1
|
Kubo T, Yanagihara K, Nishimura Y, Iino Y, Komatsu T, Tansou R, Mihara K, Seyama T. Antitumor Effect of Oleoyl-siRNA against Pancreatic Cancer Using a Portal Vein Infusion Liver-Metastatic Mouse Model. Mol Pharm 2024; 21:5115-5125. [PMID: 39279440 DOI: 10.1021/acs.molpharmaceut.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In this study, we developed an oleoyl-siRNA conjugate in which oleic acid was conjugated at the 5'-end of the sense strand of the siRNA. Furthermore, we examined the effects of RNAi in a mouse model of pancreatic cancer with liver metastasis. The mouse model of pancreatic cancer with liver metastasis was developed by implanting Sui67Luc human pancreatic cancer cells into the portal veins of mice. Sui67Luc cells have high expression of tumor-related genes such as β-catenin, vascular endothelial growth factor, and programmed cell death ligand-1. All genes were knocked down using siRNA, among which siRNA targeting β-catenin exhibited the most suitable RNAi effect. Therefore, we investigated the in vitro RNAi effect of oleoyl-siRNA (Ole-siRNA) targeting the β-catenin gene in Sui67Luc cells and found that it was stronger than that of unmodified siRNA. For in vivo experiments, we investigated the biodistribution, antitumor effect, and change in life expectancy of mice upon systemic administration of Ole-siRNA complexed with Invivofectamine 3.0 (IVF). In terms of biodistribution, the Ole-siRNA/IVF complex likely accumulates in the liver of mice. The antitumor effect of Ole-siRNA in a portal vein infusion liver-metastatic Sui67Luc tumor mouse model was evaluated using an in vivo imaging system. Ole-siRNA had a significant antitumor effect compared with nonmodified siRNA. In addition, mice with metastatic liver Sui67Luc tumors treated with Ole-siRNA showed increased survival. These results suggest that Ole-siRNAs are useful novel RNAi molecules for treating pancreatic cancer and liver metastasis.
Collapse
Affiliation(s)
- Takanori Kubo
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Kazuyoshi Yanagihara
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yoshio Nishimura
- School of Pharmaceutical Sciences, Ohu University, Fukushima 963-8611, Japan
| | - Yuki Iino
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Teruo Komatsu
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Rina Tansou
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| | - Keichiro Mihara
- Department of International Center for Cell and Gene Therapy, Fujita Health University, Toyoake 470-1192, Japan
| | - Toshio Seyama
- Laboratory of Molecular Cell Biology, Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan
| |
Collapse
|
2
|
Elnaggar MG, He Y, Yeo Y. Recent trends in the delivery of RNA drugs: Beyond the liver, more than vaccine. Eur J Pharm Biopharm 2024; 197:114203. [PMID: 38302049 PMCID: PMC10947810 DOI: 10.1016/j.ejpb.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
RNAs are known for versatile functions and therapeutic utility. They have gained significant interest since the approval of several RNA drugs, including COVID-19 mRNA vaccines and therapeutic agents targeting liver diseases. There are increasing expectations for a new class of RNA drugs for broader applications. Successful development of RNA drugs for new applications hinges on understanding their diverse functions and structures. In this review, we explore the last five years of literature to understand current approaches to formulate a spectrum of RNA drugs, focusing on new efforts to expand their applications beyond vaccines and liver diseases.
Collapse
Affiliation(s)
- Marwa G Elnaggar
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Yanying He
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
3
|
Engineered ionizable lipid siRNA conjugates enhance endosomal escape but induce toxicity in vivo. J Control Release 2022; 349:831-843. [PMID: 35917865 DOI: 10.1016/j.jconrel.2022.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022]
Abstract
Lipid conjugation supports delivery of small interfering RNAs (siRNAs) to extrahepatic tissues, expanding the therapeutic potential of siRNAs beyond liver indications. However, siRNA silencing efficacy in extrahepatic tissues remains inferior to that routinely achieved in liver, partially due to the low rate of endosomal escape following siRNA internalization. Improving siRNA endosomal release into cytoplasm is crucial to improving efficacy of lipid-conjugated siRNAs. Given the ability of ionizable lipids to enhance endosomal escape in a context of lipid nanoparticles (LNP), here, we provide the first report on the effect of an ionizable lipid conjugate on siRNA endosomal escape, tissue distribution, efficacy, and toxicity in vivo. After developing a synthetic route to covalently attach the ionizable lipid, DLin-MC3-DMA, to siRNAs, we demonstrate that DLin-MC3-DMA enhances endosomal escape in cell culture without compromising siRNA efficacy. In mice, DLin-MC3-DMA conjugated siRNAs exhibit a similar overall tissue distribution profile to the similarly hydrophobic cholesterol-conjugated siRNA. However, only DLin-MC3-DMA conjugated siRNAs accumulated in vascular compartments, suggesting an effect of conjugate structure on intratissue distribution. Interestingly, we observed non-specific modulation of gene expression in tissues with high accumulation of DLin-MC3-DMA siRNAs (>20 pmol/mg of tissue) while limited non-specific gene modulation has been observed in tissues with lower siRNA accumulation. These findings suggest modulating the nature of the conjugate is a promising strategy to alter siRNA intratissue and intracellular trafficking. Fine-tuning the nature of the conjugate to optimize endosomal escape while minimizing toxicity will be critical for the progression of therapeutic siRNA applications beyond the liver.
Collapse
|
4
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
5
|
Liu X, Ding F, Guo Y, Jiang K, Fu Y, Zhu L, Li M, Zhu X, Zhang C. Complexing the Pre-assembled Brush-like siRNA with Poly(β-amino ester) for Efficient Gene Silencing. ACS APPLIED BIO MATERIALS 2022; 5:1857-1867. [PMID: 35107256 DOI: 10.1021/acsabm.1c01182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small interfering RNA (siRNA) has been emerging as a highly selective and effective pharmaceutics for treating broad classes of diseases. However, the practical application of siRNA agent is often hampered by its poor crossing of the cellular membrane barrier and ineffective releasing from endosome to cytoplasm, leading to low gene silencing efficacy for clinical purposes. Thus far, cationic lipid and polymer-based vectors have been extensively explored for gene delivery. Yet condensing the rigid and highly negatively charged siRNA duplex to form a stable complex vehicle usually requires a large load of cationic carriers, prone to raising the toxicity issue for delivery. Herein, we develop a simple strategy that can efficiently condense the siRNAs into nanoparticle vehicles for target gene regulation. In this approach, we first employ a DNA-grafted polycaprolactone (DNA-g-PCL) brush as template to organize the small rigid siRNAs into a large brush-like structure (siRNA-brush) through nucleic acid hybridization. Then, the siRNA-brush assembly is condensed by an ionizable and biodegradable polymer (poly(β-amino ester), PBAE) under acidic buffer condition to form a stable nanoparticle for siRNA delivery. Compared to the free siRNAs with poor complexing capability with PBAE, the large brush-like siRNA assemblies with more complicated topological architecture significantly promotes their electrostatic interaction with PBAE, enabling the formation of complexed nanoparticles at low weight ratio of polymer to siRNA. Additionally, PBAE/siRNA-brush complexes exhibit good biocompatibility and stability under physiological condition, as well as enhanced cellular internalization. When equipped with functional siRNAs, the obtained delivery system demonstrates excellent downregulation of target genes both in vitro and in vivo, through which the progression of hypertrophic scars can be retarded with negligible adverse effects in an xenografted mouse model.
Collapse
Affiliation(s)
- Xinlong Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanyuan Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kai Jiang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Fu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lijuan Zhu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Ming Li
- Department of Dermatology, Institute of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Bakowski K, Vogel S. Evolution of complexity in non-viral oligonucleotide delivery systems: from gymnotic delivery through bioconjugates to biomimetic nanoparticles. RNA Biol 2022; 19:1256-1275. [PMID: 36411594 PMCID: PMC9683052 DOI: 10.1080/15476286.2022.2147278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
From the early days of research on RNA biology and biochemistry, there was an interest to utilize this knowledge and RNA itself for therapeutic applications. Today, we have a series of oligonucleotide therapeutics on the market and many more in clinical trials. These drugs - exploit different chemistries of oligonucleotides, such as modified DNAs and RNAs, peptide nucleic acids (PNAs) or phosphorodiamidate morpholino oligomers (PMOs), and different mechanisms of action, such as RNA interference (RNAi), targeted RNA degradation, splicing modulation, gene expression and modification. Despite major successes e.g. mRNA vaccines developed against SARS-CoV-2 to control COVID-19 pandemic, development of therapies for other diseases is still limited by inefficient delivery of oligonucleotides to specific tissues and organs and often prohibitive costs for the final drug. This is even more critical when targeting multifactorial disorders and patient-specific biological variations. In this review, we will present the evolution of complexity of oligonucleotide delivery methods with focus on increasing complexity of formulations from gymnotic delivery to bioconjugates and to lipid nanoparticles in respect to developments that will enable application of therapeutic oligonucleotides as drugs in personalized therapies.
Collapse
Affiliation(s)
- Kamil Bakowski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Stefan Vogel
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark,CONTACT Stefan Vogel Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230Odense, Denmark
| |
Collapse
|