1
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
2
|
Burgers TCQ, Vlijm R. Fluorescence-based super-resolution-microscopy strategies for chromatin studies. Chromosoma 2023:10.1007/s00412-023-00792-9. [PMID: 37000292 PMCID: PMC10356683 DOI: 10.1007/s00412-023-00792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Super-resolution microscopy (SRM) is a prime tool to study chromatin organisation at near biomolecular resolution in the native cellular environment. With fluorescent labels DNA, chromatin-associated proteins and specific epigenetic states can be identified with high molecular specificity. The aim of this review is to introduce the field of diffraction-unlimited SRM to enable an informed selection of the most suitable SRM method for a specific chromatin-related research question. We will explain both diffraction-unlimited approaches (coordinate-targeted and stochastic-localisation-based) and list their characteristic spatio-temporal resolutions, live-cell compatibility, image-processing, and ability for multi-colour imaging. As the increase in resolution, compared to, e.g. confocal microscopy, leads to a central role of the sample quality, important considerations for sample preparation and concrete examples of labelling strategies applicable to chromatin research are discussed. To illustrate how SRM-based methods can significantly improve our understanding of chromatin functioning, and to serve as an inspiring starting point for future work, we conclude with examples of recent applications of SRM in chromatin research.
Collapse
Affiliation(s)
- Thomas C Q Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Kompa J, Bruins J, Glogger M, Wilhelm J, Frei MS, Tarnawski M, D’Este E, Heilemann M, Hiblot J, Johnsson K. Exchangeable HaloTag Ligands for Super-Resolution Fluorescence Microscopy. J Am Chem Soc 2023; 145:3075-3083. [PMID: 36716211 PMCID: PMC9912333 DOI: 10.1021/jacs.2c11969] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The specific and covalent labeling of the protein HaloTag with fluorescent probes in living cells makes it a powerful tool for bioimaging. However, the irreversible attachment of the probe to HaloTag precludes imaging applications that require transient binding of the probe and comes with the risk of irreversible photobleaching. Here, we introduce exchangeable ligands for fluorescence labeling of HaloTag (xHTLs) that reversibly bind to HaloTag and that can be coupled to rhodamines of different colors. In stimulated emission depletion (STED) microscopy, probe exchange of xHTLs allows imaging with reduced photobleaching as compared to covalent HaloTag labeling. Transient binding of fluorogenic xHTLs to HaloTag fusion proteins enables points accumulation for imaging in nanoscale topography (PAINT) and MINFLUX microscopy. We furthermore introduce pairs of xHTLs and HaloTag mutants for dual-color PAINT and STED microscopy. xHTLs thus open up new possibilities in imaging across microscopy platforms for a widely used labeling approach.
Collapse
Affiliation(s)
- Julian Kompa
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Jorick Bruins
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Marius Glogger
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue
Str. 7, Frankfurt 60438, Germany
| | - Jonas Wilhelm
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Michelle S. Frei
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Miroslaw Tarnawski
- Protein
Expression and Characterization Facility, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Elisa D’Este
- Optical
Microscopy Facility, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue
Str. 7, Frankfurt 60438, Germany
| | - Julien Hiblot
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland,
| |
Collapse
|
4
|
Cao Z, Wang L, Liu R, Lin S, Wu F, Liu J. Encoding with a fluorescence-activating and absorption-shifting tag generates living bacterial probes for mammalian microbiota imaging. Mater Today Bio 2022; 15:100311. [PMID: 35711290 PMCID: PMC9194656 DOI: 10.1016/j.mtbio.2022.100311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian microbiota plays essential roles in health. A primary determinant to understand the interaction with the host is the distribution and viability of its key microorganisms. Here, a strategy of encoding with a fluorescence-activating and absorption-shifting tag (FAST) is reported to prepare living bacterial probes for real-time dynamic, dual-modal, and molecular oxygen-independent imaging of the host microbiota. Carrying FAST endows bacteria with rapid on-demand turn on-off fluorescence by adding or removal of corresponding fluorogens. Encoded bacteria are able to reversibly switch emission bands for dual-color fluorescence imaging via fluorogen exchange. Due to molecular oxygen-independent emission of FAST, encoded bacteria can emit fluorescence under anaerobic environments including the gut and tumor. These living probes demonstrate the applicability to quantify the vitality of bacteria transplanted to the gut microbiota. This work proposes a unique fluorescence probe for investigating the dynamics of the host microbiota. Living bacterial probes for real-time dynamic, dual-modal, and molecular oxygen-independent imaging of mammalian microbiota. Engineered bacteria showing on-demand turn on-off fluorescence by adding or removal of corresponding fluorogens. Fluorescence emission under anaerobic in vivo environments including the gut and tumor. A fluorescence probe to determine the vitality of transplanted bacteria and investigate the dynamics of the host microbiota.
Collapse
|
5
|
Mantovanelli L, Gaastra BF, Poolman B. Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. CURRENT TOPICS IN MEMBRANES 2021; 88:1-54. [PMID: 34862023 DOI: 10.1016/bs.ctm.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Perfilov MM, Gavrikov AS, Lukyanov KA, Mishin AS. Transient Fluorescence Labeling: Low Affinity-High Benefits. Int J Mol Sci 2021; 22:11799. [PMID: 34769228 PMCID: PMC8583718 DOI: 10.3390/ijms222111799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Fluorescent labeling is an established method for visualizing cellular structures and dynamics. The fundamental diffraction limit in image resolution was recently bypassed with the development of super-resolution microscopy. Notably, both localization microscopy and stimulated emission depletion (STED) microscopy impose tight restrictions on the physico-chemical properties of labels. One of them-the requirement for high photostability-can be satisfied by transiently interacting labels: a constant supply of transient labels from a medium replenishes the loss in the signal caused by photobleaching. Moreover, exchangeable tags are less likely to hinder the intrinsic dynamics and cellular functions of labeled molecules. Low-affinity labels may be used both for fixed and living cells in a range of nanoscopy modalities. Nevertheless, the design of optimal labeling and imaging protocols with these novel tags remains tricky. In this review, we highlight the pros and cons of a wide variety of transiently interacting labels. We further discuss the state of the art and future perspectives of low-affinity labeling methods.
Collapse
Affiliation(s)
| | | | | | - Alexander S. Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (M.M.P.); (A.S.G.); (K.A.L.)
| |
Collapse
|