1
|
Kudo F, Tsuboi K, Ikezaki M, Nagayama D, Kawamura K, Ando T, Miyanaga A, Eguchi T. The Post-Polyketide Synthase Modification Mechanism in Hitachimycin Biosynthesis. Chembiochem 2024; 25:e202400405. [PMID: 38849317 DOI: 10.1002/cbic.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Hitachimycin is a bicyclic macrolactam antibiotic with (S)-β-phenylalanine (β-Phe) at the starter position of the polyketide skeleton. While the enzymes that recognize β-amino acids, modify the aminoacyl groups, and transfer the resultant dipeptide groups to the acyl carrier protein domains of polyketide synthases (PKSs) have been studied extensively, the post-PKS modification mechanism responsible for constructing the unique bicyclic structure of hitachimycin remains elusive. In this study, we first inactivated six genes encoding putative post-PKS modification enzymes, namely hitM1 to hitM6, in Streptomyces scabrisporus to determine their involvement in hitachimycin biosynthesis. The ΔhitM4 strain accumulated an all-trans-2,4,6,8,18-pentaene macrolactam, which was confirmed as a true intermediate in hitachimycin biosynthesis by cellular feeding experiments, and appears to be the initial intermediate in the post-PKS modification pathway. The ΔhitM1 strain accumulated 10-O-demethyl-10-oxohitachimycin (M1-A). In enzymatic experiments, M1-A was reduced by the NAD(P)H-dependent reductase HitM1 in the presence of NADPH. The product of the reaction catalyzed by HitM1 was converted to hitachimycin by the methyltransferase HitM6. We thus propose a plausible post-PKS modification mechanism for the biosynthesis of hitachimycin.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Kazuma Tsuboi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Mutsumi Ikezaki
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Daiki Nagayama
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Koichi Kawamura
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Taishi Ando
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Meguro-ku, O-okayama, Tokyo, 152-8551, Japan
| |
Collapse
|
2
|
Kudo F. Biosynthesis of macrolactam antibiotics with β-amino acid polyketide starter units. J Antibiot (Tokyo) 2024; 77:486-498. [PMID: 38816450 PMCID: PMC11284099 DOI: 10.1038/s41429-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Macrolactam antibiotics incorporating β-amino acid polyketide starter units, isolated primarily from Actinomycetes species, show significant biological activities. This review provides a detailed analysis into the biosynthetic studies of vicenistatin, a macrolactam antibiotic with a 3-aminoisobutyrate starter unit, as well as biosynthetic research on related macrolactam compounds. Firstly, the elucidation of a common mechanism for the incorporation of β-amino acid starter units into the polyketide synthase (PKS) is described. Secondly, the unique biosynthetic mechanisms of the β-amino acids that are used to supply the main macrolactam biosynthetic pathways with starter units are discussed. Thirdly, some distinctive post-PKS modification mechanisms that complete macrolactam antibiotic biosynthesis are summarized. Finally, future directions for creating new macrolactam compounds through engineered biosynthesis pathways are described.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
3
|
Wang D, Miyanaga A, Chisuga T, Kudo F, Eguchi T. Engineering the Substrate Specificity of (S)-β-Phenylalanine Adenylation Enzyme HitB. Chembiochem 2024; 25:e202400383. [PMID: 38805007 DOI: 10.1002/cbic.202400383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Adenylation enzymes catalyze the selective incorporation of aminoacyl building blocks in the biosynthesis of nonribosomal peptides and related natural products. Although β-amino acid units are one of the important aminoacyl building blocks in natural product biosynthesis, very little is known about the engineering of β-amino acid adenylation enzymes. In this study, we engineered the substrate specificity of the (S)-β-phenylalanine adenylation enzyme, HitB, involved in the biosynthesis of macrolactam polyketide hitachimycin. Based on the previously determined structure of HitB wild-type, we mutated Phe328 and Ser293, which are located near the meta and ortho position of the (S)-β-phenylalanine moiety, respectively. As a result, the HitB F328V and F328L mutants efficiently activated meta-substituted (S)-β-phenylalanine analogs, and the HitB T293G and T293S mutants efficiently activated ortho-substituted (S)-β-phenylalanine analogs. Structural analysis of the HitB F328L and T293G mutants with the corresponding nonhydrolyzable intermediate analogs revealed an enlarged substrate binding pocket for (S)-β-phenylalanine analogs, providing detailed insights into the structural basis for creating enzyme substrate promiscuity. Our findings may be useful for production of various β-amino acid-containing natural product analogs.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
- Present address, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
4
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Popov AG, Viviani VR, Skumial P, Jefferson TL, Salman SG, Baxter HH, Hull KL. Copper-Catalyzed Three-Component 1,5-Carboamination of Vinylcyclopropanes. Org Lett 2024. [PMID: 38810616 DOI: 10.1021/acs.orglett.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The 1,5-copper-catalyzed carboamination of vinylcyclopropanes is presented. A carbon-centered radical, formed upon reduction of an alkyl halide by Cu(I), adds across the alkene of a vinylcyclopropane, triggering ring opening to generate a benzylic radical, which, finally, undergoes copper-mediated amination to afford a homoallylic amine. The reaction occurs with outstanding regio- and good to very good diastereoselectivities. The scope of the reaction is demonstrated with respect to all three components: alkyl halide, vinylcyclopropane, and amine nucleophile. A total of 38 examples are presented with an average yield of 60%.
Collapse
Affiliation(s)
- Andrei G Popov
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Vincent R Viviani
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Piotr Skumial
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Theodore L Jefferson
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Samer G Salman
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Henry H Baxter
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Kami L Hull
- Department of Chemistry, University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Masuda R, Yasukawa T, Yamashita Y, Maki T, Yoshida T, Kobayashi S. Heterogeneous Single-Atom Zinc on Nitrogen-Doped Carbon Catalyzed Electrochemical Allylation of Imines. J Am Chem Soc 2023. [PMID: 37224473 DOI: 10.1021/jacs.3c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organometallic reagents are effective for carbon-carbon bond formation; however, consumption of stoichiometric amounts of metals is problematic. We developed electrochemical allylation reactions of imines catalyzed by nitrogen-doped carbon-supported single-atom zinc, which were fixed on a cathode to afford a range of homoallylic amines efficiently. The system could suppress generation of metallic waste, and the catalyst electrode showed advantages over bulk zinc in terms of activity and robustness. An electrochemical flow reaction was also successfully performed to produce the homoallylic amine continuously with minimum amounts of waste.
Collapse
Affiliation(s)
- Ryusuke Masuda
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tei Maki
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoko Yoshida
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Miyanaga A, Kudo F, Eguchi T. Recent advances in the structural analysis of adenylation domains in natural product biosynthesis. Curr Opin Chem Biol 2022; 71:102212. [PMID: 36116190 DOI: 10.1016/j.cbpa.2022.102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Adenylation (A) domains catalyze the biosynthetic incorporation of acyl building blocks into nonribosomal peptides and related natural products by selectively transferring acyl substrates onto cognate carrier proteins (CP). The use of noncanonical acyl units, such as nonproteinogenic amino acids and keto acids, by A domains expands the structural diversity of natural products. Furthermore, interrupted A domains, which have embedded auxiliary domains, are able to modify the incorporated acyl units. Structural information on A domains is important for rational protein engineering to generate unnatural compounds. In this review, we summarize recent advances in the structural analysis of A domains. First, we discuss the mechanisms by which A domains recognize noncanonical acyl units. We then focus on the interactions of A domains with CP domains and embedded auxiliary domains.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| |
Collapse
|
8
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204516. [DOI: 10.1002/anie.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
9
|
Chen Y, Yan H, Liao Q, Zhang D, Lin S, Hao E, Murtaza R, Li C, Wu C, Duan C, Shi L. Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Huaipu Yan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Qian Liao
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Dandan Zhang
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Shuangjie Lin
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| | - Rukhsana Murtaza
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Chenchen Li
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chao Wu
- Frontier Institute of Science and Technology Xi'an Jiaotong University 710054 Xi'an China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals Zhang Dayu School of Chemistry Dalian University of Technology 116024 Dalian China
- School of Chemistry and Chemical Engineering Henan Normal University 453007 Xinxiang China
| |
Collapse
|
10
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as neopetrothiazide from a Neopetrosia species.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|