H37 protonation site (Nδ or Νε), the conformational state of the W41 channel gate, and M2's cholesterol binding sites (BSs). We report that the 200 ns MD with M2(22-62) (having Nε Η37) in the 20 Å lipid buffer with the C36 force field accurately describe: (a) the M2 pore structure and interactions inside the pore, that is, adamantane channel blocker location, water clathrate structure, and water or chloride anion blockage/passage from the M2 pore in the presence of a channel blocker and (b) interactions between M2 and the membrane environment as reflected by the calculation of the M2 bundle tilt, folding of amphipathic helices, and cholesterol BSs. Strikingly, we also observed that the C36 1 μs MD simulations using M2(22-62) embedded in a 20 Å POPC:cholesterol (5:1) scrambled membrane produced frequent interactions with cholesterol, which when combined with computational kinetic analysis, revealed the experimentally observed BSs of cholesterol and suggested three similarly long-interacting positions in the top leaflet that have previously not been observed experimentally. These findings promise to be useful for other viroporin systems.
Collapse
Affiliation(s)
- Dimitrios Kolokouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Iris E Kalenderoglou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| |
Collapse
|
11
|
Abstract
Several adamantanes have established actions against coronaviruses. Amantadine, rimantadine, bananins and the structurally related memantine are effective against human respiratory coronavirus HCoV-OC43, bovine coronavirus and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and a spiroadamantane amine is effective against the coronavirus strain 229E. Molecular docking studies suggest that amantadine may block the viral E protein channel, leading to impaired viral propagation. Additionally, amantadine analogues may inhibit entry of the virus into the host cell by increasing the pH of the endosomes and thus inhibiting the action of host cell proteases such as Cathepsin L. High-throughput drug screen gene expression analysis identified compounds able to down-regulate Cathepsin L expression where the fifth most potent agent of 466 candidates was amantadine. Amantadine inhibits severe acute respiratory syndrome coronavirus 2 replication in vitro but does not inhibit the binding of the spike protein to ACE2. Adamantanes also may act against coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via antagonism of glutamate (NMDA) and the α-7 subtype of the nicotinic acetylcholine receptor located on bronchial and alveolar epithelial cells. As an NMDA receptor antagonist, memantine has the potential to inhibit entry of SARS-CoV-2 into these cell populations. Amantadine and memantine are widely employed for the treatment of neurodegenerative diseases and a pathophysiologic link between the antiviral and anti-Parkinson actions of amantadine has been entertained. Case reports involving 23 patients with reverse transcription polymerase chain reaction-confirmed coronavirus disease 2019 (COVID-19) and a range of co-morbidities including type 2 diabetes mellitus, Parkinson's disease, multiple sclerosis and severe cognitive impairment reveal significant potential benefits of amantadine and memantine for the prevention and/or treatment of coronavirus disease 2019 and its neurological complications.
Collapse
Affiliation(s)
- Roger F Butterworth
- Department of Medicine, University of Montreal, 45143 Cabot Trail, Englishtown, NS, B0C 1H0, Canada.
| |
Collapse
|
12
|
King E, Aitchison E, Li H, Luo R. Recent Developments in Free Energy Calculations for Drug Discovery. Front Mol Biosci 2021; 8:712085. [PMID: 34458321 PMCID: PMC8387144 DOI: 10.3389/fmolb.2021.712085] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
The grand challenge in structure-based drug design is achieving accurate prediction of binding free energies. Molecular dynamics (MD) simulations enable modeling of conformational changes critical to the binding process, leading to calculation of thermodynamic quantities involved in estimation of binding affinities. With recent advancements in computing capability and predictive accuracy, MD based virtual screening has progressed from the domain of theoretical attempts to real application in drug development. Approaches including the Molecular Mechanics Poisson Boltzmann Surface Area (MM-PBSA), Linear Interaction Energy (LIE), and alchemical methods have been broadly applied to model molecular recognition for drug discovery and lead optimization. Here we review the varied methodology of these approaches, developments enhancing simulation efficiency and reliability, remaining challenges hindering predictive performance, and applications to problems in the fields of medicine and biochemistry.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Erick Aitchison
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, United States
- Department of Materials Science and Engineering, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| |
Collapse
|
13
|
Zonker B, Becker J, Hrdina R. Synthesis of noradamantane derivatives by ring-contraction of the adamantane framework. Org Biomol Chem 2021; 19:4027-4031. [PMID: 33978046 DOI: 10.1039/d1ob00471a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe a triflic acid promoted cascade reaction of adamantane derivatives consisting of a decarboxylation of N-methyl protected cyclic carbamates and a subsequent intramolecular nucleophilic 1,2-alkyl shift to generate ring contracted iminium triflates. This reaction expands the family of similar transformations, such as Wagner-Meerwein-, Demjanov-Tiffeneau-, Meinwald- or (semi-)pinacol-rearrangement. It allows the preparation of noradamantane derivatives in a few steps, starting from simple hydroxy-substituted adamantane precursors.
Collapse
Affiliation(s)
- Benjamin Zonker
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Radim Hrdina
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 40 Praha, Czech Republic.
| |
Collapse
|
14
|
Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17:e1003501. [PMID: 33378357 DOI: 10.2139/ssrn.3619770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/08/2021] [Accepted: 12/10/2020] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND Numerous clinical trials and observational studies have investigated various pharmacological agents as potential treatment for Coronavirus Disease 2019 (COVID-19), but the results are heterogeneous and sometimes even contradictory to one another, making it difficult for clinicians to determine which treatments are truly effective. METHODS AND FINDINGS We carried out a systematic review and network meta-analysis (NMA) to systematically evaluate the comparative efficacy and safety of pharmacological interventions and the level of evidence behind each treatment regimen in different clinical settings. Both published and unpublished randomized controlled trials (RCTs) and confounding-adjusted observational studies which met our predefined eligibility criteria were collected. We included studies investigating the effect of pharmacological management of patients hospitalized for COVID-19 management. Mild patients who do not require hospitalization or have self-limiting disease courses were not eligible for our NMA. A total of 110 studies (40 RCTs and 70 observational studies) were included. PubMed, Google Scholar, MEDLINE, the Cochrane Library, medRxiv, SSRN, WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov were searched from the beginning of 2020 to August 24, 2020. Studies from Asia (41 countries, 37.2%), Europe (28 countries, 25.4%), North America (24 countries, 21.8%), South America (5 countries, 4.5%), and Middle East (6 countries, 5.4%), and additional 6 multinational studies (5.4%) were included in our analyses. The outcomes of interest were mortality, progression to severe disease (severe pneumonia, admission to intensive care unit (ICU), and/or mechanical ventilation), viral clearance rate, QT prolongation, fatal cardiac complications, and noncardiac serious adverse events. Based on RCTs, the risk of progression to severe course and mortality was significantly reduced with corticosteroids (odds ratio (OR) 0.23, 95% confidence interval (CI) 0.06 to 0.86, p = 0.032, and OR 0.78, 95% CI 0.66 to 0.91, p = 0.002, respectively) and remdesivir (OR 0.29, 95% CI 0.17 to 0.50, p < 0.001, and OR 0.62, 95% CI 0.39 to 0.98, p = 0.041, respectively) compared to standard care for moderate to severe COVID-19 patients in non-ICU; corticosteroids were also shown to reduce mortality rate (OR 0.54, 95% CI 0.40 to 0.73, p < 0.001) for critically ill patients in ICU. In analyses including observational studies, interferon-alpha (OR 0.05, 95% CI 0.01 to 0.39, p = 0.004), itolizumab (OR 0.10, 95% CI 0.01 to 0.92, p = 0.042), sofosbuvir plus daclatasvir (OR 0.26, 95% CI 0.07 to 0.88, p = 0.030), anakinra (OR 0.30, 95% CI 0.11 to 0.82, p = 0.019), tocilizumab (OR 0.43, 95% CI 0.30 to 0.60, p < 0.001), and convalescent plasma (OR 0.48, 95% CI 0.24 to 0.96, p = 0.038) were associated with reduced mortality rate in non-ICU setting, while high-dose intravenous immunoglobulin (IVIG) (OR 0.13, 95% CI 0.03 to 0.49, p = 0.003), ivermectin (OR 0.15, 95% CI 0.04 to 0.57, p = 0.005), and tocilizumab (OR 0.62, 95% CI 0.42 to 0.90, p = 0.012) were associated with reduced mortality rate in critically ill patients. Convalescent plasma was the only treatment option that was associated with improved viral clearance rate at 2 weeks compared to standard care (OR 11.39, 95% CI 3.91 to 33.18, p < 0.001). The combination of hydroxychloroquine and azithromycin was shown to be associated with increased QT prolongation incidence (OR 2.01, 95% CI 1.26 to 3.20, p = 0.003) and fatal cardiac complications in cardiac-impaired populations (OR 2.23, 95% CI 1.24 to 4.00, p = 0.007). No drug was significantly associated with increased noncardiac serious adverse events compared to standard care. The quality of evidence of collective outcomes were estimated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework. The major limitation of the present study is the overall low level of evidence that reduces the certainty of recommendations. Besides, the risk of bias (RoB) measured by RoB2 and ROBINS-I framework for individual studies was generally low to moderate. The outcomes deducted from observational studies could not infer causality and can only imply associations. The study protocol is publicly available on PROSPERO (CRD42020186527). CONCLUSIONS In this NMA, we found that anti-inflammatory agents (corticosteroids, tocilizumab, anakinra, and IVIG), convalescent plasma, and remdesivir were associated with improved outcomes of hospitalized COVID-19 patients. Hydroxychloroquine did not provide clinical benefits while posing cardiac safety risks when combined with azithromycin, especially in the vulnerable population. Only 29% of current evidence on pharmacological management of COVID-19 is supported by moderate or high certainty and can be translated to practice and policy; the remaining 71% are of low or very low certainty and warrant further studies to establish firm conclusions.
Collapse
Affiliation(s)
- Min Seo Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Cheongsan Public Health Center, Wando, Republic of Korea
| | - Min Ho An
- Ajou University, School of Medicine, Suwon, Republic of Korea
- So Ahn Public Health Center, Wando, Republic of Korea
| | - Won Jun Kim
- Korea University, College of Medicine, Seoul, Republic of Korea
- Gangneung Prison Medical Department, Ministry of Justice, Republic of Korea
| | - Tae-Ho Hwang
- Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Republic of Korea
- Gene and Cell Therapy Research Center for Vessel-associated Diseases, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
15
|
McGuire KL, Hill JT, Busath DD. Increased Dissociation of Adamantanamines in Influenza A M2 S31N with Partial Block by Rimantadine. Biophys J 2020; 119:1811-1820. [PMID: 33080223 DOI: 10.1016/j.bpj.2020.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 11/15/2022] Open
Abstract
The ubiquitous mutation from serine (WT) to asparagine at residue 31 (S31N) in the influenza A M2 channel renders it insensitive to amantadine (AMT) and rimantadine (RMT) block, but it is unknown whether the inhibition results from weak binding or incomplete block. Two-electrode voltage clamp (TEVC) of transfected Xenopus oocytes revealed that the M2 S31N channel is essentially fully blocked by AMT at 10 mM, demonstrating that, albeit weak, AMT binding in a channel results in complete block of its proton current. In contrast, RMT achieves only a modest degree of block in the M2 S31N channel at 1 mM, with very little increase in block at 10 mM, indicating that the RMT binding site in the channel saturates with only modest block. From exponential curve fits to families of proton current wash-in and wash-out traces, the association rate constant (k1) is somewhat decreased for both AMT and RMT in the S31N, but the dissociation rate constant (k2) is dramatically increased compared with WT. The potentials of mean force (PMF) from adaptive biasing force (ABF) molecular dynamics simulations predict that rate constants should be exquisitely sensitive to the charge state of the His37 selectivity filter of M2. With one exception out of eight cases, predictions from the simulations with one and three charged side chains bracket the experimental rate constants, as expected for the acidic bath used in the TEVC assay. From simulations, the weak binding can be accounted for by changes in the potentials of mean force, but the partial block by RMT remains unexplained.
Collapse
Affiliation(s)
- Kelly L McGuire
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah.
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - David D Busath
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|